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Checkerboard and stripe inhomogeneities in cuprates
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We systematically investigate charge-ordering phases by means of a restricted and unrestricted Gutzwiller
approximation to the single-band Hubbard model with nearest- (rf) and next-nearest- (¢') neighbor hopping.
When |¢'/¢] is small, as appropriate for La,_,Sr,CuQy, stripes are found, whereas in compounds with larger
|t' /1| (such as Ca,_,Na,CuO,Cl, and Bi,Sr,CaCu,0q, s) checkerboard structures are favored. In contrast to the
linear doping dependence found for stripes the charge periodicity of checkerboard textures is locked to 4 unit
cells over a wide doping range. In addition we find that checkerboard structures are favored at surfaces.
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The presence of charge and related spin inhomogeneities
in underdoped high-temperature superconducting cuprates
has received substantial experimental support.'~* Less clear
is the symmetry of the underlying textures, an issue which is
strongly debated.*~”

Neutron scattering experiments on lanthanum cuprates
(LCO) are usually interpreted in terms of one-dimensional
modulations (stripes) where the two-dimensional symmetry
of the scattering is explained with the presence of orthogonal
stripe domains.’ Indeed, a substantial anisotropy in the dy-
namic scattering between the two planar axis, as expected for
fluctuating stripes, has been explicitly demonstrated in stud-
ies on untwinned samples of YBa,Cu;0, (YBCO).*¢ On the
other hand, scanning tunneling microscopy (STM) in other
classes of cuprates—namely, the bilayer Bi,Sr,CaCu,0Og, s
(Bi-2212) (Ref. 8—11) and the single-layer Ca,_,Na,CuO,Cl,
(Na-CCOC) (Ref. 12)—has revealed two-dimensional modu-
lations (checkerboards). The peculiar characteristics of the
Fermi surface of Na-CCOC (Ref. 13) is also in agreement
with the expected features of a disordered checkerboard
phase.'*

Charge-ordering (CO) phenomena thus seem to be com-
mon (and possibly generically present) in cuprates but the
different symmetries found are rather puzzling and make one
wonder if one should not reinterpret the neutron scattering
experiments in LCO and YBCO in terms of two-dimensional
textures also.”

CO was predicted in cuprates before any experimental
detection.'> However, its cooperation or competition with su-
perconductivity is still debated. In this regard a possible di-
rect relation between T, and the intensity of incommensurate
low-energy scattering'® demands a deeper understanding of
the physical mechanisms inducing CO and of the symmetry
of the textures.

In this work we address this issue on the basis of the
one-band Hubbard Hamiltonian. It has been argued that
within this model, the ratio between nearest- () and next-
nearest- (1) neighbor hopping ¢’ /<0 is the main electronic
parameter characterizing the different cuprate families.!”-!3
We find a transition from one-dimensional to two-
dimensional textures as |¢t'/| is increased. In addition, we
find that the tendency to form checkerboard structures is in-
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creased at surfaces. Our results provide a clue to interpret the
contrasting experimental results regarding the symmetry of
CO structures in different cuprate compounds.

We solve the Hubbard model within an unrestricted
Gutzwiller approximation (GA). The GA energy is mini-
mized with respect to unconstrained charge, spin, and
double-occupancy distributions (for details see Ref. 19).
Generally we restrict ourselves to solutions without spin
canting but we have checked the results lifting this restriction
in several cases. In the case of stripes, once the unrestricted
solution has been found, the symmetry of the solution has
been imposed on a supercell and the problem has been
solved in momentum space, allowing one to obtain smooth
curves of the energy as a function of doping. In the other
cases, the curves are not smooth due to restricted sampling,
but we estimate that the finite-size corrections to the energy
of single points are negligible due to the large size of the
cells (up to 16 X 16).

The use of the present mean-field-like scheme to address
the phenomenon of CO in cuprates requires further justifica-
tion: (i) Previous studies have shown that the GA applied to
a three-band Hubbard model and in the present model cap-
tures the phenomenology of stripes in LCO cuprates.”’ In
particular it accounts for the behavior of incommensurability
and of the chemical potential as a function of doping. This
requires an accurate evaluation of the small energy differ-
ence between different stripe solutions. (ii) Response func-
tions, due to fluctuations on top of these mean-field states,
are in good agreement with spectroscopies,?’">? both in the
charge? and in the spin sector.?* (iii) The accuracy of the
charge distributions can be directly tested comparing with
exact methods. We have found that the charge profile in the
GA is indistinguishable from density matrix renormalization
group computations® revealing stripes on a 7 X 6 Hubbard
cluster doped with four holes. (iv) Finally, the charge profile
predicted within the GA in the three-band Hubbard model*
has recently been found to be in excellent agreement with a
charge-sensitive measurement.’

All this establishes the GA as a very reliable technique to
determine charge inhomogeneities in a strongly correlated
system. In our computations we assume long-range order
whereas in experiments this is rarely the case and stripes are
assumed to be dynamical. (Glassy stripes are also a likely
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FIG. 1. (Color online) CO textures for U/t=8. The length of
arrows is proportional to the spin density whereas the squares are
proportional to the hole density minus the hole density in the insu-
lator. (a) Bond-centered stripe texture with charge spacing d=4,
doping n;,=1/8, and ¢’ /t=-0.2; (b) SF checkerboard with d=4 at
x=0.06 and ¢’ /t=-0.5; (c) same as (b) with n,=1/8; (d) LF check-
erboard with d=4 and t'/r=-0.5 at n,=1/8.

possibility that is usually neglected.) In any case the ground-
state energy contains short-range correlations and is rather
insensitive to the presence or absence of long-range order
which justifies our approach.?0®

For LCO we fix the Hubbard on-site repulsion U/7=8 and
t'/t=-0.2. This parameter set and a very similar one repro-
duce the spectrum of magnetic excitations both in the un-
doped and doped phases.>* The Hubbard interaction U and
the nearest-neighbor hopping are not expected to depend sig-
nificantly on the material given the similarity of superex-
change interactions.'® Instead ¢’ has been found to be quite
sensitive to the cuprate family.!”-'® Photoemission studies in
the insulating parent compounds have shown that there is
substantial ~splitting among states with momentum
(7/2,7/2) and (7,0) (we set the lattice constant a=1). De-
tailed studies of a single hole in one-band models suggest
that this splitting roughly scales with ¢'.'8 Taking ¢'/t=-0.2
for LCO,** we estimate ¢’ in Bi-2212 and CCOC by rescal-
ing ¢’ with the observed splitting.!® In this way we obtain
t' ~—0.4¢ for Bi-2212 and ' ~—0.5¢ for CCOC. The increase
of |¢#'/#| from LCO to Bi-2212 is in agreement with local
density approximation (LDA) results!” whereas for CCOC
the present semiempirical estimate is significantly larger.

Figure 1 shows the most relevant textures found in this
study: (a) is the bond-centered (BC) stripe solution already
reported in previous studies®® (b)—(d) are checkerboard tex-
tures. At low doping (n,) and for large values of |t'/t| we
find the configuration (b) to be particularly stable. It can be
seen as a lattice of ferromagnetic (FM) polarons or “ferrons”
and is referred to as small ferron checkerboard (SFC). Each
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FIG. 2. (Color online) Energy per site as a function of doping
for the different textures studied and for ¢'/t=-0.2 (a) and
t'/t==0.5 (b). For clarity we subtracted the energy of the AFM
solution and the line ugn;, with uy=-1.6¢. Different choices of
correspond to different choices of the origin of the energy of the
single-particle states and do not change the physics.
In each curve for the stripes the charge periodicity perpendicular
to the stripe is fixed and takes the values (from left to right)
d=10,8,6,5,4,3. In panel (b) we also show the energies allowing
for spin canting and AFM-SFC mixing (solid circles) and Maxwell
construction (MC) for AFM-SFC phase separation and for SFC and
LFC phase separation.

ferron consists of a 2 X2 plaquette with uniform magnetiza-
tion and resides at the intersections of a crossed array of
antiphase domain walls of the antiferromagnetic (AFM) or-
der parameter. As doping increases the domain walls popu-
late more uniformly and evolve into a configuration that re-
sembles a crossed array of stripes (c). At higher doping the
size of the ferromagnetic islands increases, producing a large
ferron checkerboard (LFC) structure (d). In addition, we
have considered arrays of spin polarons (not shown) consist-
ing of single spin flips which locally bind the holes.

Fourier transforming the charge and spin distributions, we
find that the most intense Bragg peaks for the d=4 checker-
boards (SFC, LFC) are at Q.=(x7/2,0), (0, +7/2) (charge)
and at Q,=(wxw/4, 7w+ m/4) (spin). The rotation between
Q. and Q, is in agreement with Ref. 5 and characterizes this
kind of checkerboard. For stripes one finds no rotation
[Q.=(0x27/d,0) and Q,=(wxm/d,0) for stripes along y];
however, also checkerboard patterns with no rotation are
conceivable.

In Fig. 2 we report the values of the energy per site, E, for
selected checkerboard (dashed lines) and stripe (solid lines)
textures in the case of ¢'/t=—0.2 (a) and t'/t=-0.5 (b). The
main general conclusion one can draw from Fig. 2 is that a
sizable value of the next-nearest-neighbor hopping ¢’ stabi-
lizes checkerboard solutions with respect to stripes, which
are more stable at small |¢'/¢|. This is the most generic and
relevant finding of this work and provides a rationale as to
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FIG. 3. (Color online) (a) Energy per site vs —t'/t for
U/t=8,10 for stripes and checkerboard at n,=0.0625,0.187. (b)
Mixed AFM-SFC solution at n,=0.047 and allowing for spin
canting.

why stripes are observed in LCO materials (where
t'/t=-0.2), while STM experiments detect checkerboard
structures in Na-CCOC and Bi-2212, where ¢'/t is known to
be substantially larger.'8

Figure 3(a) gives details of this issue by comparing the
energy of checkerboard with stripe solutions as a function of
t'/t. Although most of the CO structures gain energy by
increasing |¢'|, it is clearly apparent that the checkerboard
solutions take a much greater advantage from this increase
and become more stable at |¢'/¢|>0.33—0.45 depending on
doping. Adding a third nearest-neighbor hopping (not
shown) 7"=-0.5¢" (Ref. 17) does not change much this
result. In this case the transitions occur in the range
0.36<|t'/1/<0.41.

Bond-centered checkerboards take advantage from the
“ferronic” nodes of the charge texture, while site-centered
checkerboards (not shown) lack this important feature and
have much higher energies. This is a major difference with
respect to stripe structures, where bond-centered and site-
centered textures are nearly degenerate. Another important
difference lies in the doping dependence of the periodicity.
The most stable stripe solution at low doping (cf. Fig. 2) has
d~1/(2n,) (with d=4—-10) providing an explanation® for
the well-known linear behavior between doping and
incommensurability.2 In contrast, the bond-centered checker-
boards lose (magnetic) energy in the domain walls and it is
more convenient for them to adjust the charge in the FM
plaquettes, keeping the domain walls as short as possible.
Indeed the checkerboard structures with d>4 (not shown)
are at higher energy in the whole doping range. This provides
an explanation for the fact that in Na-CCOC the charge pe-
riodicity is independent of doping and locked at d=4.'? For
Bi-2212 d~4-4.7 (Refs. 9-11) has been reported in STM
experiments. However, here the interpretation is more diffi-
cult due to the presence of lattice modulations, mesoscopic
inhomogeneities, and less pronounced CO peaks.

The SFC is particularly stable for large |[t'/t| at
n,=1/16~0.06 [cf. Fig. 2(b)] when each ferron accommo-
dates one added hole. This finding can be substantiated
from an estimate of the electronic energy of an isolated
2X2 plaquette. One obtains the eigenvalue structure
=2t—1t";t";t";2t—t" with the last level unoccupied due to the
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presence of the hole. This yields the energy per site,
E—Ejpy=Ja—t(1-t'/2t)/8, where —Ja is the energy per
bond of the AFM phase. Additional carriers have to over-
come a large gap (2r—2t'), leading to a rapid rise of the
energy (cf. Fig. 2). At n,=1/16 other configurations take a
smaller advantage from ¢'/¢<<0 while the magnetic energy
cost is higher in the checkerboard. Therefore a substantial
value of |t'/t| is needed to stabilize checkerboards with re-
spect to stripes and polarons.

At higher doping and for large |t'| it pays to break more
AFM bonds to have larger ferromagnetic islands to accom-
modate the holes. In this sense the SFC and LFC states lo-
cally reflect the tendency of the extended Hubbard model
towards ferromagnetism for large |t'| (Refs. 26 and 27) and
can be seen as inhomogeneous precursors of the uniform
ferromagnetic phase, although they do not have a net ferro-
magnetic moment. There is no evidence yet that checker-
board patterns have local ferromagnetic tendencies, so our
results are predictive in this regard. Interestingly, after this
work was posted an unpublished work appeared which on
the basis of experimental evidence also suggests that ferro-
magnetism may play an increasingly important role as dop-
ing is increased.?

At intermediate dopings n;,~0.1 and #'/t=-0.5 a phase-
separated solution between the SFC and LFC has lower en-
ergy than d=4 stripes. Ignoring the long-range Coulomb in-
teraction the energy of this solution is given by the Maxwell
construction [dashed line labeled MC in Fig. 2(b)]. This so-
Iution will be frustrated in the presence of the long-range
Coulomb interaction, giving rise to a mesoscopic phase
separation.29 However, since the solutions are similar, they
can be mixed at a quite small length scale which implies a
low Coulomb cost.

At doping n,<1/16 the SFC is expected to phase sepa-
rate with the AFM solution. MC for this case is also shown
in Fig. 2(b) while the corresponding charge and spin distri-
bution for 1n,=0.047 is shown in Fig. 3(b). In this case the
two phases are quite different which can imply a high energy
cost for mesoscopic phase separation®” since a large surface
energy may be expected at the interface. We have found, on
the contrary, that allowing for spin canting one finds a solu-
tion with negligible surface energy cost as shown by the
solid circle at n,=0.047 in Fig. 2(b). Indeed, although the
solutions have a substantial amount of interface due to the
finiteness of the cluster [Fig. 3(b)], the energy is very close
to the MC line, for which the surface energy cost is assumed
to be zero. This is because the surface energy is dominated
by magnetic effects, but spin twisting allows for a smooth
“flipping” of the magnetic order parameter from the SFC to
the pure AFM in accord with standard arguments for an order
parameter which breaks a continuous symmetry.’® We also
see from Fig. 2(b) that for the pure checkerboard solution at
n,=1/16 the spin canting energy gain is negligible.

Mesoscopic textures like the one shown in Fig. 3(b) will
also be influenced by disorder effects which will randomly
pin clusters of one or the other phase according to their
charge. It is clear from Fig. 3(b) that this will also induce
substantial disorder on the spin degrees of freedom providing
a natural mechanism for spin-glass effects often seen in un-
derdoped cuprates.
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As in previous studies we find that with a ratio of [t'/1|
appropriate for LCO the more stable inhomogeneities are
stripes. As |t'/1| is increased checkerboard structures are fa-
vored. Bi-2212 and Na-CCOC are estimated to lie close to
the transition! providing an explanation for the puzzling dif-
ference in symmetry observed. The limited accuracy of spe-
cific parameter estimates and of the critical |¢'/¢| for check-
erboard structures does not allow one to exclude stripes in
the bulk of these materials. Quantum fluctuations may also
blur the difference among different configurations close to
the transition.

So far checkerboard textures have only been detected by
surface sensitive probes but are not yet established as a bulk
phenomenon. Quite generally at the surface one may expect
that screening of Coulomb interactions®? is less effective,
leading to an increase of U. Increasing the value to
U/t=10 we find [cf. Fig. 3(a)] that checkerboard structures
are more favored with respect to stripes and the critical value
of |¢'/t] is decreased by about 15%. It is thus possible that
checkerboard structures are an example of electronic surface
reconstruction and occur only at surfaces.’

In conclusion, we have shown that the next-nearest-
neighbor hopping plays a dominant role in determining the
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symmetry of CO textures in cuprates. Whereas for a ratio
t'/t=-0.2 as appropriate for LCO we find stripes as the most
stable inhomogeneities, a crossover to checkerboard solu-
tions occurs for large but still realistic values of |¢'/¢|. Check-
erboards behave quite differently as a function of doping
with respect to stripes in that the periodicity of the modula-
tion is locked as observed experimentally.'? The competition
between FM clusters and antiphase domains rules the rela-
tive stability of the various textures. Spin canting produces a
negligible energy gain for ordered structures but it is funda-
mental for nanoscopically mixed phases.

A change of symmetry from stripes in the bulk of LCO
and YBCO to checkerboards at the surface of Bi-2212 and
Na-CCOC appears quite naturally, thereby explaining the
puzzling lack of universality found for the symmetry of CO.
On the other hand, CO itself appears to be quite ubiquitous
in cuprates.
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