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Neutron scattering measurements of phonons in nickel at elevated temperatures
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Measurements of elastic and inelastic neutron scatterings from elemental nickel were made at 10, 300, 575,
875, and 1275 K. The phonon densities of states (DOSs) were calculated from the inelastic scattering and were
fit with Born—von Karman models of the lattice dynamics. With ancillary data on thermal expansion and elastic
moduli, we found a small, negative anharmonic contribution to the phonon entropy at high temperature. We
used this to place bounds on the magnetic entropy of nickel. A significant broadening of the phonon DOS at
elevated temperatures, another indication of anharmonicity, was also measured and quantified.
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I. INTRODUCTION

The free energies of solid phases and their consequences
with respect to phase diagrams continues to be an important
and productive topic of research.!~!! The stabilities of phases
at low temperatures (at both ambient and high pressures) can
often be understood by determining the enthalpy H with
electronic structure calculations in the local-density approxi-
mation. At somewhat higher temperatures where entropic
contributions to the free energy become important, methods
have been available for some time for calculating the con-
figurational entropy of alloys.'>16

For pure elements, the entropy S may be written as a sum
of contributions from electrons and phonons, S and Sy,
provided the electrons and phonons do not interact. The en-
tropy of electronic excitations is often calculated from the
density of states near the Fermi level, obtained from elec-
tronic structure calculations. More recently, frozen phonon or
linear response methods used with density-functional calcu-
lations have proved effective for calculating the phonon en-
tropy of pure elements and intermetallic compounds.!'’-0
Even for pure elements, the situation becomes more compli-
cated at elevated temperatures, owing to the increasing num-
ber of excitations of electrons and phonons and the conse-
quent interactions between them. It is known that vibrational
entropy can be altered substantially by electron-phonon or
phonon-phonon interactions, but the systematic effects of
these interactions on the free energies are not well under-
stood.

The phonon entropy may be subdivided into the contribu-
tion from a perfectly harmonic solid Sy, the contribution due
to the dilation of the lattice S, and the remainder, or anhar-
monic entropy Sy,

S=8e+Sph=8e+Sy+Sp+S,. (1)

The sum Sy+Sp, gives a contribution termed ‘“quasihar-
monic” entropy. In most cases, the phonons are altered in
energy owing to thermal dilation, but the entropy can be
assessed with harmonic phonons at elevated temperature.
While this approach can provide useful thermodynamic in-
formation, it does not account for phonon damping, which is
another anharmonic effect of interest at elevated temperature.
From thermodynamics, we calculate S, as
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where Cp is the heat capacity at constant pressure, Cy the
heat capacity at constant volume, K the isothermal bulk
modulus, « the linear coefficient of thermal expansion, and
py the number density—all implicitly functions of tempera-
ture. The reference temperature T is the lowest temperature
where experimental data are available. Determination of the
anharmonic contribution to the entropy S, requires knowl-
edge of the phonon density of states (DOS) as a function of
temperature.

Measurements of the phonon dispersions of body-
centered-cubic (bcc) transition metals?!2° have shown that
the quasiharmonic model cannot always be reconciled with
the experimentally determined entropy of a solid. For chro-
mium, considering only thermal expansion against the bulk
modulus severely underestimates the entropy given by the
softening of the phonon DOS.?! On the other hand, the pho-
non spectrum of vanadium is largely unchanged over a wide
range of temperatures, despite normal thermal expansion.??

Wallace® and Eriksson er al’ evaluated the harmonic,
quasiharmonic, and anharmonic entropies of transition met-
als. In the case of nickel, they divide the electronic entropy
into a contribution from the noninteracting electrons S; and a
contribution from magnetism S, such that

Sa=Sg+Sy- (3)

They determined Sg through an ab initio electronic structure
calculation, and used it to make an estimate of the sum of the
anharmonic phonon and the magnetic entropies,

SA+SM=S_SH_SD_SE' (4)

They were, however, unable to separate the two terms on the
left-hand side of this equation. Meschter et al. have per-
formed a similar analysis of the heat capacity of nickel, also
estimating the anharmonic contributions to the entropy.®

By measuring the phonon DOS at high temperatures, we
are able to determine precisely the anharmonic contribution
to the total entropy of nickel. Previous measurements of the
phonon dispersions in nickel were reported by Birgeneau et
al.,”” Hautecler and Van Dingenen,?® and deWit and Brock-
house, but all these studies were confined to temperatures
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between 296 and 676 K. The purpose of deWit and Brock-
house’s measurements was not specifically to investigate
phonon thermodynamics, but rather to look for changes in
the phonon modes as the metal went through the Curie tran-
sition at T-=631 K. They reported little change in the
phonons through the magnetic transition and in the shifts in
the phonon energies that were largely consistent with a
quasiharmonic model. They also reported significant broad-
ening of the phonon peaks with increasing temperature,
which they suggested may be due to interactions of magne-
tism with the lattice.?’

Zoli et al. investigated the broadening of phonons in face-
centered-cubic (fcc) noble metals and aluminum.’® Using
force constants from Born—von Karman fits to neutron data
and third-order elastic constants, they calculated the full
width at half maximum 2I" of the phonon peaks. For alumi-
num and the noble metals, broadening of the phonon peaks is
of course not caused by magnetism but by phonon-phonon
interactions that shorten phonon lifetimes.

In the present research, we measured the inelastic scatter-
ing of neutrons from elemental nickel from 10 to 1275 K,
which is about 75% of the melting temperature. We explain
the data analysis and computation involved in extracting a
phonon DOS from the scattering, including a technique for
separating single phonon scattering from multiphonon and
multiple scattering, given in the Appendix. The phonon DOS
curves are used to calculate the anharmonic contribution to
the entropy, and this is used to bound the value of the mag-
netic entropy at high temperature. Finally, we discuss the
large broadening of phonon peaks at elevated temperature.

II. EXPERIMENT

A. Sample preparation

Ingots of 99.98% pure nickel were cold rolled to a thick-
ness of 0.45 mm. At this thickness, 10% of the incident neu-
trons are scattered by the sample. The cold-rolled pieces
were then cut into strips and annealed at 1075 K in evacu-
ated quartz tubes for 16 h to relieve stress and induce recrys-
tallization. There were no signs of oxidation on the annealed
strips.

B. Neutron scattering measurements

Inelastic neutron scattering measurements were per-
formed with the Pharos time-of-flight direct-geometry chop-
per spectrometer at the Los Alamos Neutron Science Center
at temperatures of 10, 300, 575, 875, and 1275 K. For the 10
and 300 K measurements, the strips of nickel were laid flat
in a thin-walled aluminum pan, which was then mounted on
a closed-cycle refrigerator. For higher temperatures, a nio-
bium pan was used, and the sample was mounted in a
vacuum furnace built by A. S. Scientific. Several thermo-
couples were used to monitor the temperature of the sample,
and it is estimated that the temperature deviations in the
sample were no more than 5 K. Measurements of the empty
sample pans were also performed at all temperatures.

Details about the Pharos spectrometer at Los Alamos have
been given previously.3'3? Data were collected for a mini-
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FIG. 1. Diffraction patterns from nickel, taken in situ at tem-
peratures as labeled. The quality of the patterns taken above room
temperature is reduced due to the increased background of the
furnace.

mum of 4 h at each temperature, giving on the order of 1
X 10° counts. The incident energies calculated from the data
ranged from 69.3 to 69.6 meV. The experimentally deter-
mined resolution of the instrument (full width at half maxi-
mum) was approximately 2.5 meV at the elastic line and
1.0 meV at the high-energy cutoff of the phonon DOS
(~40 meV).

III. DATA ANALYSIS AND COMPUTATION
A. General data reduction

The measured spectra, in time-of-flight, detector number,
and pixel were first corrected for the efficiencies of the de-
tectors. This was done using a room-temperature measure-
ment of pure vanadium (a fully incoherent scatterer) for cali-
bration. Next, the background independent of the time-of-
flight was estimated (as an average over a region in time-of-
flight having no appreciable scattering from the sample or
the environment) and subtracted. The corrected data were
normalized by the integrated proton current and converted to
intensity I(26,E) by rebinning into scattering angles, 286,
ranging from 5° to 145° with a bin width of 0.5° and energy
transfers E from —65to 65 meV with a bin width of
0.5 meV. The scattering from the empty pans was subtracted
from the data, scaled by 90% to account for the self-
shielding of the sample.

B. Elastic scattering: In situ neutron diffraction

The scattering with energy transfers between —2.5 and
2.5 meV was used to obtain diffraction patterns from nickel,
as shown in Fig. 1. Using Nelson-Riley plots,? the lattice
parameter a was found at all measured temperatures. These
are listed in Table I and agree with values of the lattice
parameter calculated using the accepted temperature-
dependent linear coefficient of thermal expansion®* and room
temperature-lattice parameter.>

In addition to those shown in Fig. 1, diffraction patterns
were obtained without the furnace at incident neutron ener-
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TABLE 1. Experimentally determined lattice parameter a of
nickel and shifts of the nickel phonon energies as a function of
temperature. Fits using a damped oscillator function and Eq. (6)
yield A, and (Ep)/(E,, was calculated with Eq. (8).

T a+0.005
(K) A) A (ED/(Eo)
10 3513 1.000 1.000
300 3.521 0.988 0.985
575 3.540 0.970 0.963
875 3.559 0.947 0.945

1275 3.585 0.920 0.913

gies of 30, 50, and 70 meV, with the 222 peak at 108°, 78°,
and 64° in 26, respectively. The ratios of peak intensities
remained largely unchanged, showing that the sample did not
have substantial crystallographic texture. Regardless, sample
texture should not affect lattice parameters, as determined
with Nelson-Riley plots, and effects of the texture are ad-
dressed in Sec. III E and in the Appendix.

C. Inelastic scattering: S(Q,E) and the density of states

The data were rebinned again to obtain the intensity
I(Q,E), with momentum transfer @ ranging from
0.0 to 13.5 A~! with a bin width of 0.0675 A~!. Since nickel
is ferromagnetic up to the Curie temperature, we excluded
scattering at lower momentum transfers, where magnetic
scattering is present, to ensure that the scattering from the
phonons was dominant. The elastic peak was removed below
~5 meV and replaced with a straight line, corresponding to
the continuum limit at low energies. The data were then cor-
rected for multiple and multiphonon scatterings simulta-
neously, as described in the Appendix. The resulting DOS
curves at all temperatures are shown in Fig. 2.

D. Phonon shifts and broadening

We expect the broadening of the phonons to take the form
of a damped harmonic oscillator function?*->® B(Q,E' E),
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FIG. 2. Phonon DOS for nickel at temperatures indicated. Mark-
ers are experimental data, and lines are Born—von Karman fits. The
increase in phonon lifetime broadening and the shifting of modes to
lower energies with increasing temperature is evident. The DOSs
are offset by integer multiples of 0.03 meV~".
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FIG. 3. Triangles show the inverse of the quality factor, 1/Q, as
a function of temperature for nickel phonons.

with central energy E’ and width proportional to the phonon
energy E.,*

1 1
QE’(E’ E>2 1

B(Q.E'.E)=— (5)

E E

+Q2

The quality factors Q were determined by a least-squares fit.
First, the energies of the 10 K DOS were scaled by a factor
A. The rescaled DOS was then convolved with a damped
oscillator function to get a candidate fit to the high-
temperature DOS.

gr(E) = B(Q,E'E) * go(E'A), (6)

where gy is the phonon DOS at 10 K, and the * denotes
convolution. The Q so determined at all temperatures are
shown in Fig. 3, and the fits to the DOS are shown in Fig. 4.
Approximately, we find

g(E) [1/meV]
o
o
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FIG. 4. Phonon DOS of nickel at temperatures as indicated.
Markers are experimental data. The lines are fits to the experimental
data, acquired by shifting the 10 K DOS and convolving it with the
damped oscillator function, as described by Egs. (5) and (6). The
shifts are listed in Table I. The DOSs are offset by integer multiples
of 0.02 meV~!.
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TABLE II. Optimized tensor force constants in N/m as a function of temperature for fcc nickel. A
Cartesian basis is used, where (xyz) is the bond vector for the given tensor components.

Xyz K K 75 K 75 K 75 K
(xyz) 10 300 575 875 1275

D (110) 17.584 17.545 16.584 15.910 13.975

(I)Ix,\ 18.976 18.253 18.822 17.670 16.915

D, -0.391 -0.274 -0.384 -0.316 —0.345

@, (200) 0.975 0.885 1.235 0.920 1.009

(I)zy} -0.610 -0.993 -0.551 -0.559 -0.644

[OFNN (211) 0.593 0.442 0.518 0.440 0.850

CI>3Xy 0.378 0.340 0.368 0.441 0.357

CI>3y) 0.302 0.133 0.220 0.157 0.325

CI)3yZ -0.120 -0.128 -0.105 -0.092 -0.106

Dy (220) 0.386 0.331 0.314 0.262 0.400

<D4xy 0.517 0.412 0.502 0.444 0.466

D, -0.218 -0.167 -0.127 -0.153 -0.217

[OFNN (310) -0.085 -0.065 -0.093 -0.078 -0.092

<D5xy -0.039 -0.047 -0.031 -0.035 -0.028

(I)Syy 0.006 0.003 0.007 0.004 0.006

O 0.014 0.014 0.014 0.016 0.021

1 or oo force constant tensors ®@. The longitudinal force constant was
é = E ~6.730 X 10777, ™) determined by comparison to the projection of ® onto the

where T is in kelvins. The shifts A and the ratios of the mean
phonon energies,

Ep _ f Egr(E)IE

(Er)

, (8)
J Egr (E)dE

are presented in Table I.

E. Born—-von Karman models of lattice dynamics

The DOS curves were fit with a Born—von Karman model
of the lattice dynamics.’®37 Force constants out to fifth-
nearest neighbors (SNN) were optimized using a gradient
search method. The fits at all temperatures, convolved with
the damped oscillator function and a Gaussian instrument
resolution function, are shown in Fig. 2. The optimized force
constants are listed in Table II.

As a check on our calculated force constants and on the
effects of sample texture on our determination of the DOS,
comparisons were made to the dispersion curves measured
by deWit and Brockhouse.?” Our 300 K model is in good
agreement with the results of these authors. Trends in the
dispersions with respect to temperature are also in agree-
ment.

IV. RESULTS AND DISCUSSION

At all temperatures, both the longitudinal and the trans-
verse force constants decrease rapidly with nearest-neighbor
distance. (These constants were found by diagonalizing the

bond vector {xyz), and the transverse modes were taken to be
the remaining two eigenvalues.) Only the first-nearest-
neighbor longitudinal force constants show a monotonic de-
crease with temperature. They are almost solely responsible
for the shift of the DOS to lower energies with increasing
temperature. All longitudinal force constants are plotted in
Fig. 5.

The softening of the measured phonon DOS is consistent
with that found by deWit and Brockhouse. They found
(Es73)1{E195)=0.976,%° and we find (Es7s)/{Ey)=0.978. To
find the entropy from the softening of the DOS, we use the
expression for the phonon entropy,
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FIG. 5. Longitudinal force constants for first- through fifth-
nearest neighbors as indicated.
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FIG. 6. Entropy of dilation and anharmonic entropy. Markers
denote experimental data points—they are connected by linear in-
terpolation of the neighboring DOSs. The dotted line is computed
from Eq. (2), the dashed line from Eq. (10), and the solid line is the
difference of the other two. The negative entropy signifies that the
phonons do not soften as much as one would expect from the ex-
pansion of the lattice.

Spn(T,T,) = fo gT[(nTp + DIn(ny, +1) = np, In(ng,) ldE,

)

where g7 is the phonon DOS at temperature T and ny, is the
Planck distribution at temperature Tp (both g, and nr, are
functions of E). We seek the change in entropy owing to
changes in the phonon states, not from changes in phonon
occupancy. We calculate the difference between the total
phonon entropy and the harmonic phonon entropy as

Soh =St =Spn(T,T) = Spn(T, T).- (10)

We now compare the entropy of phonon softening to the
entropy of dilation. With tabulated data for the elastic con-
stants of nickel,*® we use Eq. (2), with T,=10 K, to calcu-
late, Sp, the entropy of dilation. Figure 6 shows the entropy
of dilation and S,,—Sy, as determined with Eqs. (9) and (10).
The agreement is generally good. The anharmonic entropy,
shown as a solid line, is the difference between these two
curves. Over the entire temperature range, the anharmonic
entropy is bounded by —0.08 <S, <0.05 kg/atom, where we
have already incorporated our errors of +0.02 kp/atom.
Negative values indicate phonons that are slightly stiffer than
they would be if their energies were determined by lattice
expansion against the bulk modulus alone. This is the case
above 700 K, where we have —0.08 <S5, <<0.03 kg/atom. The
crossover from positive to negative appears to occur some-
where in the vicinity of the Curie temperature, and the trends
in the sign of S;,—Sy appear to be consistent over either the
ferromagnetic or the paramagnetic regions.

From Wallace’s plots of S, and S—Sph,3 we find the sum
of the magnetic and anharmonic contributions to the entropy
to be approximately 0.23 kp/atom at 1275 K. Wallace as-
sumes that the anharmonic contribution is zero and attributes
the entire quantity to magnetic entropy. It appears that the
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magnetic entropy is slightly larger. At 1275 K, we find
—0.08 <§, <-0.04 kp/atom; subtracting these values from
S4+Sy, we obtain 0.27<S,,<0.31 kg/atom. Figure 6 sug-
gests that the anharmonic entropy will decrease linearly with
temperature above 1273 K, so the magnetic entropy at melt-
ing may be larger than what was previously suggested.

The values of Q shown in Fig. 3 are related to the full
widths at half maximum 2I" of the phonon peaks, through the
equation 1/Q=2I'/E. Values of a similar magnitude were
found experimentally for bcc titanium, zirconium, and
hafnium,?*-26 and our 2I values are also comparable in mag-
nitude to the values found by Zoli et al. for phonon-phonon
interactions in aluminum and the noble fcc metals.*® The
quadratic form of 1/Q seen in Fig. 3 is also consistent with
phonon-phonon interactions.

Further work calculating the phonon linewidths in the
manner of Zoli et al.>* might be of interest, and the necessary
third-order elastic constants are available for nickel.3*4
Also, trends in the entropy indicate that a reinvestigation of
the phonon modes of nickel around the Curie temperature
may be worthwhile.

V. CONCLUSION

Phonon DOS curves of fcc nickel were measured by time-
of-flight neutron spectrometry over a wide range of tempera-
tures spanning from 10 to 1275 K. The softening of the DOS
was generally consistent with the softening expected from
expansion of the lattice against the bulk modulus, but the
softening is less than expected at high temperatures. we are
able to bound the entropic contribution from phonon anhar-
monicity to —0.08 <S,<-0.04 Kp/atom at 1275 K. This, in
turn, bounds the contribution of the magnetic entropy to
0.27<8), <S8, <0.31 kp/atom, at 1275 K. Additionally, we
found that there is significant broadening of the phonons
with increased temperature, which we tentatively attribute to
phonon-phonon interactions.
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APPENDIX: SIMULTANEOUS MULTIPHONON AND
MULTIPLE SCATTERING CORRECTIONS

Corrections for multiple scattering have been performed
in many ways, from subtracting a constant from the data*! to
full Monte Carlo simulations.*?> At high temperatures, the
former does not account for the slope of the scattering past
the cutoff energy. The latter can be computationally intensive
and requires details of the shape of the sample. Here, we take
an approach of intermediate complexity. For both multiple
scattering and multiphonon scattering, a two-scattering pro-
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FIG. 7. Penalty functions for nickel at 300 K, as defined in the
text. The dash-dotted line (1) relates to the overall fit, the dotted line
(2) relates to the noise near the incident energy, and the dashed line
(3) relates to the slope near the incident energy. The solid line is the
sum of these three contributions (offset).

file involves a convolution of two single-scattering profiles.
In either case, the idea is that an n-phonon-scattering profile,
P"(E) is related to the one-phonon-scattering profile P'(E)
through the recursion relation

P'(E) =f P"YE"PYE-E")dE'. (A1)

For multiple scattering processes, the n-phonon probabil-
ity function has additional position and momentum depen-
dencies, which do not appear for multiphonon scattering pro-
cesses. Sears et al*' argue that the integrals for multiple
scattering are related to those for the multiphonon scattering
through slowly varying functions of Q and E. Here, we take
these functions to be constants, a,. In essence, we make the
approximation that the position and momentum dependen-
cies can be factored out. Thus,

HQ,E)=N'| 2 (1+a,)S"(Q,E) |, (A2)
n=1

where I(Q, E) is the experimentally determined total scatter-
ing (including multiple scattering), S"(Q,E) is the n-phonon
scattering (both creation and annihilation), and N’ is a nor-
malization constant. Note that I(Q,E) is distinct from the
scattering function S(Q, E), which does not include multiple
scattering.** [When we stripped the elastic peak from the
data, the dominant multiple elastic scattering is removed, so
the index n in Eq. (A2) starts at 1 rather than 0.]

Consistent with this factoring of Q and E dependencies,
we make the incoherent approximation,**

S (0.E) = 2Nt (0.E), (A3)

mc

where we apply this equation to the one-phonon terms as
well as all higher orders. The last step in our procedure will
be to assess any error this has introduced into our analysis.
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FIG. 8. Best fit to scattering for nickel at 300 K. The triangles
are the normalized experimental scattering, /(E)/N. The solid line
shows the fit, Silnc(E)+(1 +Cms)Si2n+c(E). The dashed line is the mul-
tiple scattering, CmsSﬁ:'C(E). The dash-dotted line is the multiphonon
scattering, S2*(E). The dotted line is the sum, (1+Cy)Si¥(E). The

resultant DOS is the 300 K experimental DOS shown in Figs.
2 and 4.

Our next assumption is that a,=C;, for all n=2, where
C; . is a single constant that relates the multiple scattering to
the multiphonon scattering. Since the multiphonon scattering
drops off rapidly with increasing n, this approximation will
only have a small effect on our results. The final normaliza-
tion is performed with the total scattering, so the factor 1
+a, is included in the normalization constant. We find

I(Q,E) = N[S} (Q.E) + (1 + Cpp) S2H(Q,E)],

where N=N'(1+a,)(1+ 04/ 0iye) is the normalization con-
stant and 1+C,,=(1+C,)/(1+a;). Also, for notational
convenience,

(A4)

©

S™*(Q.E) = 2 S"(Q.E).

n=j

(A5)

For a cubic crystal and a fixed value of C,,,, we can now find
the DOS by solving Eq. (A4) in the manner described by
Sears et al.*!

Since we do not know the value of C,, a priori, we gen-
erate a list of possible values and solve for the DOS at each
one. In the current study, values of C,,, between 0.0 and 2.0
were tested. What remains then is to select the “best” DOS
from those generated with the different C,,. This was done
by minimizing a penalty function constructed to find the
DOS that produced S(E) that best satisfied the following con-
ditions:

(1)

I(E)

=Sl (B)+(1+ Cno)Sin(E), (A6)

where the implied sum over Q allows us to compare the
partially coherent scattering on the left with the totally inco-
herent scattering on the right.
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(2) The experimental noise at energy transfers near the
incident energy oscillates about (1+Cpy)Sit(E).

(3) At energy transfers near the incident energy, the slope
of a linear fit to the experimental noise matches the slope of

a linear fit to (1+C,,0)S>*(E).

mnc

These three criteria are correlated, but are not identical.
For nickel at 300 K, these three contributions and their sum
are shown in Fig. 7. Figure 8 shows the best fit to the nor-
malized scattering, I(E)/N for nickel at 300 K, which had
Chs=0.6.
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The DOS curves obtained this way were fit with a Born—
von Karman model, from which all phonon contributions to
the scattering, both coherent and incoherent, were calculated.
With these results, and with the final value for C,, the cal-
culation was checked against the measured scattering, which
showed that the effects of assuming all the scattering to be
incoherent were negligible. This implies that the effects of
sample texture were negligible as well. It was our experience
that this procedure worked well for the present case of
nickel, and also worked for cases of other bcc and fcc mate-
rials.

IN. Bock, D. C. Wallace, and D. Coftey, Phys. Rev. B 73, 075114
(2006).
2N. Bock, D. Coffey, and D. C. Wallace, Phys. Rev. B 72, 155120
(2005).
3D. C. Wallace, Statistical Physics of Crystals and Liquids: A
Guide to Highly Accurate Equations of State (World Scientific,
Singapore, 2002), Chap. 19, pp. 202-203.
4D. C. Wallace, Phys. Rev. E 56, 1981 (1997).
50. Eriksson, J. M. Wills, and D. Wallace, Phys. Rev. B 46, 5221
(1992).
5P, J. Meschter, J. W. Wright, C. R. Brooks, and T. G. Kollie, J.
Phys. Chem. Solids 42, 861 (1981).
7P. B. Allen and J. C. K. Hui, Z. Phys. B 37, 33 (1980).
$M. E. Manley, R. J. McQueeney, B. Fultz, T. Swan-Wood, O.
Delaire, E. A. Goremychkin, J. C. Cooley, W. L. Hults, J. C.
Lashley, R. Osborn, and J. L. Smith, Phys. Rev. B 67, 014103
(2003).
M. E. Manley, R. J. McQueeney, B. Fultz, R. Osborn, G. H.
Kwei, and P. D. Bogdanoff, Phys. Rev. B 65, 144111 (2002).
0R. Stedman, L. Almqvist, and G. Nilsson, Phys. Rev. 162, 549
(1967).

G, Grimvall, J. Higlund, and A. Fernandez Guillermet, Phys.
Rev. B 47, 15338 (1993).

I2R. Kikuchi, Phys. Rev. 81, 898 (1951).

13]. M. Sanchez, F. Ducastelle, and D. Gratias, Physica A 128, 334
(1984).

14D. de Fontaine, in Solid State Physics, edited by H. Ehrenreich, F.
Seitz, and D. Turnbull (Academic, New York, 1979), Vol. 34.

SE. Ducastelle, Order and Phase Stability in Alloys (North-
Holland, Amsterdam, 1991), Chap. 4.

16 A, Zunger, in Statics and Dynamics of Alloy Phases, edited by P.
E. A. Turchi and A. Gonis (Plenum, New York, 1994), p. 361.

17Y. Y. Ye, Y. Chen, K. M. Ho, B. N. Harmon, and P. A. Lindgard,
Phys. Rev. Lett. 58, 1769 (1987).

18y Ozolins, C. Wolverton, and A. Zunger, Phys. Rev. B 58,
R5897 (1998).

19V, Ozolins and M. Asta, Phys. Rev. Lett. 86, 448 (2001).

20A. van de Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).

21]. Trampenau, W. Petry, and C. Herzig, Phys. Rev. B 47, 3132
(1993).

22P. D. Bogdanoff, B. Fultz, J. L. Robertson, and L. Crow, Phys.
Rev. B 65, 014303 (2001).

2 E. Giithoff, B. Hennion, C. Herzig, W. Petry, H. R. Schober, and
J. Trampenau, J. Phys.: Condens. Matter 6, 6211 (1994).

24W. Petry, A. Heiming, J. Trampenau, M. Alba, C. Herzig, H. R.
Schober, and G. Vogl, Phys. Rev. B 43, 10933 (1991).

BA, Heiming, W. Petry, J. Trampenau, M. Alba, C. Herzig, H. R.
Schober, and G. Vogl, Phys. Rev. B 43, 10948 (1991).

20J. Trampenau, A. Heiming, W. Petry, M. Alba, C. Herzig, W.
Miekeley, and H. R. Schrober, Phys. Rev. B 43, 10963 (1991).

2TR. 7. Birgeneau, J. Cordes, G. Dolling, and A. D. B. Woods, Phys.
Rev. 136, 1359 (1964).

28S. Hautecler and W. Van Dingenen, Physica (Amsterdam) 34,
257 (1967).

G. A. deWit and B. N. Brockhouse, J. Appl. Phys. 39, 451
(1968).

30M. Zoli, G. Santoro, V. Bortolani, A. A. Maradudin, and R. E.
Wallis, Phys. Rev. B 41, 7507 (1990).

3IR. J. McQueeney and R. A. Robinson, Neutron News 14, 36
(2003).

32 http://lansce.lanl.gov/lujan/instruments/Pharos/index.html

3B. T. Fultz and J. M. Howe, Transmission Electron Microscopy
and Diffractometry of Materials, 2nd ed. (Springer-Verlag, Ber-
lin, 2002), Chap. 1, Sec. 1.5.3, p. 51.

34Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai,
Thermophysical Properties of Matter (IFI, New York, 1975),
Vol. 12.

357, R. Santisteban, L. Edwards, A. Steuwer, and P. J. Withers, J.
Appl. Crystallogr. 34, 289 (2001).

3M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon, Oxford, 1988).

37 A. Maradudin, E. Montroll, G. Weiss, and I. Ipatova, in Solid
State Physics, 2nd ed., edited by H. Ehrenreich, F. Seitz, and D.
Turnbull (Academic, New York, 1971), Suppl. 3.

3R. Bechmann and R. F. S. Hearmon, Elastische Piezoelektriche,
Piezooptische und Elektrooptische Konstanten von Kristallen,
Landolt-Bornstein, New Series, Group III, Vol. 3 (Springer-
Verlag, Berlin, 1966).

V. P. N. Sarma and P. J. Reddy, Phys. Status Solidi A 16, 413
(1973).

40y, P. N. Sarma and P. J. Reddy, Philos. Mag. 27, 769 (1973).

41y, E. Sears, E. C. Svensson, and B. M. Powell, Can. J. Phys. 73,
726 (1995).

42E. Johnson and L. Robinson, Rev. Sci. Instrum. 60, 3447 (1989).

43G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).

4G. L. Squires, Introduction to the Theory of Thermal Neutron
Scattering (Dover, New York, 1997), Chap. 3, Sec. 10, p. 57.

104301-7



