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Under the framework of the second moment approximation of tight-binding theory, a long-range empirical
potential �LREP� is developed for transition metals in the present study and successfully applied to Cu, Ag, Au,
Ni, Pd, Pt, and their alloys. It is found that the LREP model has successfully overcome the structural stability
problem of traditional short-range potentials and resolved the energy and force jumps taking place in previous
long-range potentials at cutoff radius without any truncated function. Importantly, the equations of state derived
by the LREP model for the metals and alloys are in excellent agreement with those obtained from the Rose
equation and experiments, indicating that the present model can relevantly predict the properties of metals and
alloys at nonequilibrium state. Furthermore, the other calculated properties, such as the lattice constant, cohe-
sive energy, elastic constants, and phonon spectra, also match well with those obtained by experiments or ab
initio calculations.
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I. INTRODUCTION

Since the 1980s, a variety of empirical n-body potential
models, such as the tight-binding approach based on the sec-
ond moment approximation �TB-SMA�,1 the so-called em-
bedded atom method �EAM�,2 and the Finnis-Sinclair �F-S�
potential,3 have been introduced and employed to study the
bulk, surface, and cluster properties of metals. These poten-
tials commonly truncate the energies and forces with a less
than third nearest-neighbor short-range cutoff,3–5 which
could save computer time in large-scale simulations; never-
theless, they frequently encounter the unavoidable structural
stability problem, i.e., they always predict the same energy
for fcc and ideal hcp structures.5,6 In order to overcome this
problem, researchers try to construct new models for transi-
tion metals. For instance, considering the angular contribu-
tions, Baskes et al. proposed a modified EAM �MEAM�
model for semiconductors and later extended it for transition
metals.7–9 This model does resolve the structural stability
problem and improves some calculated properties of transi-
tion metals, such as surface energy; nevertheless, it also
brings more application problems at the same time. For ex-
ample, it is difficult to apply the MEAM model to disorder
systems, such as liquid state and amorphous solid state, for
the model parameters related to the angular factors are diffi-
cult to define in these circumstances. In fact, the atomic con-
figuration of the first and second neighbor atoms is identical
in fcc and ideal hcp structures. This is why the short-range
potentials obtain the same calculated potential energy in both
structures without considering the angular contributions.
Consequently, a simple and effective way to differentiate the
fcc and ideal hcp structures is adopting a longer cutoff ra-
dius, i.e., at least greater than the distance of the third
nearest-neighbor atom, such as Cleri and Cai, respectively,
have done in the TB-SMA potential and EAM potential.10,11

Applying the long-range TB-SMA potential, Cleri calculated
some physical properties of fcc and hcp metals and alloys,
such as elastic constants and phonon spectra, but he did not
calculate the structural stability of the metals.10 On the other
hand, using the long-range EAM potential, Cai reasonably
calculated some properties of fcc metals and alloys and cor-
rectly predicted the structural stability; however, the pre-

dicted energy differences between fcc and ideal hcp struc-
tures are extremely underestimated when compared to the
experimental values.11 Besides, above long-range potentials
also have an apparent shortage, i.e., the exponential forms in
the repulsive term and n-body term are not equal to zero at
the cutoff radius, resulting in that the calculated potential
energies and forces have a little jump at this distance. A large
number of these jumps will spoil the energy conservation or
lead to unphysical behavior in dynamical simulations. To
avoid this problem, a truncation function is necessary to be
included, like Johnson, Adams, and Guellil have done.5,12,13

If a potential can overcome this shortage without any trun-
cation function, the computational process will be simplified
and more computer time can be saved. Consequently, in or-
der to resolve the problem and/or shortage mentioned in the
above short-range and long-range potentials, we proposed a
long-range empirical potential �LREP� model for transition
metals under the framework of the second moment approxi-
mation of the tight-binding �TB-SMA� theory in the present
study. In the following sections, we will first introduce the
detailed formalism of the LREP model and then apply the
model to calculate and/or predict some physical properties of
fcc metals and alloys, such as lattice constants, cohesive en-
ergy, elastic constants, structural stability, equation of state,
and phonon spectra.

II. THE LONG-RANGE EMPIRICAL POTENTIAL MODEL

According to the TB-SMA theory,1 the total potential en-
ergy of an atom i is expressed as

Ei = Ei
R + Ei

B, �1�

where Ei is the total potential energy of atom i, and Ei
R is the

repulsive pair term expressed by

Ei
R =

1

2�
j�i

��rij� , �2�

where rij is the distance between atoms i and j of the
system at equilibrium state. ��rij� is expressed by a Born-
Mayer type in the original TB-SMA scheme, i.e., ��rij�
=A exp�−p�rij /r0−1��, while in the LREP model, it is ex-
pressed by a polynomial as follows:
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��rij� = ��rij − rc1�m�x0 + x1rij + x2rij
2 + x3rij

3 + x4rij
4� , rij � rc1,

0, rij � rc1,
� �3�

where rc1 is a cutoff radius and x0, x1, x2, x3, and x4 are the
potential parameters to be fitted. The second term in Eq. �1�
is the band-structure term, i.e., n-body term. Based on the
second moment approximation to the tight-binding density of
states, the energy of the d band is proportional to the square
root of the second moment of the density of states and the
band-structure term can be expressed in terms of a sum of
the square of the hopping or transfer integrals, i.e.,

Ei
B = − ��

j

��rij� . �4�

In the LREP model, ��rij� is expressed by

��rij� = ���r − rc2�n exp�− �	 rij

r0
− 1
� , rij � rc2,

0, rij � rc2,
�

�5�

where rc2 is also a cutoff radius. � and � are two adjustable
parameters, i.e., potential parameters. Note that r0, in the
present study, is also treated as an adjustable parameter. If
necessary, rc1 and rc2 also can be treated as free parameters
in the fitting procedure. m and n, in Eqs. �3� and �5�, are
generally adopted integer values and can be adjustable ac-
cording to the specific element. From the forms expressed in
Eqs. �3� and �5�, one sees clearly that if m�3 and n�3, the
terms of �rij −rc1�m and �r−rc2�n can ensure ��rij�, ��rij� and
their first derivatives smoothly go to zero at cutoff radii. In
other words, the total energy and force in the present poten-
tial can keep continuous and smooth in the whole calculated
range and thus, completely remove the cutoff problem taking
place in the previously mentioned long-range potentials.

III. APPLICATION TO fcc METALS

A. Construction of the pure fcc potentials

For the pure fcc transition metals, the potential parameters
are determined by fitting their basic physical properties ob-
tained from experiments, i.e., cohesive energy, lattice con-
stants, elastic constants. Besides, when a metal is in equilib-
rium state, its first derivative dE of potential energy and the
stress � of each unit cell should be equal to zero, so
dE�a�a=a0

=0 and ��a�a=a0
=0 have been regarded as two

fitting conditions in the present study so as to confirm the
equilibrium state of a structure. Different from the short-
range potential, we adopted longer cutoff radii for all the fcc
metals, i.e., rc1�r4 and rc2�r7, where r4 and r7 are the
fourth and seventh neighbor distances, respectively. Table I
displays all the fitted potential parameters for six fcc metals,
i.e., Cu, Ag, Au, Ni, Pd, and Pt. Table II gives the fitted and
experimental properties of the six metals, from which one
can see clearly that the fitted properties completely match
with their experimental values. In addition, the first deriva-
tives of energy dE �eV/Å� and the remnant stresses �
�Mbar� are all less than 1�10−6, indicating that the fitted
structures of these metals are very close to the equilibrium
states.

Figure 1 shows the repulsive terms ER and n-body terms
EB of total potential energies calculated from the newly con-
structed potentials for Cu, Ag, Au, Ni, Pd, and Pt. From the
figure, one sees that both the repulsive terms and n-body
terms keep smooth in the whole calculated range and
smoothly go to zero at cutoff radii, indicating that the forms
of Eqs. �3� and �5� can really ensure the repulsive term and
n-body terms smoothly go to zero at the cutoff distance.

TABLE I. The fitted potential parameters for Cu, Ag, Au, Ni, Pd, and Pt.

Cu Ag Au Ni Pd Pt

m 4 4 4 4 4 4

n 6 6 6 6 6 6

rc1 �Å� 6.100 6.375 6.400 6.000 6.300 6.440

rc2 �Å� 7.800 7.950 8.500 7.500 7.800 8.500

x0 �eV Å−m� 0.123554 0.235139 0.346813 0.173210 0.311702 0.362085

x1 �eV Å−m−1� −0.134361 −0.247471 −0.350701 −0.198386 −0.333143 −0.378121

x2 �eV Å−m−2� 0.0543818 0.0983304 0.133662 0.0840575 0.134071 0.149113

x3 �10−2 eV Å−m−3� −0.981194 −1.748544 −2.273741 −1.596247 −2.413259 −2.610984

x4 �10−3 eV Å−m−4� 0.675816 1.174278 1.456262 1.172505 1.642024 1.706176

� �10−4 eV2 Å−n� 0.656618 0.805877 1.011750 0.811753 1.560181 2.678379

� 1.836569 2.951121 5.580155 0.376885 4.472177 4.354578

r0 �Å� 2.552655 2.892067 2.884996 2.489016 2.750645 2.771859
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B. Structural stability

In the fitting procedure, we do not consider whether the
fcc crystal structure is more stable than a bcc or hcp one.
However, it is known that the global stability is very impor-
tant to test the reliability of a potential. Based on the newly
constructed LREP potentials, we calculate the energies of
metastable structures, i.e., bcc and ideal hcp structures of the
six fcc metals. The bcc and hcp structures are first optimized
using the constructed potentials and then the potential ener-
gies of the metastable structures are calculated. It is noted
that the atomic volume is allowed to vary during the present
optimization, differing from other constant-atomic-volume
methods, in which the atomic volume is assumed to be con-
stant in various structures.11,16

Table III shows the calculated energy differences between
the metastable structures and the fcc one, i.e., 	Efcc→bcc,
	Efcc→hcp, 	Efcc→sc, and 	Efcc→dia, where sc and dia denote

the simple cubic structure and diamond structure, respec-
tively. For comparison, the results obtained from Cai’s EAM
potential, experimental observations, and ab initio calcula-
tions are also listed in Table III. In the present study, ab initio
calculations are conducted by using the Cambridge serial
total energy package �CASTEP�.17 In ab initio calculation, the
nonlocal ultrasoft pseudopotentials have been used, together
with a kinetic energy cutoff of 350 eV and the PW91
generalized-gradient approximation �GGA� exchange-
correlation functional.18 The integration in the Brillouin zone
is done in a mesh of 11�11�11 special k points determined
according to the so-called Monkhorst-Pack scheme. If there
is not any special note, the ab initio calculations in the fol-
lowing sections also adopt the same setting. From Table III,
one sees that the values of energy differences predicted by
the present model quantitatively match with those obtained
from experiments or ab initio calculations. Both the calcu-
lated results and experimental ones indicate that fcc structure
has the lowest potential energy among fcc, bcc, hcp, simple
cubic, and diamond structures, reflecting well the fact that
the equilibrium states of these metals are in fcc structures.
However, inspecting the values of 	Ebcc→fcc and 	Ehcp→fcc
predicted by Cai’s EAM model, one sees that they have been
systematically underestimated compared to the experimental
results, especially for 	Ehcp→fcc, the maximum relative error
is beyond 94%. Apparently, the present model is more rel-
evant than that proposed by Cai in predicting the structural
stability of fcc transition metals.

In the above paragraph, we have satisfactorily predicted
the energy differences between the fcc structures and their
metastable ones based on the constructed LREP potentials.
For an excellent potential model, it should not only satisfac-
torily predict the structural stability of the metals but also
correctly calculate other properties of their metastable struc-
tures. Consequently, based on the constructed LREP poten-
tials, we calculated the lattice constants, elastic modulus, and
elastic constants for the metastable bcc and hcp structures of
Cu, Ag, Au, Ni, Pd, and Pt, and the results are listed in Table

TABLE II. Fitted results of lattice constants �a�, cohesive energy �Ec�, and elastic constants �C11, C12, and C44� by the LREP model
together with their experimental values for Cu, Ag, Au, Ni, Pd, and Pt.

Methods Cu Ag Au Ni Pd Pt

a �10−10 m� LREP 3.61 4.09 4.08 3.52 3.89 3.92

Expt.a 3.61 4.09 4.08 3.52 3.89 3.92

Ec �eV� LREP 3.49 2.95 3.81 4.44 3.89 5.84

Expt.a 3.49 2.95 3.81 4.44 3.89 5.84

C11 �Mbar� LREP 1.762 1.315 2.016 2.481 2.341 3.47

Expt.a,b 1.762 1.315 2.016 2.481 2.341 3.47

C12 �Mbar� LREP 1.249 0.973 1.697 1.549 1.761 2.51

Expt.a,b 1.249 0.973 1.697 1.549 1.761 2.51

C44 �Mbar� LREP 0.818 0.511 0.454 1.242 0.712 0.765

Expt.a,b 0.818 0.511 0.454 1.242 0.712 0.765

aReference 14.
bReference 15.

FIG. 1. The repulsive terms ER and n-body terms EB of potential
energies for Cu, Ag, Au, Ni, Pd, and Pt, respectively.
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IV. For comparison, the results derived from ab initio calcu-
lations are also listed in the table. First, inspecting the lattice
constants in Table IV, one sees that the results derived from
the LREP model for all the bcc structures and for the hcp
structures of Cu, Ag, Ni, and Pd are in good agreement with
those derived from ab initio calculations, with the largest

relative error being around 2.02%. For the hcp structures of
Au and Pt, the agreement between the results calculated from
both methods are also good, with the largest relative error
being 4.35%. Moreover, inspecting the elastic modulus and
elastic constants derived from the LREP model, one sees that
although they have some departures compared to those de-

TABLE III. The structural energy differences 	E �eV� obtained from EAM potential, the LREP model, ab initio calculations, and
experimental observations, respectively. sc and dia denote the simple cubic structure and diamond structure, respectively. For hcp structures,
c /a=1.632 99.

Methods Cu Ag Au Ni Pd Pt

	Efcc→bcc EAMa 0.0220 0.0254 0.0265 0.0330 0.0370 0.0430

LREP 0.0318 0.0470 0.0498 0.0608 0.0801 0.1080

Expt.b 0.0400 0.0300 0.0400 0.0700 0.1000 0.1500

	Efcc→hcp EAMa 0.0012 0.0012 0.0005 0.0010 0.0016 0.0011

LREP 0.0081 0.0031 0.0070 0.0196 0.0185 0.0217

Expt.b 0.0060 0.0030 0.0050 0.0150 0.0200 0.0200

	Efcc→sc LREP 0.4940 0.3712 0.3398 0.6958 0.4529 0.4763

Ab initio 0.4648 0.3573 0.2197 0.6356 0.5199 0.5108

	Efcc→dia LREP 1.2401 0.8839 0.6918 1.9572 1.0488 0.7049

Ab initio 1.0402 0.8384 0.7541 1.2002 1.2214 1.1760

aReference 11.
bReference 8.

TABLE IV. The lattice constants, cohesive energies, bulk modulus, and elastic constants for the metastable bcc and hcp structures of Cu,
Ag, Au, Ni, Pd, and Pt, respectively. The properties in the upper rows are from the LREP model and those in the lower rows are from ab
initio calculations using CASTEP program. a and c are expressed in 10−10 m and B, C11, C12, C13, C33, and C44 are expressed in Mbar.

Cu Ag Au Ni Pd Pt

bcc hcp bcc hcp bcc hcp bcc hcp bcc hcp bcc hcp

a 2.865 2.553 3.271 2.887 3.250 2.874 2.795 2.485 3.102 2.742 3.110 2.765

2.866 2.538 3.274 2.892 3.317 2.925 2.811 2.491 3.114 2.745 3.163 2.765

c 4.176 4.781 4.771 4.075 4.555 4.551

4.204 4.807 4.890 4.128 4.607 4.758

B 1.282 1.346 0.979 1.100 1.650 1.845 1.505 1.687 1.648 1.921 2.516 2.759

1.366 1.499 1.387 0.999 1.378 1.438 2.010 1.916 1.801 1.778 2.474 2.555

C11 1.284 2.261 0.811 1.653 1.477 2.386 1.527 3.149 1.361 2.791 2.251 3.808

0.828 2.624 0.600 1.757 1.169 2.276 1.444 2.973 1.688 2.522 1.811 4.274

C12 1.281 1.040 1.063 0.863 1.736 1.642 2.251 1.256 1.792 1.642 2.648 2.447

1.635 1.045 1.186 0.781 1.482 1.200 1.535 1.398 1.858 1.706 2.805 1.979

C13 0.787 0.747 1.514 0.823 1.414 2.211

0.837 0.542 0.985 1.312 1.240 1.728

C33 2.301 1.876 2.493 3.077 2.762 3.477

2.806 1.775 2.120 3.266 2.650 3.748

C44 0.850 0.357 0.616 0.278 0.527 0.244 1.188 0.513 0.772 0.345 0.908 0.442

0.892 0.308 0.541 0.269 0.557 0.250 1.229 0.486 0.908 0.298 1.589 0.159
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duced from ab initio calculations, most of the relative errors
are less than 30%, exhibiting a reasonable agreement with
the results obtained by ab initio calculations. In short, taking
account of the computation error of the ab initio scheme in
elastic calculations, one can conclude that the present predic-
tions from the LREP model are matched well with those
from ab initio calculations, suggesting the present model is
also relevant in predicting the lattice constants and elastic
properties of the simple metastable structures of fcc transi-
tion metals.

C. Equation of state

In atomistic modeling of metals and alloys, a distance is
always different from the equilibrium one, and therefore an-
other important approach to evaluate the relevance of a con-
structed potential is to check whether the potential can de-
scribe the atomic interaction of a system at nonequilibrium
states, i.e., to derive the equation of state �EOS� from the
potential and then compare it with that obtained from theory
or experiments.

Theoretically, the frequently used EOS is the Rose
equation,19 which has been considered a universal EOS for
the solids. Therefore, based on the constructed LREP poten-
tials, we calculated the EOSs, i.e., the total potential energy
as a function of the lattice constant, for Cu, Ag, Au, Ni, Pd,
and Pt, and then compared them with those derived from the
Rose equation. Figure 2 shows the EOSs derived from the

LREP model and the Rose equation, respectively. One sees
from the figure that the results derived from the LREP model
are in good agreement with those derived from the Rose
equation even far from the equilibrium state. The agreement
is best for Cu, Ag, Au, Ni, and Pd, and good for Pt. From the
figure, one also sees that the total energy derived from the
LREP model can keep smooth in the whole calculated range
and smoothly go to zero at cutoff radius, indicating that this
model does overcome the energy jumps at cutoff radius
which take place in Cleri’s TB-SMA potential and Cai’s
EAM potential. During MD simulation, the interatomic force
deduced from the derivative of total energy is a very impor-
tant physical variable, which directly affects the simulation
result. In general, for a curve of force versus distance, con-
tinuousness, no sharp fluctuations, and no odd points are all
the basic features to ensure obtaining the correct simulation
result. In Fig. 2, the derivatives of total energy calculated
from the LREP model for Cu, Ag, Au, Ni, Pd, and Pt metals
together with those deduced from the Rose equation are
shown. From the figure, one sees that for all the studied
metals, the derivatives of total energy derived from the
LREP model can keep smooth in the whole calculated range
and smoothly go to zero at cutoff radius, and the calculated
results are in good agreement with those derived from the
Rose equation, implying the LREP model can relevantly de-
scribe the atomic interactions in the fcc metals and avoid the
unphysical behaviors that may emerge in simulations.

FIG. 2. Total energies Etotal

and their derivatives dEtotal as a
function of lattice constant a cal-
culated from the LREP model
�solid lines� and Rose equation
�scattered points�, respectively, for
Cu, Ag, Au, Ni, Pd, and Pt.
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Experimentally, the EOS is generally expressed by pres-
sure as a function of relative volume, i.e., P-V relationship.
We also calculated the P-V relationships for the six fcc met-
als based on the LREP model and compared them with their
respective experimental values in Fig. 3. It is clear that the
agreement between the calculated results and experimental
values is excellent, further confirming that the LREP model
can reasonably describe atomic interactions at nonequilib-
rium state in the fcc metals.

D. Phonon spectra

The ability to predict the phonon dispersion curves is also
considered to be useful evidence for validating the reliability
of an empirical potential model. To obtain the phonon spec-
tra, there are basically three approaches in determining the
force constants, i.e., analytic calculation, super-cell calcula-
tion, and linear-response calculation.24 In the present study,
we perform analytic calculation with the LREP model to
obtain the phonon spectra for the fcc structures of Cu, Ag,
Au, Ni, Pd, and Pt. Based on the Born–von Kármán model,25

using the constructed LREP potentials, the interatomic force
constants 
���r�ij� between the atom i and atom j can be
obtained under the harmonic approximation. Consequently,
the phonon spectra can be calculated through the dynamical
matrix D���q� ,kk��, which is the Fourier transformation of
the interatomic force constant,

D���q� ,kk�� − mkmk��
2�q������kk� = 0,

where mk is the mass of the k atom, � is the phonon fre-
quency, q� is the wave vector, and � is the Kronecker func-
tion.

Based on the constructed LREP potentials, the phonon
spectra of the six fcc metals are obtained and shown in Fig.
4. For comparison, the experimental results are also plotted
in the figure. In fact, in the long wavelength limit, the pho-
non dispersion curves are directly related to the elastic con-
stants which have been fitted when constructing the poten-
tials, so one can see from Fig. 4 that the results calculated
from the LREP model are quite consistent with those ob-
tained by experimental observations in the long wavelength
limit. In the short wavelength limit, one sees that the shapes
of calculated results are also very similar to those obtained
by experiments, although there are some departures between
calculated values and experimental ones. As a whole, the
agreement is good for Cu, Ag, and Pd, and fair for Au, Ni,
and Pt, indicating that the LREP model can reasonably reveal
the lattice dynamics behavior in fcc metals.

IV. APPLICATION TO fcc-fcc METALLIC ALLOYS

In preceding sections, the present model has been used to
investigate pure metal systems, and the results are satisfac-
tory. In the present section, we will show that the proposed
LREP model can also be applied to fcc-fcc alloy systems.

FIG. 3. The relationships of
pressure vs relative volume ob-
tained from the LREP model
�solid lines� and experiments
�scattered points�, respectively, for
Cu, Ag, Au, Ni, Pd, and Pt. The
experimental values are from
Refs. 20–23.
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Here we selected the Ag-Cu, Cu-Au, and Ag-Au binary
metal systems as the examples and present the results ob-
tained from the metallic alloys in the three alloy systems.

A. Construction of the fcc-fcc cross potentials

It is a challenging task to determine the alloy potential
parameters by directly fitting the properties of the alloys, as
there are not sufficient available experimental data related to
the alloy compounds. To avoid the difficulty, the assumption
is commonly made that the alloy potential is a function of the
monatomic potentials. For example, in 1985, Foiles proposed

an alloy model under the EAM frameworks in which the
embedding function and electron density function are di-
rectly taken from monatomic models and the pair potential is
assumed to be the geometric mean of monatomic ones.32

Later, Johnson also proposed a similar alloy model in which
the pair potential is assumed to be a density-weighted com-
bination of monatomic ones.33 Although these alloy models
make it easy to obtain a cross potential for alloys, they are
only the approximate ones based on some assumptions. It is
well known that the ab initio calculation based on quantum
mechanics is a reliable way to acquire some physical prop-

FIG. 4. The phonon spectra obtained from the LREP model �solid lines� and experiments �scattered points� for Cu, Ag, Au, Ni, Pd, and
Pt at zero pressure. The experimental values are from Refs. 26–31.

LONG-RANGE EMPIRICAL POTENTIAL MODEL:… PHYSICAL REVIEW B 75, 104101 �2007�

104101-7



erties of some possible intermetallic compounds.34–36 Conse-
quently, ab initio calculations are carried out in the present
study, and the lattice constants, cohesive energies, and elastic
modulus of some hypothetic alloys, i.e., L12 A3B alloys, B2
AB alloys, and L12 AB3 alloys �where A and B are any two
elements among Cu, Ag, and Au�, are obtained and then
applied in fitting the Ag-Cu, Cu-Au, and Ag-Au cross poten-
tials. The parameters of the fitted Ag-Cu, Cu-Au, and Ag-Au
cross potentials are listed in Table V. After constructing the
cross potentials, we will apply them to calculate some prop-

erties of alloys in the following sections so as to validate
their reliabilities in describing the atomic interactions in fcc-
fcc alloys.

B. Equation of state

As mentioned previously, calculating the EOS can evalu-
ate whether a potential can correctly predict the properties of
metals or alloys at the nonequilibrium state. Therefore, we
calculated the total energies as a function of lattice constant
for some Ag-Cu, Cu-Au, and Ag-Au alloys based on the
constructed LREP potentials, and the results are shown in
Fig. 5. For comparison, the corresponding results derived
from the Rose equation are also shown in the figure. From
the figure, one sees clearly that the total energies calculated
from the LREP model are quite agreeable with those derived
from the Rose equation in the whole calculated range, indi-
cating that the present model can satisfactorily describe the
energy state of an fcc-fcc alloy even far from the equilibrium
state. Moreover, the derivatives of total energies calculated
from the present model and the Rose equation, respectively,
for these alloys are also shown in Fig. 5. One sees from the
figure that the agreement between the derivatives derived
from the LREP model and those derived from the Rose equa-
tion is excellent, indicating the present model can reasonably
reflect the atomic interactions in fcc-fcc alloys. Further in-
specting the curves in Fig. 5, one sees that the total energies
and their derivatives can keep smooth in the whole calcu-
lated range and both of them can smoothly go to zero at
cutoff radius, indicating that the present model can also over-

TABLE V. The fitted potential parameters for Ag-Cu, Cu-Au,
and Au-Ag alloys.

Ag-Cu Cu-Au Au-Ag

m 4 4 4

n 6 6 6

rc1 �Å� 6.000000 6.000000 5.706344

rc2 �Å� 7.500000 7.800000 6.841334

x0 �eV Å−m� 0.233892 0.292061 0.468608

x1 �eV Å−m−1� −0.249618 −0.311393 −0.460405

x2 �eV Å−m−2� 0.101643 0.127695 0.175479

x3 �10−2 eV Å−m−3� −1.859480 −2.336064 −2.993292

x4 �10−3 eV Å−m−4� 1.284024 1.602712 1.885116

� �10−3 eV2 Å−n� 0.204474 0.379239 1.485145

� 2.963432 2.915843 3.122075

r0 �Å� 2.646736 2.671407 2.816507

FIG. 5. The total energies Etotal

and their derivatives dEtotal calcu-
lated from the LREP model �solid
lines� and Rose equation �scat-
tered points�, respectively, for Ag-
Cu, Cu-Au, and Ag-Au alloys
with different structures.
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come the energy and force jumps at cutoff distance in alloy
systems.

C. Elastic properties

During the fitting procedure, we only fitted the lattice con-
stants, cohesive energies, and elastic modulus of L12 A3B
alloys, B2 AB alloys, and L12 AB3 alloys. For further evalu-
ating the constructed cross potentials, the lattice constants,
cohesive energies, elastic modulus, and elastic constants of
more hypothetical alloys in Ag-Cu, Cu-Au, and Ag-Au sys-
tems are calculated and the results are listed in Table VI. For

comparison, the results deduced directly from ab initio cal-
culations are also listed in the table. First, one can see from
the table that the reproduced lattice constants are in good
agreement with those derived from ab initio calculations, as
the largest error between the results derived from both meth-
ods is only 0.32%. Besides, the errors between the repro-
duced cohesive energies and those derived from ab initio
calculations are all less than 6%, suggesting the agreement
between both methods is also good. As for the elastic con-
stants, one can see that the agreement of C12 is the best with
the largest relative error being 14.68%, that of C11 is the
secondary with the largest relative error being 30.77%, and

TABLE VI. The lattice constants a �Å�, cohesive energies Ec �eV�, elastic constants Cij �Mbar�, and bulk modulus B �Mbar� derived from
the LREP model and ab initio calculations, respectively.

Compounds Methods a Ec C11 C12 C44 B

Ag3Cu-L12 LREP 4.0073 2.9764 1.2562 1.0058 0.4482 1.0892

Ab initio 4.0089 3.0091 1.2744 0.9918 0.6026 1.0860

AgCu3-L12 LREP 3.7556 3.2729 1.4722 1.1822 0.5931 1.2789

Ab initio 3.7551 3.2643 1.5001 1.1699 0.6762 1.2800

AgCu-B2 LREP 3.0829 3.1106 1.2072 1.1142 0.4783 1.1452

Ab initio 3.0829 3.0951 0.9652 1.2398 0.3145 1.1483

Ag3Cu-D03 LREP 6.3990 2.9246 0.8558 1.0808 0.5358 1.0058

Ab initio 6.3784 2.9694 0.9726 1.0920 0.3991 1.0522

AgCu3-D03 LREP 5.9870 3.2211 1.0724 1.2306 0.6366 1.1779

Ab initio 5.9694 3.2236 1.0613 1.3522 0.6017 1.2552

Cu3Au-L12 LREP 3.7722 3.7058 1.7177 1.3191 0.5289 1.4519

Ab initio 3.7706 3.5934 1.8133 1.2847 0.6045 1.4609

CuAu3-L12 LREP 4.0455 3.5616 1.5575 1.3899 0.3175 1.4458

Ab initio 4.0542 3.7287 1.6301 1.3406 0.4246 1.4371

CuAu-B2 LREP 3.1029 3.6930 1.7465 1.2552 0.2969 1.4189

Ab initio 3.1029 3.6800 1.3355 1.4713 0.4391 1.4261

Cu3Au-D03 LREP 6.0080 3.6234 1.1396 1.4219 0.5829 1.3278

Ab initio 6.0024 3.5469 1.3908 1.4993 0.6984 1.4631

CuAu3-D03 LREP 6.4490 3.4922 1.1865 1.4283 0.3783 1.3477

Ab initio 6.4544 3.6857 1.0914 1.5114 0.3265 1.3714

Ag3Au-L12 LREP 4.1253 3.2842 1.2677 1.0346 0.2155 1.1123

Ab initio 4.1227 3.2174 1.2974 1.0289 0.5254 1.1184

AgAu3-L12 LREP 4.1447 3.5406 1.4441 1.3251 0.1939 1.3648

Ab initio 4.1488 3.6415 1.6101 1.2301 0.4719 1.3567

AgAu-B2 LREP 3.2955 3.4075 1.1516 1.1304 0.1006 1.1375

Ab initio 3.2955 3.4004 0.9098 1.2511 0.2392 1.1373

Ag3Au-D03 LREP 6.5990 3.2100 0.8366 1.1191 0.2860 1.0250

Ab initio 6.5676 3.1774 1.0482 1.0779 0.5084 1.0681

AgAu3-D03 LREP 6.6160 3.4777 1.1233 1.3382 0.2324 1.2666

Ab initio 6.6075 3.6014 1.0098 1.3971 0.5241 1.2679
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that of C44 is the worst with the largest relative error being
58.98%. Finally, inspecting the elastic modulus, one can see
that the agreement between both methods is also good, for
the relative errors are all less than 10%. Considering the
computational error of the ab initio scheme in elastic calcu-
lations, one can conclude that all the reproduced results are
in good agreement with those derived from ab initio calcu-
lations, suggesting that the LREP model is relevant to repro-
duce the lattice constants and cohesive energy of fcc-fcc al-
loys, and can reasonably reflect the elastic behaviors in the
alloys.

V. CONCLUDING REMARKS

A long-range empirical potential has been developed and
satisfactorily applied to six fcc metals and their alloys. The
LREP model has successfully overcome the structural stabil-
ity problem in traditional short-range potentials and in some
long-range potentials, and resolved the energy and force
jumps in Cai’s EAM potential and Cleri’s TB-SMA potential.

The other reproduced properties, such as the lattice constant,
cohesive energy, elastic constants, and phonon spectra, are
also quite agreeable with the experimental values or the re-
sults derived from ab initio calculations. Especially, the
EOSs reproduced by the LREP model are in good agreement
with those obtained from the Rose equation and experiments,
indicating that the present model can not only describe the
properties at equilibrium state but also predict those at non-
equilibrium state. The present model has a simple analytic
form and can be widely applied in general calculations or
large-scale simulations of the metals and alloys �including
their order and disorder states�.
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