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The vibrational thermodynamic properties of ordered and disordered fcc-based alloys in three aluminum
transition-metal �TM� systems, Al-TM �TM =Ti, Zr, and Hf�, are computed by first principles methods em-
ploying supercell calculations and the transferable-force-constant �TFC� approach. In order to obtain accurate
values for the high-temperature limit of the vibrational mixing entropies in these systems, it is necessary to
parametrize the dependence of the force constants on both the equilibrium bond length and the TM concen-
tration in the TFC method. Provided this concentration dependence is accounted for, the TFC approach is
shown to lead to predictions for the vibrational mixing entropy accurate to within approximately 20%. The
utility of the TFC method is demonstrated by its application to the calculation of vibrational entropies of
mixing for approximately 30 structures in each of the three Al-TM systems, facilitating the construction of well
converged vibrational-entropy cluster expansions. The calculations yield large and negative values for the
vibrational mixing entropies of both ordered and disordered alloys, with an overall magnitude of up to
1.0kB/atom, and ordering entropies �i.e., the difference between the vibrational entropy of ordered and disor-
dered phases at the same composition� in the range of 0.2–0.3kB/atom for concentrated alloys. Calculated
results are shown to be in good agreement with experimental data available for the Al-Ti system.
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I. INTRODUCTION

While it has long been appreciated that vibrational en-
tropy �Svib� plays a primary role in governing the relative
finite-temperature stability of crystalline structures with dif-
ferent coordination numbers �e.g., fcc versus bcc�, the effects
of phonons on the phase stability of substitutional alloys,
with a common underlying parent lattice, was elucidated
only relatively recently. Over the past decade, detailed
experimental work based on calorimetry and neutron
scattering1–11 has yielded measured values for vibrational-
entropy differences between ordered and disordered substitu-
tional alloy phases with magnitudes on the order of
0.1–0.2kB/atom. These ordering entropies are significant
relative to the maximum value of the configurational entropy,
0.69kB/atom. The experimental findings have motivated a
number of theoretical investigations �for a recent review, see
Ref. 12� which have confirmed the large magnitudes of the
vibrational contribution to the free-energy difference be-
tween ordered and disordered phases in several metallic-
alloy systems.13,14 In addition, recent theoretical studies have
demonstrated pronounced effects of vibrational entropy on
calculated solvus boundaries for Al-based alloy systems.15–17

These findings demonstrating that vibrational entropy can
have appreciable effects on phase-boundary temperatures
have motivated a number of recent efforts aimed at develop-
ing computationally efficient methods for calculating Svib for
ordered and disordered phases within the context of first-
principles calculations of alloy phase diagrams.

In principle, the cluster expansion framework,18 which
has been extensively developed to model alloy configura-
tional energetics �e.g., Ref. 19�, can be readily extended as a
method for calculating Svib in ordered and disordered substi-
tutional alloy phases. This approach involves the calculation
of vibrational entropies for a number of ordered atomic
configurations, from which the interaction parameters in a
cluster expansion of Svib can be readily derived through
the so-called structure-inversion approach.20,21 Once the
vibrational-entropy cluster expansion coefficients have been
parametrized, the magnitude of Svib for any ordered or disor-
dered phase can be readily calculated from a knowledge of
the equilibrium values of the multisite cluster correlation
functions derived, for example, from Monte Carlo simula-
tions. Under the assumption of harmonic lattice
vibrations,22–24 the knowledge of phonon densities of states
�DOS� for a given crystal structure is sufficient to determine
its vibrational entropy. While obtaining the phonon DOS for
a given ordered structure is by now a relatively routine task
with modern first-principles electronic-structure codes, this
process has to be repeated for many configurations �about
twenty to thirty� in order to properly fit a cluster expansion,
making the overall procedure relatively computationally de-
manding.

One method that has been proposed to alleviate this prob-
lem is to transfer force constants, for a given chemical bond
type, between different chemical environments. Currently,
most of the work in calculating Svib is associated with the
numerical determination of the force constants. The ability to
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transfer force constants between different ordered alloy
structures can thus result in a significant time savings in the
construction of a cluster expansion for Svib. The approach of
transferring force constants between different atomic con-
figurations has been used in the Ni3Al system,25 Al-Li,26

oxides,27 and semiconductors.28 In the Al-Li system, an ap-
proach for transferring force constants was introduced which
reproduced the elastic constants reasonably well �with about
a 10% relative error�, although relatively large errors were
found for calculations of the vibrational entropy. Recently
van de Walle et al.12,29,30 observed, in first-principles calcu-
lations of Svib in the Ni-Al and Pd-V systems, that the mag-
nitudes of the force constants are strongly correlated with the
corresponding bond lengths and, as a result, that the force
constant versus bond length relationships exhibit better trans-
ferability than the force constants themselves. This offers an
opportunity for considerable computational savings in the
construction of a cluster expansion, since the force constant
versus bond length relationships can be determined from a
relatively small number of first-principles calculations for a
few select configurations, and can then be used to rapidly
determine the force constants for many other atomic configu-
rations where the equilibrium bond lengths are a by-product
of a fully relaxed calculation of its formation energy. This
transferable force-constant �TFC� approach was shown to
yield calculated values for Svib with an error less than about
0.02–0.05kB/atom in the Pd-V and Ni-Al systems. Similar
results were also obtained more recently by Wu et al.31 in
their systematic study of vibrational thermodynamic proper-
ties of late-transition and noble-metal alloy systems.

In this paper we examine the applicability of the TFC
method in the calculation of vibrational entropies for fcc-
based phases in the three aluminum transition-metal �TM�
systems, Al-TM �TM =Ti, Zr, and Hf�. Due to the techno-
logical interest in these materials, phase stability in each sys-
tem has been the subject of a large number of previous ex-
perimental and theoretical investigations �for a recent review
see Ref. 32�. Despite this large amount of work, the magni-
tudes of the vibrational contributions to the thermodynamic
properties of these alloys have not been calculated to date,
and estimates based on thermodynamic measurements are
available only for the Al-Ti system. Of particular interest in
the current work is the calculation of the magnitudes of the
vibrational entropies of mixing for both ordered and disor-
dered alloy phases. For this purpose we employ the cluster-
expansion framework based on calculations of Svib, per-
formed within the TFC approach. We find that in order to
obtain accurate values of Svib with this approach, it is essen-
tial that the dependence of the magnitudes of the force con-
stants on the TM concentration is accounted for, in addition
to the bond length. The pronounced composition dependen-
cies of the calculated force constants in Al-TM �TM =Ti, Zr,
and Hf� systems is a feature that has not been previously
observed in applications of the TFC method to studies of
vibrational thermodynamic properties in substitutional al-
loys. The origin of this effect in the Al-TM alloys considered
here is likely a consequence of the pronounced charge-
transfer effects associated with the bonding in these systems.
Provided that the concentration dependencies are accounted
for, the TFC method is found to yield calculated values of

the mixing entropy accurate to within approximately 20%.
With the TFC approach, vibrational entropies are calculated
for roughly 30 structures in each of the three Al-TM systems,
enabling the derivation of well-converged cluster expansions
for Svib. The magnitudes of the vibrational mixing entropies
for ordered and disordered alloy configurations are calcu-
lated to be large and negative, with magnitudes �for ordered
alloys� as large as 1.0kB/atom. The vibrational entropy of
ordering �defined as the difference in Svib between ordered
and disordered alloys with the same composition and parent
lattice� is calculated to be on the order of 0.2–0.3kB/atom for
concentrated alloy compositions.

II. METHODOLOGY

Under the approximation of harmonic lattice vibrations,
and in the high temperature limit, the vibrational entropy
�per atom� can be written as a logarithmic moment of the
phonon DOS g���:22,23

Svib = kB�3 − �
0

�

ln� ��

kBT
�g���d�� . �1�

It is worth noting the temperature-dependent term of Eq. �1�
is the same for any configuration. Therefore, in this paper,
results for the temperature independent term

S̄vib = − kB� ln���g���d� �2�

are presented �with � evaluated in units of Hz�.
The calculation of the phonon DOS requires a computa-

tion of the force-constant tensor ��i , j�, which relates the
displacement u�j� of atom j from its equilibrium position to
the forces f�i� acting on atom i as follows:

f�i� = − ��i, j�u�j� . �3�

In order to compute vibrational thermodynamic properties,
we employ a first-principles supercell method as a frame-
work for directly calculating values of the interatomic force
constants in this work. The basic idea is to perturb atom j
away from its equilibrium position by an amount u�j�, cal-
culate the force f�i� acting on atom i, and then solve a set of
linear equations f�i�=−��i , j�u�j� to yield the force constant
tensor ��i , j�. Normally, the force constants considered have
a larger range than the extent of a crystal’s primitive unit cell
and a supercell composed of several primitive cells must be
considered in order to derive the force constants. The method
used to construct the supercells and to determine the
symmetry-distinct displacements necessary to derive the
force constants are as described in Ref. 12, as implemented
in the Alloy Theoretic Automated Toolkit �ATAT�.33

The calculations in this work were carried out using the
first-principles program VASP �Vienna ab initio simulation
package�.34,35 The calculations employed ultrasoft pseudopo-
tentials �treating semicore p states as core electrons�, and the
generalized gradient approximation �GGA� of Perdew and
Wang.36 Electronic wave functions were expanded in plane
waves with a kinetic energy cutoff of 281 eV, which is at
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least 1.5 times the VASP-default cutoff value for Al, Ti, Zr,
and Hf. The Brillouin zone is sampled employing
Monkhorst-Pack37 k-point meshes with roughly constant
mesh densities for all the fcc-based compounds correspond-
ing to a 20�20�20 grid for the fcc unit cell. The electronic
energy levels were broadened using the Methfessel-Paxton
scheme38 with a smearing of 0.1 eV. Convergence tests were
conducted for simple structures including fcc Al, TM �TM
=Ti, Zr, and Hf� and the L12 structure of Al3Ti. The results
indicated that with the chosen plane-wave cutoff and k-point
density the calculated energies are converged to within
0.5 meV/atom.

A 32-atom supercell is used to calculate the vibrational
entropy of ordered structures with the first-principles super-
cell method. The displacement from the equilibrium position
for an atom is chosen to have a magnitude of 0.1 Å. For fcc
Al, the above settings in the VASP calculations ensure that the
calculated stretching and bending force constants �the ratio
of the force over the perturbed displacement� were con-
verged to within 0.06 meV/Å2 and 0.01 meV/Å2, respec-
tively �the magnitudes of the respective force constants are
1.27 and −0.0868 eV/Å2�. The magnitude of Svib is found to
be highly insensitive to such numerical errors; for fcc Al, this
precision in the calculated force constants leads to values of
Svib converged to within 0.0001kB/atom. The magnitude of
the atomic displacements �0.1 Å� used in the calculation of
the force constants was found to lead to an accuracy of about
±0.003kB/atoms for Svib �also in fcc Al�. The convergence of
the calculations with respect to the size of the supercell em-
ployed in the force-constant calculations was checked in de-
tail for Al3Ti, and it was found to yield entropies converged
to within 0.006kB/atom.

In the transferable force constant approach,12,29–31 three
assumptions are made to obtain the desired transferable
properties. Only the nearest neighbor interactions are consid-
ered �because the longer ranged force constants do not ex-
hibit good transferability�. The bending stiffnesses b are av-
eraged over various spatial directions �i.e., to obtain effective
isotropic bending stiffnesses�, and off-diagonal terms in the
bond stiffness tensor � are constrained to be zero. Hence,
the resulting bond stiffness tensor has only two independent
terms, namely the stretching stiffness s and the isotropic
bending stiffness b:

��i, j� = �b 0 0

0 b 0

0 0 s
	 . �4�

Here the coordinate system is transformed so that the z axis
is along the direction connecting atom i and j. This symme-
trization ensures that the force constants never have a sym-
metry that is lower than the environment into which they are
transferred. �It should be noted that it is not possible to retain
only s, because exclusion of b leads to an error in Svib on the
order of 0.2 kB/atom.31� The dependencies of s and b on the
bond length l and TM concentration are transferable between
different chemical environments.

The force constants generated via the TFC method satisfy
two important invariance properties that will be shared by

the extension we propose. First, the TFC tensors are invari-
ant under the symmetry operations of the crystal’s space
group and, second, the energy change associated with an
infinitesimal translation is zero. These properties are ensured
as follows.

Similar chemical bonds in different environments may
face different symmetry-induced constraints on their associ-
ated spring tensors.26 The way the TFC method ensures that
the transferred force constant tensors always have a symme-
try that is compatible with their environment is by using
spring tensors that are compatible with the highest possible
symmetry, thus implying that they are also compatible with
any other environments of a lower symmetry. The highest
possible symmetry a chemical bond can have is a cylindrical
symmetry, under which only two independent terms remain
in the spring tensor: the stretching and bending terms. These
are precisely the terms that are assumed to be transferable in
the TFC method.

In a Born–von Karman model, the potential energy is in-
variant under an infinitesimal translation whenever an atom’s
“self” force constant is equal to minus the sum of all pair-
wise force constants associated with that atom. In the TFC
method, the “self” force constants are not transferred, but are
instead explicitly calculated from the transferred pairwise
force constants through this sum rule. Translational invari-
ance therefore holds by construction in the TFC method.

The TFC method does not necessarily ensure rotation in-
variance of the total energy.54 While imposing rotational in-
variance will slightly alter the frequencies of all vibrational
modes, the only unphysical artifact potentially introduced by
not imposing this constrain is to assign a nonzero stiffness to
the three rigid rotational modes. In the thermodynamic limit
�N→�, where N is the number of atoms�, these few degrees
of freedom have a negligible impact on any thermodynamic
property of the system. Moreover, these rotational degrees of
freedom �unlike the translational degrees of freedom� are not
sampled during a conventional integration over the Brillouin
zone, since pure rotations cannot be expressed as linear com-
binations of Bloch states. Hence, rotational modes do not
even pose practical numerical problems. In any case, Ref. 54
does suggest an avenue to solve this rotational invariance
problem, which can be applied to our generalized TFC
method, if desired.

In this work, we choose analytic expressions39 to repre-
sent the bond stiffnesses s and b as functions of the bond
length l and TM concentration c, which are derived from a
Morse-type potential ��l�:

s =
d2��l�

dl2 ,

b =
1

l

d��l�
dl

,

��l� =
D

2�m − 1�l

exp�− m��l − l0�� − m exp�− ��l − l0��
 ,

�5�

where D, m, �, and l0 are fitting parameters. Morse functions
have been used previously in the modeling of phonon spectra
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of bcc Fe and Pd-10%Fe alloys.39,40 We assume D and �
depend on TM concentration c explicitly in a polynomial
form. The parameter D is represented by a third-order poly-
nomial in c, while it was found to be sufficient to assume a
linear concentration dependence for �. We thus use the fol-
lowing forms in fitting the concentration dependencies of the
Morse parameters D=D0+D1c+D2c2+D3c3 and �=�0
+�1c.

While simple polynomials have been used to represent the
dependence of force constant on bond length in previous
applications of the TFC method, we found the use of a Morse
potential led to significant improvements in the predictive
power of the TFC method for the fcc-based Al-TM structures
considered in this work. The Morse potential offers the ad-
vantage of having, by construction, a physically reasonable
shape, unlike a general polynomial which can lead to un-
physical predictions outside the range of bond length values
for which they are fit. It should be noted that in applying the
Morse-potential parametrization to fit the bond-length depen-
dence of the force constants for Al-TM compounds, it was
necessary to conduct separate fits for b and s, i.e., a good fit
for bending and stretching force constants could not be ob-
tained with the same set of parameters in Eq. �5�. Qualita-
tively, this result is not surprising since the bonding in
Al-TM systems is not expected to be well described by pair
potentials, and the fact that different parametrizations for s
and b are required likely reflects the significance of the
many-body and/or angular contributions to the interatomic
potentials in these systems.

The TFC algorithms described above have been imple-
mented in the Alloy Theoretic Automated Toolkit �ATAT�.33,41

This code includes utilities for performing the supercell cal-
culations to derive force constants, for diagonalizing the dy-
namical matrices to obtain phonon densities of states �DOS�,
for integrating the phonon DOS to compute vibrational free
energies and entropies, and for fitting and utilizing the trans-
ferable force constant approach to simplify the calculations
of vibrational thermodynamic properties.

Finally, it should be noted that all of the results presented
in the next section have been derived within the harmonic
approximation, employing the bond lengths corresponding to
relaxed structures at zero temperature. The magnitude of an-
harmonic contributions, derived within the quasiharmonic
approximation, are discussed in Sec. IV, where a comparison
of calculated formation entropies to available experimental
data for the Al-Ti system is presented.

III. RESULTS

A. Direct vibrational-entropy calculations

Vibrational entropies have been calculated for fcc Al, fcc
Ti, and L12 Al3Ti using the first-principles supercell method
described in the previous section. To provide reference val-
ues for assessing the accuracy of the TFC approximations
listed above, calculations of the vibrational entropy for these
three structures were computed as a function of the range of
the force constants in a 64-atom supercell. As reported in
Table I, the results computed with first nearest neighbor
�1NN� force constants versus those derived with first-fifth

nearest neighbor force constants �5NN� differ by less than
0.05kB/atom for the high-temperature limits of the vibra-
tional entropy Svib and vibrational entropy of mixing �Svib.
The latter quantity ��Svib� is defined as the difference in
vibrational entropy between an alloy and a concentration
weighted average of Svib for the constituent pure
elements in the fcc crystal structure: �Svib�AlxTM�1−x��
=Svib�AlxTM�1−x��−xSvib�Al, fcc�− �1−x�Svib�TM , fcc�. The
error in the calculated vibrational entropies associated with
truncating the range of the force constants to the first nearest
neighbor �1NN� shell is estimated to be less than 5% of the
magnitude. This relatively small error justifies the truncation
of the force constants at 1NN in the application of the TFC
method below.

The vibrational entropies of mixing for 23 selected or-
dered structures, calculated with the first-principles supercell
method employing a 1NN truncation of the forces constants,
are presented in Table II �third column�. For completeness,
the values of the mixing energy �E calculated with the same
electronic-structure method are also provided �second col-
umn in Table II�. By analogy with the mixing entropy, �E
represents the energy difference between an alloy and con-
centration weighted average of the energy of elemental fcc
Al and TM :�E�AlxTM�1−x��=E�AlxTM�1−x��−xE�Al, fcc�
− �1−x�E�TM , fcc�. The negative values of �S and �E for all
of the ordered structures considered are consistent with the
strong ordering tendencies displayed by these Al-TM �TM
=Ti, Zr, and Hf� systems. Specifically, the formation of
strong Al-TM bonds in the compounds leads to a lower en-
ergy and vibrational entropy relative to the constituent pure
elements. We note that the presently calculated values
of the vibrational entropy of mixing for Al3Zr compounds,
�Svib�L12-Al3Zr�=−0.820kB/atom and �Svib�D023-Al3Zr�
=−0.896kB/atom, agree well with the results
�Svib�L12-Al3Zr�=�Svib�D023-Al3Zr�=−0.85kB/atom ob-
tained by Clouet et al.42 using a full-potential implementa-
tion of the linear response �LR� method, and the local-
density approximation �LDA�.

B. Parametrization of the transferable force constants

Calculated 1NN force constant matrices for 17 fcc-based
structures in the three Al-TM systems �labeled with “	”
symbols in Table II� are transformed to the stretching-
isotropic bending form given in Eq. �4�. The dependencies of
the s and b force constants on bond length l and the TM
concentration are plotted in Figs. 1–3, in which the symbols
represent different TM concentrations, as described in the
insets.

In Figs. 1–3, the stretching force constants s decrease
monotonically with increasing bond length. The bending
terms, by contrast, are relatively insensitive to changes in
bond length. The dependence of s and b on TM concentration
can be clearly observed for Al–Al and TM –TM bonds. It is,
therefore, not surprising that relying on the bond length ver-
sus bond stiffness relation alone, as a basis for transferring
force constants between structures, is not found to be an
accurate approach in these systems. The curves in Figs. 1–3
are the fitted relations derived from the formulas given in Eq.
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TABLE I. The temperature independent term of the vibrational entropy S̄vib and vibrational entropies of
mixing �Svib �in units of kB/atom� calculated by the first-principles supercell method. Results are calculated
with force constants in the full matrix formula �calc, fc� truncated at first nearest neighbor �1NN� to fifth
nearest neighbor �5NN� distances. The differences between results obtained with 1NN versus 5NN truncation
of the force constants are also indicated.

Structures

Range of force constants
Errors

�Svib
calc,fc�1NN�−Svib

calc,fc�5NN��1NN 2NN 3NN 4NN 5NN

Svib
calc,fc Al fcc −88.114 −88.133 −88.130 −88.127 −88.130 0.016

Ti fcc −87.342 −87.275 −87.310 −87.285 −87.288 −0.054

Al3Ti�L12� −88.750 −88.772 −88.786 −88.783 −88.784 0.034

�Svib Al3Ti�L12� −0.829 −0.854 −0.861 −0.867 −0.865 0.036

TABLE II. Vibrational entropies of mixing �in units of kB/atom� calculated by both the first-principles
supercell method and the transferable force constant �TFC� approach. The energy of mixing �in units of
meV/atom� is presented in second column. The symbol �Svib

calc,fc represents the results obtained by the first-
principles supercell method with force-constants truncated at first nearest neighbor �1NN�. The symbol
�Svib

calc,sb represents results of calculations with force constant tensors represented in the stretching and iso-
tropic bending approximation represented by Eq. �4�. Finally, the symbol �Svib

fit,sb represents results derived by
the TFC method employing the stretching and isotropic bending approximations, with force constants rep-
resented from fits of the Morse-potential parameters defined in Eq. �5�. The structures labeled by �	� are used
in fitting the Morse potential parameters. In all, results are presented for 23 ordered structures identified by
their stoichiometry. Detailed descriptions of these 23 ordered structures are presented in the Appendix.

Structure �E �Svib
calc,fc �Svib

calc,sb �Svib
fit,sb Fitting

��Svib
calc,sb

−�Svib
calc,fc�

��Svib
fit,sb

−�Svib
calc,sb�

��Svib
fit,sb

−�Svib
calc,fc�

Al3Ti �L12� −395.09 −0.835 −0.841 −0.922 	 −0.006 −0.080 −0.087

Al3Ti �D022� −421.10 −0.873 −0.892 −0.842 −0.019 0.050 0.031

Al3Ti �D023� −428.09 −0.922 −0.933 −0.894 −0.011 0.039 0.028

Al2Ti �Cmmm ,65� −453.79 −0.949 −0.965 −0.913 	 −0.016 0.052 0.036

Al5Ti3 �Cmmm ,65� −416.97 −0.864 −0.875 −0.896 	 −0.011 −0.021 −0.032

AlTi �L10� −438.18 −0.862 −0.870 −0.922 	 −0.008 −0.051 −0.060

Al3Ti5 �Cmmm ,65� −348.16 −0.749 −0.766 −0.825 	 −0.016 −0.059 −0.075

AlTi3 �L12� −307.26 −0.685 −0.702 −0.683 	 −0.017 0.019 0.002

Al3Zr �L12� −490.35 −0.820 −0.838 −0.844 	 −0.018 −0.006 −0.024

Al3Zr �D022� −492.35 −0.789 −0.839 −0.707 −0.050 0.132 0.083

Al3Zr �D023� −518.35 −0.896 −0.924 −0.786 −0.028 0.138 0.110

Al2Zr �Cmmm ,65� −547.52 −0.899 −0.923 −0.912 	 −0.024 0.010 −0.013

Al5Zr3 �Pmmm ,47� −513.34 −0.861 −0.886 −0.845 	 −0.025 0.041 0.016

AlZr �L10� −483.70 −0.772 −0.777 −0.695 	 −0.005 0.082 0.077

Al3Zr5 �I4/mmm ,139� −417.84 −0.731 −0.742 −0.711 	 −0.011 0.030 0.019

AlZr3 �L12� −346.04 −0.687 −0.703 −0.514 	 −0.016 0.189 0.173

Al3Hf �L12� −399.93 −0.738 −0.747 −0.817 	 −0.009 −0.070 −0.079

Al3Hf �D022� −417.93 −0.759 −0.803 −0.733 −0.043 0.070 0.026

Al3Hf �D023� −428.93 −0.828 −0.850 −0.789 −0.023 0.062 0.039

Al5Hf3 �P1,1� −427.78 −0.776 −0.793 −0.810 	 −0.017 −0.017 −0.034

AlHf �L10� −400.73 −0.679 −0.691 −0.595 	 −0.012 0.096 0.083

Al3Hf5 �P4/mmm ,123� −203.48 −0.661 −0.672 −0.646 	 −0.011 0.026 0.015

AlHf3 �L12� −303.58 −0.679 −0.685 −0.628 	 −0.006 0.057 0.050
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�5�. The fitting parameters and the root-mean-square fitting
errors are listed in Table III. Although the bending force
constants could have been represented by a much simpler
linear length dependence, we also used a separate Morse
functional form, for simplicity in the implementation of the
method. However, given the featureless nature of the behav-
ior of the bending force constants, the resulting parameters
do not necessarily have physically meaningful values, they
are merely constants that produced reasonable fits to the av-
erage bending stiffnesses.

Surprisingly, there is an apparent discrepancy between the
parameter values obtained for Al–Al bonds in the limit of
pure Al in the different alloy systems considered here. How-
ever, this is mostly an artifact of the functional form chosen;
very different parameter values in the modified Morse poten-
tial can yield very similar shapes for the stiffness-length re-
lationship. In fact, as seen in the upper left graphs in Figs.
1–3, if one superimposes the predicted stiffness-length rela-
tionships for Al–Al bonds in pure Al for all three systems,
they would overlap nearly perfectly.

C. Accuracy of entropies derived from
transferable force constants

With the fitted relations shown in Figs. 1–3 it is possible
to estimate the magnitudes of the stretching and bending
force constants for any structure from a knowledge of its
equilibrium bond lengths and concentration. To assess the
accuracy of the entropies derived from these fitted relations,
we can compare the TFC predictions for �Svib with those
derived directly from supercell calculations performed

within the isotropic bending 1NN approximation.
Consider first a comparison between the predictions of the

TFC method and the directly calculated results for the struc-
tures listed in Table II which were used in the fitting �indi-
cated with+symbols in column four�. This comparison pro-
vides an indication of the quality of the fit resulting from the
parametrization of the force constants. In Fig. 4 the TFC and
directly calculated values of the mixing entropies are
plotted as filled and open symbols, respectively. The values
are also compared in Tables I and II. Specifically, the errors
are summarized in the order of the three assumptions
we have adopted. �1� As illustrated by the results for Al3Ti
L12 in Table I, the 1NN assumption introduces an error of
about 0.036kB/atom �4% of the magnitude of �Svib�. �2� In
Table II, �Svib values calculated with the full force constant
matrix and the �Svib calculated with the stretching
+isotropic-bending force-constant model �Eq. �4��, agree
within 0.025kB/atom �3% of the magnitude of the �Svib�. �3�
The �Svib difference between the results calculated by the
TFC method using the fitted parameters and by the
stretching+isotropic-bending model are less than 0.1kB the
structures �except AlZr3 L12 where the difference is about
0.2kB/atom�. Because error cancellation occurs between the
second �stretching-bending model� and the third �stretching-
bending force constant fitting� assumptions, the �Svib differ-
ence between the TFC results and the 1NN full-force-
constant calculations are less than 0.18kB/atom. Overall, the
error is less than 0.176kB/atom, i.e., roughly 20% of the well
converged mixing vibrational entropy calculated by first-
principles.

FIG. 1. �Color online� Nearest-
neighbor stretching and bending
force constants in Al-Ti alloys
versus bond length and Ti concen-
tration. The upper figures are for
the stretching force constants and
the figures below are for the bend-
ing force constants. The symbols
represent results calculated from
the first-principles supercell
method for different Ti concentra-
tions, as described in the inset.
The curves are fitted functions
with the form given in Eq. �5� for
different Ti concentrations de-
picted in the inset.
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FIG. 2. �Color online� Nearest-
neighbor stretching and bending
force constants in Al-Zr alloys
versus bond length and Zr concen-
tration. The upper figures are for
the stretching force constants and
the figures below are for the bend-
ing force constants. The symbols
represent results calculated from
the first-principles supercell
method for different Zr concentra-
tions, as described in the inset.
The curves are fitted functions
with the form given in Eq. �5� for
different Zr concentrations de-
picted in the inset.

FIG. 3. �Color online� Nearest-
neighbor stretching and bending
force constants in Al-Hf alloys
versus bond length and Hf con-
centration. The upper figures are
for the stretching force constants
and the figures below are for the
bending force constants. The sym-
bols represent results calculated
from the first-principles supercell
method for different Hf concentra-
tions, as described in the inset.
The curves are fitted functions
with the form given in Eq. �5� for
different Hf concentrations de-
picted in the inset.
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Next we consider the predictions of the TFC method for
structures not included in the fitting of the force-constant
parametrizations. Specifically, we focus on D022 and D023
Al3TM �TM =Ti, Zr, and Hf� structures which were not in-
cluded in the fit of the transferable force-constant relations.
The results for these structures can be taken as tests of the
predictive power of the TFC method. In Table II, the second
approximation has a slightly larger error, 0.05kB/atom and
the third additionally introduces an error as large as
0.14kB/atom. The same error cancellation as noted for L12
occurs between the second and third approximations, and the
overall errors for D022 and D023 structures are less than
0.11kB/atom or about 10%. In addition to the 0.036kB/atom
error resulting from 1NN force constant assumption, the total
error is about 0.146kB/atom, which is comparable to the er-

rors in reproducing the vibrational entropy of the structures
involved in the fitting of the TFC relations. Overall the level
of error estimated in the values of �Svib obtained with the
1NN TFC approach is within approximately 20% of the
overall magnitude of the most well converged results.

D. Vibrational entropy cluster expansions

The transferable force constant approach represents an ef-
ficient computational framework for calculating the vibra-
tional entropy and is a convenient tool for the construction of
vibrational-entropy cluster expansions. In this approach, the
parameters describing the dependencies of s and b upon
bond length and concentration are fit to a small number of
first-principles supercell calculations. For a new structure,

TABLE III. Fitted parameters in Eq. �5� for the transferable force constants in fcc-based Al-TM �TM
=Ti, Zr, and Hf� alloys.

Al-Al Al-Ti Ti-Ti

s b s b s b

D0 �eV Å� 8.03 −30.81 4.923 5.976 6.605 1179

D1 �eV Å� −13.16 232.9 −11.28 −1.037 −18.82 −3953

D2 �eV Å� −3.86 −619.2 36.66 −22.83 18.63 4191

D3 �eV Å� 14.13 506.7 −10.31 26.45 −6.200 −752.9

�0 �Å−1� 0.999 0.001655 1.752 −0.7769 0.7809 0.1314

�1 �Å−1� 1.066 0.001791 −1.091 2.67 1.802 0.006798

m 1.13 0.9574 0.9921 3.782 1.001 0.4308

l0 �Å� 2.863 588 2.887 2.786 3.203 11.34

r.m.s.�eV/Å2� 0.089 0.03098 0.2492 0.07582 0.07929 0.066

Al-Al Al-Zr Zr-Zr

s b s b s b

D0 �eV Å� 22.75 25.94 5.032 120.3 26.04 3431

D1 �eV Å� −23.21 −456.6 −15.03 −944.7 −64.4 −10470

D2 �eV Å� −47.17 2290 27.04 2163 53.13 9883

D3 �eV Å� 47.63 −2387 −17.65 −1445 −13.22 −1104

�0 �Å−1� 0.7425 0.2056 1.557 1.902 0.5795 0.1339

�1 �Å−1� 0.4344 −0.05066 0.6819 −1.031 0.9173 0.002032

m 0.9973 0.2955 0.7014 0.216 1.014 0.09145

l0 �Å� 2.8695 9.615 3.209 3.535 3.471 19.97

r.m.s.�eV/Å2� 0.1031 0.03102 0.1817 0.04184 0.0976 0.05971

Al-Al Al-Hf Hf-Hf

s b s b s b

D0 �eV Å� 11.79 −5.037 0.5543 426.9 30.45 430.7

D1 �eV Å� −12.75 84.47 −0.2675 −3271 −68.01 −2068

D2 �eV Å� −20.1 −292.4 0.7896 7352 51.71 3147

D3 �eV Å� 22.2 409.1 −0.8153 −4896 −11.88 −1477

�0 �Å−1� 0.3211 −0.2819 3.592 0.3502 0.7014 1.224

�1 �Å−1� 0.2038 0.5805 0.08942 −0.1008 1.020 1.461

m 5.857 0.02785 0.05616 0.8691 1.000 0.003172

l0 �Å� 2.984 39.4 3.827 4.949 3.190 4.408

r.m.s.�eV/Å2� 0.08496 0.018 0.07576 0.046 0.1853 0.05
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the relaxed bond lengths and TM concentration are sufficient
information to determine estimates of the force constants for
the calculation of the phonon DOS and the vibrational en-
tropy. The TFC method makes use of the feature that the
relaxed geometry of the structure is a by-product of the first-
principles energy calculations, which are needed in the en-
ergy cluster expansion used in phase diagram calculations,
whether or not vibrational effects are considered. Thus, the
efficiency of the TFC method is associated with its ability to
estimate the force constants for new structures requiring only
total-energy calculations using a primitive unit cell, instead
of large supercells to determine the force constants. In this
section we present the application of this method in the con-
struction of �Svib cluster expansions for fcc-based structures
in each of the three Al-TM �TM =Ti, Zr, and Hf� systems
considered.

Aided by the TFC method, the vibrational entropies of
approximately 30 ordered fcc-based superstructures were
calculated for each of the three Al-TM �TM =Ti, Zr, and Hf�
systems, and used in constructing the cluster expansions for
the mixing vibrational entropy �Svib. Figure 6 plots the re-
sults, comparing the TFC-calculated and cluster-expansion
�CE� fitted values for ordered alloy configurations �open and
filled symbols, respectively� as well as the CE predictions for
random fcc-based solid solutions �solid line�. The details re-
lated to the cluster-expansion fits are summarized in Table IV
and Fig. 5. It is noted that to obtain cluster expansions with

cross-validation �CV� scores within about 10% of the mag-
nitude of the mixing entropies, fairly long-ranged interac-
tions are required. For the Al-Ti system, in particular, pair
interactions up to ninth neighbor were required, in addition
to a number of fairly long-ranged triplet cluster interactions.
Figure 5 plots the interaction parameters �effective cluster
interactions �ECIs�� for empty, point and pair clusters used in
our vibrational entropy cluster expansions. The contributions
from triplet and quadruplet clusters are much smaller. Their
interaction parameters are one to two orders of magnitude
less than the first nearest neighbor pair interactions. Further
details related to the cluster-expansion fits can be found in
Ref. 43.

IV. DISCUSSION

In this work significant effort was devoted to developing
and testing the accuracy of a TFC method in its application
to the calculation of vibrational entropies in Al-TM �TM
=Ti, Zr, and Hf� systems. It is interesting to compare the
results related to these tests with comparable analyses per-
formed for late-transition and noble-metal alloys in previous
work by Wu et al.31 Compared to the systems considered in
the present work, the noble-metal systems considered by Wu
et al. display much weaker driving forces for alloying, i.e.,
the mixing energies are much smaller in magnitude. For the
present systems the errors associated with the prediction of
Svib, arising from application of the TFC method �including
composition dependence of the force constants� are larger in
an absolute sense, i.e., about 0.15kB/atom versus 0.06kB/atom
in the work of Wu et al. In light of the larger magnitude of
the mixing vibrational entropies in the present work, i.e.,
about −0.8kB/atom versus 0.1–0.15kB/atom for the late-
transition and noble-metal systems, the relative error is actu-
ally smaller for the fcc-based Al-TM alloys.

The transferable force constant approach presented in this
paper exhibits two new features which were not observed in

TABLE IV. Details related to the cluster-expansion fits for the
mixing vibrational entropy ��Svib�. N is the number of structures
used in the cluster-expansion fitting.

N

Number of clusters

CV score
�kB / atom�Pair Triplet Quadruplet Total

Al-Ti 43 9 5 1 17 0.0759

Al-Zr 36 7 3 1 13 0.0634

Al-Hf 28 6 3 3 14 0.0882

FIG. 4. �Color online� Comparison of �Svib calculated by the
first-principles supercell method �open triangles� and the transfer-
able force constant approach �solid circles� for the ordered struc-
tures listed in Table II.

FIG. 5. The cluster interaction parameters �effecitve cluster in-
teractions� used in our vibrational entropy cluster expansions. Here
J0 and J1 represent empty and point clusters, respectively. “1” rep-
resents first nearest neighbor, “2” represents second nearest neigh-
bor, and so on. The inset figure shows the interactions just for pair
clusters.
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previous work by van de Walle et al.12,29,30 and Wu et al.31 In
the Al-TM �TM =Ti, Zr, and Hf� alloys, Al–Al and TM –TM
bond force constants exhibit strong dependencies on the TM
concentration in addition to the equilibrium bond lengths, as
shown in Figs. 1–3. In fact, this concentration dependence
explains some of the scatter in the fit of the stiffness versus
length relationships found in a previous study of the Al-Ti
system.14 Furthermore, the TM-TM stretching force con-
stants plotted in Figs. 1–3 show a trend towards increasing

stiffness with increasing TM concentration; for the Al–Al
bonds there is also an overall tendency towards softening of
the bonds with increasing TM concentration, as seen most
clearly in Figs. 2 and 3. In Ref. 31, Wu et al. found that in
Au-Cu, Au-Pd, and Cu-Pd systems, the force constants of a
given bond type �e.g., Au-Au or Pd-Pd� were highly trans-
ferable between different chemical systems. This is clearly
not the case in the Al-TM systems considered here, where
the Al–Al bond force constants exhibit clear differences

TABLE V. Calculated and measured thermodynamic properties for Al-Ti intermetallic compounds.

Al3Ti AlTi

�G
�eV/atom�
T=850 K

�H
�eV/atom�

�S
�kB / atom�
T=850 K

�G
�eV/atom�
T=973 K

�H
�eV/atom�

�S
�kB / atom�
T=973 K

Expt. −0.3199a −0.379±0.011b −1.030f −0.3267 −0.416±0.010b

−0.368±0.010c −0.377±0.010c

−0.379±0.013d −0.364±0.005e

−0.406±0.019e

VASP-GGAg −0.409 −0.417

3NN Harmonic −0.342 −0.822 −0.333 −0.694

3NN Quasiharmonic −0.335 −1.020 −0.324 −0.855

aReference 52.
bReference 47.
cReference 48.
dReference 49.

eReference 50.
fReference 53, obtained by linear interpolation of
results reported at 800 and 900 K.
gReference 32.

FIG. 6. �Color online� Vibra-
tional entropies of mixing versus
TM �TM =Ti, Zr, and Hf� concen-
tration. The symbols represent the
results for selected ordered struc-
tures. Open squares are the results
calculated by the transferable
force constant approach while the
solid circles are the values pre-
dicted by the cluster expansion
�CE�. The solid lines are the CE
predictions for a random disor-
dered solid solution phase.
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amongst the three TM �TM =Ti, Zr, and Hf� alloy systems.
The concentration dependence of the force constants for

the Al-TM systems are likely to be the consequence of the
electronic charge transfer from Al–Al bonds to TM –TM and
Al–TM bonds associated with alloying. The bonding in
Al–TM structures has been discussed in detail by Zou and
Fu44 �see also a review of the literature on this topic given in
Ref. 45�. A major feature of the bonding is the strong hybrid-
ization between Al p and TM d electrons. When alloying Al
with TM �TM =Ti, Zr, and Hf� atoms, charge is transferred
from the Al–Al to the Al–TM bonds. At higher TM concen-
tration, TM–TM bonds play an increasingly important role in
the cohesive properties and increasing transfer of charge to
these bonds is found. It is reasonable to assume the magni-
tude of the charge-transfer effect depends on the type of TM
atom �i.e., electronegativity differences� and it is perhaps not
surprising that the Al–Al bond-stretching force constants
show a concentration dependence that varies in magnitude
between the three Al–TM systems.

It is worth noting that local chemical environment also
appears to have an effect on the magnitude of the force con-
stants. In Fig. 1, significant scatter in Al–Al and Al–Ti bond
stiffnesses for fixed compositions of c=0.375 and 0.333 is
observed in the Al–Ti system. An analysis of these results
shows that the two Al–Al bonds with force constants devi-
ating significantly from the fitted values in Fig. 1 have six
Al–Ti bonds in their nearest-neighbor coordination shell,
while for the other Al-Al bonds derived from structures with
the same compositions, the number of Al–Ti bonds is only
four. For the TFC method to take into account these local-
environment dependencies, significantly more work would
be needed to parametrize the force constants. Fortunately, the
scatter in the force constants displayed in Fig. 1 does not
appear to introduce very large errors according to the accu-
racy tests presented in Table II. We note that the TFC method
can be viewed as a specific type of interatomic-potential
model optimized for the calculation of vibrational thermody-
namic calculations. Relative to a more general interatomic
potential model, developed to describe energies of arbitrary
arrangements of atoms, the fitting procedure for the TFC is
considerably simpler and more systematic than for a classical
potential model due to the fact that this method aims to pre-
dict energies only in the vicinity of the equilibrium geometry
for atomic arrangements with a given fixed underlying parent
lattice. While the TFC approach thus represents a restricted
parametrization, it nevertheless provides important insights
into the features of the bonding in the system that must be
included in a more detailed interatomic potential model. Spe-
cifically, in the present case the concentration dependencies
of the bond stiffnesses, presumably arising from charge-
transfer effects, would need to be accounted for in a potential
model capable of accurately modeling thermodynamic prop-
erties in these Al-TM systems.

As a final comment concerning the accuracy of the TFC
approach, it should be noted that in some cases the method is
not able to correctly predict the relative ordering in the mag-
nitude of the vibrational entropies of mixing for ordered al-
loy compounds at a fixed composition. Specifically, the 1NN
full force constant supercell calculations yield Al3Ti vibra-
tional entropies with values in the following order:

�Svib�L12�
�Svib�D022�
�Svib�D023�, while the TFC re-
sults predict L12 to have the smallest value. It is to be em-
phasized, however, that the vibrational entropy differences
between these structures is extremely small �less than
0.08kB/atom� and within the magnitude of the errors esti-
mated above. Considering the complex nature of the bonding
in Al-TM systems, it is overall quite encouraging that a
simple transferable force constant approach appears to be
reasonably successful in computing the vibrational entropy
with substantially reduced computational requirements, pro-
vided that the simple addition of the concentration depen-
dence to the parametrization of the force constants is ac-
counted for.

In Fig. 6, the mixing vibrational entropy �Svib results are
seen to be large and negative over the entire concentration
range, for all of the ordered structures, as well as the disor-
dered solid solutions. This result is consistent with the ob-
served strong ordering tendencies displayed by these
Al-TM �TM =Ti, Zr, and Hf� alloys. It is also observed that
the vibrational entropies of mixing for disordered phases
�solid curves in Fig. 6� show a clear asymmetric behavior,
with magnitudes skewed toward Al rich concentrations.
Similar trends have been observed46 for calculated mixing
energies of disordered Al-TM alloys. We qualitatively at-
tribute these phenomena to the nature of the bonding in
Al-TM alloys. In the Al rich region, the strong p-d hybrid-
ization results in an increased occupation of bonding states,
and thus results in a lower bond energy and a stronger bond
stiffness.32 As a result, the vibrational entropy of mixing is
relatively lower �more negative� in Al-rich region.

For the Al-Ti system both calorimetry47–50 and EMF
measurements51,52 have been performed for the thermody-
namic properties of solid-phase alloys.53 The two experimen-
tally observed fcc-based Al-Ti compounds considered in this
work are the D022 Al3Ti and L10 AlTi phases. In Table V we
compare calculated values of the formation values for the
enthalpy ��H�, entropy ��S�, and Gibbs free energy ��G�. In
this table, formation quantities are defined as the difference
between the thermodynamic property for the compound mi-
nus the concentration-weighted average of the corresponding
quantities for fcc Al and hcp Ti. The calculated formation
enthalpies are taken from Ref. 32, and were computed using
VASP with similar settings as employed in the current work.
Note that the formation entropies listed in this table are com-
puted using force constants out to third neighbor, rather than
first neighbor.

A comparison of the measured formation entropy with the
current calculated value, indicated by the label “3NN har-
monic,” for Al3Ti shows a discrepancy of approximately
0.27kB/atom, with the measured value being more negative.
In comparing experiment with the current calculations, it is
important to note that our computed values were derived as
the high-temperature limit of the vibrational entropy within
the harmonic approximation, neglecting quasiharmonic, elec-
tronic and configurational contributions. The latter is ex-
pected to be small for the highly ordered intermetallic com-
pounds in Al-Ti. Additionally, we found that the electronic
contributions to the formation entropy were negligible
�−0.016kB and 0.025kB for Al3Ti �DO22� and AlTi �L10�,
respectively�. The quasiharmonic corrections, however, were

TRANSFERABLE FORCE-CONSTANT MODELING OF… PHYSICAL REVIEW B 75, 104117 �2007�

104117-11



found to be sizable. The last row of Table V represents re-
sults derived within the quasiharmonic approximation, and a
comparison with the values listed in the row above shows
that anharmonic effects give rise to an approximately
0.2kB/atom lowering of the vibrational formation entropy for
both the Al3Ti and AlTi compounds at temperatures of 850
and 973 K, respectively. These sizeable corrections are seen
to lead to significant improvement with measurements for
the Al3Ti phase. A comparison of the quasi-harmonic-
calculated formation free energies show good agreement
with measurements for both compounds, with discrepancies
between experiment and theory on the order of
20 meV/atom. This level of discrepancy between experiment
and theory is also apparent in the enthalpies of formation,
demonstrating relatively high accuracy in the current calcu-
lations of the formation entropies, provided quasiharmonic
corrections are accounted for.

A particularly interesting aspect of the results shown in
Fig. 6 is the large configurational dependencies of the vibra-
tional mixing entropies displayed for each of the three Al-TM
systems. Specifically, the effect of ordering on Svib can be
measured in terms of the ordering entropy, i.e., the magni-
tude of the difference between the vibrational entropies for
disordered alloys �solid line� versus the ordered compounds
�symbols�. The magnitude of the ordering entropies in the
Al-TM systems are seen to be significant, on the order of
0.2–0.3kB/atom, a value that represents a substantial fraction
of the maximum possible configurational entropy difference
�0.69kB/atom for an alloy with a TM concentration of 0.5, or
0.56kB/atom for a concentration of 0.25 or 0.75�. In a recent
study14 it was shown that ordering entropies of this magni-
tude are sufficient to lead to a several hundred degree reduc-
tion in the calculated order-disorder transition temperatures
for hcp-based Ti-Al alloys. For fcc-based Al-TM alloys
order-disorder transitions are not experimentally observed
under equilibrium conditions, since fcc-based compounds
generally melt prior to disordering. However, the substantial
concentration and configuration dependencies of the vibra-
tional entropies in these systems are expected to be strongly
reflected in the calculated solvus boundaries. In calculations
for the related Al-Sc system15 vibrational contributions were
found to lead to a substantial lowering, by several hundred
K, of the calculated solvus boundary temperatures. Very
similar results were obtained recently by Ravi et al. in their
calculations of stable and metastable solubility limits in the
Al-Cu system.17 By making use of the TFC parametrization
developed for Al-TM �TM =Ti, Zr, Hf� in the present work,
we have estimated comparable reductions in the solvus-
boundary temperatures for these systems as well;43 these
findings will be discussed in detail in a forthcoming publica-
tion. We note that the strong effect of vibrational entropy on
calculated solvus boundaries was suggested over 50 years
ago by Zener55 based on an analysis of measured solubility
data for Ni, Mn, Cr, Si, and Zr solutes in Al. The analysis
suggests that substantial temperature shifts in calculated sol-
vus boundaries are a relatively general feature of Al-TM
systems. These findings and those of the most recent
first-principles calculations14,15,17 provide considerable moti-
vation for developing efficient methods for computing vibra-
tional contributions to free energies in the modeling of
Al-TM alloy systems.

V. CONCLUSIONS

The TFC approach has been applied as a framework for
first-principles calculations of the vibrational thermodynamic
properties of fcc-based Al-TM �TM =Ti, Zr, and Hf� alloys.
In order to improve the efficiency of the vibrational entropy
computations, we extended the transferable force constant
approach12,29,30 to these systems, finding it essential to
account for the concentration dependence as well as bond
length in the parametrization of bond force constants. Our
calculations show for those structures involved in the fit, the
TFC can reproduce the calculated vibrational entropies to
within 0.10kB/atom, while for structures which are not in-
cluded in the fit, the �Svib difference between the TFC results
and direct calculations is about 0.11kB/atom. These errors
associated with the application of the TFC approach to
Al-TM �TM =Ti, Zr, and Hf� systems are, generally, about
20% of the overall magnitude of the vibrational entropy of
mixing. The TFC method provides a highly efficient ap-
proach to calculating vibrational entropies when errors on
this order are acceptable.

The magnitudes of the vibrational mixing entropies for
ordered and disordered alloy configurations in the Al-TM
�TM =Ti, Zr, and Hf� are calculated to be large and negative,
with magnitudes �for ordered alloys� as large as 1.0kB/atom,
in agreement with experimental measurements for the Al-Ti
system. The vibrational entropy of ordering �defined as the
difference in Svib between ordered and disordered alloys with
the same composition� is calculated to be on the order of
0.2–0.3kB/atom for concentrated alloy compositions. Previ-
ous work14 has established the significance of these configu-
rational dependencies of the vibrational entropy in the calcu-
lation of order-disorder transition temperatures in the Al-Ti
system. Overall, the present and previous work related to
phase stability establishes the significant role of vibrational
entropy in governing the thermal stability of Al alloys with
early transition metals.
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APPENDIX: DESCRIPTIONS OF THE
ORDERED STRUCTURES

Structural details for the twenty-three compounds listed in
Table II are summarized in Table VI.
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TABLE VI. Lattice constants, space group, and atomic Wyckoff positions of the twenty three ordered structures considered in the
vibrational-entropy calculations used to construct the transferable-force-constant fits. In the last two columns, the lattice parameters �a, b, and
c� and unit-cell angles ��, �, and �� are listed in consecutive rows.

Structure Space group �No.� Wyckoff position x y z a /b /c�Å� � /� /�

Al3Ti �L12� Pm3̄m �221� 3c �Al� 0.0000 0.5000 0.5000 3.9783

1a �Ti� 0.0000 0.0000 0.0000

Al3Ti �D022� I4/mmm �139� 2b �Al� 0.0000 0.5000 0.5000 3.8441

4d �Al� 0.0000 0.5000 0.2500 3.8441

2a �Ti� 0.0000 0.0000 0.0000 8.6287

Al3Ti �D023� I4/mmm �139� 4c �Al� 0.5000 0.0000 0.0000 3.8956

4d �Al� 0.0000 0.5000 0.2500 3.8956

4e �Al� 0.0000 0.0000 0.6248 16.6765

4e �Ti� 0.0000 0.0000 0.1188

Al2Ti Cmmm �65� 2a �Al� 0.0000 0.0000 0.0000 12.1592

2c �Al� 0.5000 0.0000 0.5000 3.9408

4g �Al� 0.6728 0.0000 0.0000 3.9953

4h �Ti� 0.1557 0.0000 0.5000

AlTi �L10� P4/mmm �123� 1d �Al� 0.5000 0.5000 0.5000 2.8154

1a �Ti� 0.0000 0.0000 0.0000 2.8154

4.0857

AlTi3 �L12� Pm3̄m �221� 1a �Al� 0.0000 0.0000 0.0000 4.0435

3c �Ti� 0.0000 0.5000 0.5000

Al5Ti3 Cmmm �65� 2a �Al� 0.0000 0.0000 0.0000 7.9646

4e �Al� 0.2500 0.7500 0.0000 8.2429

4j �Al� 0.5000 0.2424 0.5000 3.9080

2b �Ti� 0.5000 0.0000 0.0000

4h �Ti� 0.2427 0.0000 0.5000

Al3Ti5 Cmmm �65� 2b �Al� 0.5000 0.0000 0.0000 7.8573

4h �Al� 0.2586 0.0000 0.5000 8.3005

2a �Ti� 0.0000 0.0000 0.0000 4.0127

4e �Ti� 0.2500 0.7500 0.0000

4j �Ti� 0.5000 0.2662 0.5000

Al3Zr �L12� Pm3̄m �221� 3c �Al� 0.5000 0.0000 0.5000 4.0965

1a �Zr� 0.0000 0.0000 0.0000

Al3Zr �D022� I4/mmm �139� 2a �Al� 0.0000 0.0000 0.0000 3.9503

4d �Al� 0.5000 0.0000 0.2500 3.9503

2b �Zr� 0.0000 0.0000 0.5000 9.0181

Al3Zr �D023� I4/mmm �139� 4c �Al� 0.5000 0.0000 0.0000 4.0076

4d �Al� 0.0000 0.5000 0.2500 4.0076

4e �Al� 0.0000 0.0000 0.3750 17.3019

4e �Zr� 0.0000 0.0000 0.1185

Al2Zr Cmmm �65� 2a �Al� 0.0000 0.0000 0.0000 12.7914

2c �Al� 0.5000 0.0000 0.5000 4.0650

4g �Al� 0.3271 0.0000 0.0000 4.1561

4h �Zr� 0.1528 0.0000 0.5000
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TABLE VI. �Continued.�

Structure Space group �No.� Wyckoff position x y z a /b /c�Å� � /� /�

AlZr �L10� P4/mmm �123� 1d �Al� 0.5000 0.5000 0.5000 3.0298

1a �Zr� 0.0000 0.0000 0.0000 3.0298

4.1677

AlZr3 �L12� Pm3̄m �221� 1a �Al� 0.0000 0.0000 0.0000 4.3576

3c �Zr� 0.5000 0.0000 0.5000

Al5Zr3 Pmmm �47� 1a �Al� 0.0000 0.0000 0.0000 4.1902

1d �Al� 0.0000 0.5000 0.0000 8.5919

1e �Al� 0.5000 0.0000 0.5000 4.1902

2o �Al� 0.5000 0.2552 0.0000

1h �Zr� 0.5000 0.5000 0.5000

2n �Zr� 0.0000 0.2280 0.5000

Al3Zr5 I4/mmm �139� 2b �Al� 0.0000 0.0000 0.5000 4.3328

4e �Al� 0.0000 0.0000 0.2492 4.3328

2a �Zr� 0.0000 0.0000 0.0000 16.9494

8g �Zr� 0.0000 0.5000 0.1294

Al3Hf �L12� Pm3̄m �221� 3c �Al� 0.5000 0.0000 0.5000 4.0815

1a �Hf� 0.0000 0.0000 0.0000

Al3Hf �D022� I4/mmm �139� 2b �Al� 0.0000 0.0000 0.5000 3.9353

4d �Al� 0.0000 0.5000 0.2500 3.9353

2a �Hf� 0.0000 0.0000 0.0000 8.9098

Al3Hf �D023� I4/mmm �139� 4c �Al� 0.0000 0.5000 0.0000 3.9919

4d �Al� 0.5000 0.0000 0.2500 3.9919

4e �Al� 0.0000 0.0000 0.1246 17.1689

4e �Hf� 0.0000 0.0000 0.3808

AlHf �L10� P4/mmm �123� 1d �Al� 0.5000 0.5000 0.5000 2.9824

1a �Hf� 0.0000 0.0000 0.0000 2.9824

4.1967

AlHf3 �L12� Pm3̄m �221� 1a �Al� 0.0000 0.0000 0.0000 4.3128

3c �Hf� 0.5000 0.0000 0.5000

Al5Hf3 P1 �1� 1a �Al� 0.0078 0.0000 0.0000 8.5017 90.0000

1a �Al� 0.5078 0.0000 0.0000 4.1813 102.7604

1a �Al� 0.2500 0.5000 0.0000 4.0402 77.2396

1a �Hf� 0.2500 0.0000 0.5000

1a �Hf� 0.7500 0.0000 0.5000

1a �Hf� 0.7500 0.5000 0.0000

1a �Hf� 0.0200 0.5000 0.5000

1a �Hf� 0.4800 0.5000 0.5000

Al3Hf5 P4/mmm �123� 1a �Al� 0.0000 0.0000 0.0000 4.2662

1b �Al� 0.0000 0.0000 0.5000 4.2662

1c �Al� 0.5000 0.5000 0.0000 8.5133

1d �Hf� 0.5000 0.5000 0.5000

4i �Hf� 0.5000 0.0000 0.2418
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