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The phase diagram of spin-3/2 fermionic cold atoms trapped in a one-dimensional optical lattice is inves-
tigated at quarter filling (one atom per site) by means of large-scale numerical simulations. In full agreement
with a recent low-energy approach, we find two phases with confined and deconfined Cooper pairs separated
by an Ising quantum phase transition. The leading instability in the confined phase is an atomic-density wave
with subdominant quartet superfluid instability made of four fermions. Finally, we reveal the existence of a
bond-ordered Mott insulating phase in some part of the repulsive regime.

DOI: 10.1103/PhysRevB.75.100503

Loading cold atomic gases into an optical lattice allows
for the realization of bosonic and fermionic lattice models
and the experimental study of exotic quantum phases.! Ul-
tracold atomic systems also offer an opportunity to investi-
gate the effect of spin degeneracy since the atomic total an-
gular momentum F can be larger than 1/2, resulting in
2F+1 hyperfine states. This high-spin physics is expected to
stabilize novel exotic phases. In this respect, various super-
fluid condensates, Mott insulating phases, and interesting
vortex structures have been found in spinor bosonic atoms
with F'= 1.3 These theoretical predictions might be checked
in the context of Bose-Einstein condensates of sodium and
rubidium atoms and in the spin-3 atom of 32Cr.# The spin
degeneracy in fermionic atoms is also expected to give rise
to some interesting superfluid and Mott phases. In particular,
a molecular superfluid phase might be stabilized where more
than two fermions form a bound state. Though such non-
trivial superfluid behavior has been previously found in dif-
ferent contexts,’ it has been advocated recently that the for-
mation of a bound state of Cooper pairs is likely to occur in
general half-integer F>1/2 ultracold atomic fermionic
systems.®® In the spin F=3/2 case, it has been predicted on
the basis of a low-energy study®’ in one dimension (1D) that
a quarteting superfluid phase—i.e., a bound state of two
Cooper pairs—might be stabilized by strong enough attrac-
tive interactions. The simplest lattice Hamiltonian to describe
spin-3/2 atoms with s-wave scattering interactions in a 1D
optical lattice takes the form of a Hubbard-like model:?

H=-1>, [C;ica,iﬂ +He]+ Up, PEL)O,iPOO,i

+ U2E P;m,iPZm,i’ (1)

where czi is the fermion creation operator corresponding to

the four hyperfine states a==+1/2,+3/2. The singlet and
quintet pairing operators in Eq. (1) are defined through the
Clebsch-Gordan coefficient for two indistinguishable par-
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ticles: PjM7i=EQB<JM|F,F;aB)cL’ic;;i. As it appears, it is

more enlightening to express model (1) in terms of the

density (n,==.c! c,;) and the singlet pairing operator
toopioLred Pt .

(P(‘)O,i_Pi = \E[CS/Z,iC—3/2,i_cl/Z,iC—I/Z,i])'

U
H=—12[ch copi +Hel+ 52 n+ VY PP, (2)

I,a

with U=2U, and V=U,-U,. Model (2) generically displays
an exact SO(5)-extended spin symmetry and an SU(4) sym-
metry in the particular case Uy=U,—i.e., V=0.° In sharp
contrast with the spin F=1/2 case where both interacting
terms in Eq. (2) are proportional, these terms are independent
for F=3/2 and strongly compete. While the V term favors
the pairing of two fermions for negative V, an attractive U
interaction might favor the formation of a quartet
Q;=c_3p.iC12.C1.C32,- In fact, it has been recognized in
Ref. 6 that the above competition reveals itself through a
nontrivial discrete symmetry of the problem. Indeed, model
(2) possesses, on top of the SO(5) symmetry, a 7, discrete
symmetry U, ¢, ;— e'™c,; which plays a crucial role in the
low-energy physics since, as P; is odd under U/, the formation
of a quasi-long-range BCS phase requires U/ to be spontane-
ously broken. When U/ is unbroken the BCS instability is
strongly suppressed and the leading superfluid instability is
made of four fermions—i.e., a quartet which is even under /.
Such a two-phase structure has been recently predicted away
from half-filling in the weak-coupling limit by means of a
low-energy approach.®7-1°

In this Rapid Communication, we investigate numerically
the phase diagram of model (2) for V<0 at quarter filling
(one atom per site) by means of quantum Monte Carlo
(QMC) and density-matrix renormalization group'' (DMRG)
simulations. Physical properties are investigated by comput-
ing the one-particle, density, pairing as well as quarteting
correlation functions, respectively: G(x):(clica,m), N(x)
=(ning,.), P(x)=(P;P},.), and Q(x)=(Q,Q}, ). For the QMC
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FIG. 1. (Color online) Phase diagram of the spin-3/2 Hubbard
chain (2) at quarter filling from QMC and DMRG calculations for
V<0 (see text for definitions).

simulations, we used the projector auxiliary field QMC algo-
rithm (see Ref. 12 for the details of the algorithm) in the
regime V=<0 and U=<-3V/4 where the fermionic algorithm
has no sign problem.® We have studied periodic chains with
linear size up to L=180 with a typical projection parameter
Or=10 and a Trotter time slice Ar=0.05. Most of the DMRG
calculations were performed on open chains with L=60 sites
and keeping M =1400 states.'*> The resulting phase diagram
at quarter filling is presented in Fig. 1, and we now turn to
the discussion of the physical properties of the different
phases.

Confined phase. The phase with U<0 and small |V| is
characterized by the existence of a spin gap and an unbroken
7, discrete symmetry U which marks the onset of an atomic
density wave (ADW) and quartet superfluid quasi-long-range
orderings. Indeed, for the typical value of U=-1.5¢ and V
=0, we observe in Fig. 2(b) that both the pairing correlations
and the one-particle Green function decay exponentially with
distance. In contrast, the quartet correlations are algebraic as
can be seen in Fig. 2(a). We have checked by a direct evalu-
ation that the four-particle gap vanishes. We can thus deduce
that the short-range character of P(x) is due to the confine-
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FIG. 2. (Color online) Correlation functions for U=-1.5¢ and
V=0 obtained by DMRG simulations. (a) Power-law behavior of
the quartet correlations parametrized by the Luttinger exponent K.
(b) Short-range behavior of the one-particle Green function and
pairing correlations (£ denotes the correlation lengths).
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FIG. 3. (a) Fourier transform N(g) of the density correlations
obtained from QMC simulations (U=~t and V=0). The linear dis-
persion at small g gives access to the Luttinger parameter K. Inset:
the scaling of the peak at 2kp vs L signals an ADW phase. (b)
Luttinger exponent K, as a function as U.

ment of Cooper pairs which stems from the unbroken ¢/ sym-
metry. The above results extend in the whole confined phase
(squares in Fig. 1). In this phase, the superfluid instability is
of a molecular type made of four fermions: a quartet. How-
ever, the density correlations also display a power-law be-
havior with dominant oscillations at 2kp=m/2 as is clearly
seen from the Fourier transform N(g) of N(x) presented in
Fig. 3(a). The question that naturally arises is which instabil-
ity dominates in this phase. The answer depends on the value
of the nonuniversal Luttinger parameter K,; which stems
from the critical behavior of the density degrees of freedom.
Indeed, the quartet and 2k~ADW equal-time correlation
functions have been found in Refs. 6 and 7 to behave at long
distance as Q(x) ~ x>k ¢ and N(x) ~ cos(mx/2)x~¥#2. There-
fore a quartet superfluid phase with dominant quartet corre-
lations requires K;>2. The value of K, has been computed
in QMC using the formula

N
K= fim V@) (3)
9—0 ¢

where the factor of 4 comes from the four spin states. This
procedure has been shown to be very accurate for the spin-
1/2 Hubbard model.'* For DMRG calculations, K, can be
independently obtained from the power-law behavior of the
quartet correlations Q(x). Both QMC and DMRG results are
shown for example on the SU(4)-invariant line (V=0) in Fig.
3(b). We find that QMC works better than DMRG in the
weak-coupling limit and is in excellent agreement with the
perturbative estimate: K;>=1+[V+3U]/(\21).7° For larger
|U|, the DMRG approach is more accurate and we found that
K, saturates at the value K;==1.6. Note that the perturbative
estimate fails beyond |U|=t so that numerical approaches
become necessary to estimate K, For V#0, K, also satu-
rates at strong couplings to values smaller than 2. We there-
fore conclude that, though the quartet correlations are quasi-
long ranged, the dominant instability in the confined phase is
a 2kp-ADW.

Deconfined phase. By allowing V to be sufficiently nega-
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FIG. 4. (Color online) Correlation functions for U=0 and
V==3t from DMRG simulations (a) Pair and quartet correlations
are algebraic with Q(x)~ P(x)*. (b) Short-range behavior of the
one-particle Green function.

tive, one can enter a second phase where the one-particle gap
is still finite [see Fig. 4(b) for U=0, V=-3¢] but the two-
particle gap vanishes. In this phase, pairing correlations be-
come algebraic with P(x) ~x~"Xd as shown in Fig. 4(a)
and Q(x) remains critical with Q(x) ~ P(x)* which is the pre-
diction of the low-energy approach. In contrast to the ADW
phase, there is no diverging signal at 2kx=/2 in N(q) [see
Fig. 5(a)]. We thus conclude that there is still a spin gap and
the 7, symmetry U/ is now spontaneously broken which leads
to the formation of a quasi-long-range BCS phase. In addi-
tion, there is also an ADW instability at 4k= [see Fig. 5(a)
where N(g) has a maximum at g=1r| which has a power-law
decay N(x)~cos(mx)x K¢, We thus need to compute nu-
merically K, to fully characterize the dominant instability of
this phase. As in the previous phase, the Luttinger parameter
K, can be extracted either from Eq. (3) (QMC) or from pair-
ing correlations (DMRG). As shown in Fig. 5(b), both results
are compatible and agree with the perturbative estimate
when |V|<t. We find that K,>1/2 so that the dominant
instability in this phase is the BCS singlet pairing.
Quantum phase transition. The striking feature of the
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FIG. 5. (a) Fourier transform of the density correlations ob-
tained by QMC simulations for U=0 and V=1.5¢. (b) The Luttinger
parameter K, as a function of V when U=0.
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FIG. 6. (Color online) The BCS-ADW transition from DMRG
computations along the V=-2¢ line. (a) Normalized ratio
R(x)=P(x)*/Q(x) displaying a critical behavior at the transition. (b)
In the bulk (at site x=45), R(x) is proportional to U-U, for
U,<U<U" with U'=—t and U,=-1.19¢. (c) Plot of R(U)=0(U)}
vs r=(U-U,) /(U -U,) where o is the Ising order parameter.

phase diagram for attractive U,V interactions is the change
of status of the Z, symmetry &/ which is spontaneously bro-
ken (unbroken) in the deconfined (confined) phase. We thus
expect a quantum phase transition in the Ising universality
class between these two phases. In fact it has been shown in
Ref. 6 that the order parameter o(x) associated with the U/
symmetry, though being nonlocal in terms of the lattice fer-
mions, can be extracted from the long-distance behavior of
the ratio R(x)=P(x)*/Q(x). In the confined phase where I/ is
unbroken, (o(x))=0 and R(x) ~{o(x)c(0))* decays exponen-
tially with distance. In the deconfined phase, {(o(x))=0#0
and R(x) ~ o®. Finally, it has been found in Ref. 6 that at the
transition the ratio displays an universal power-law behavior:
R(x) ~ 1/x. We have computed numerically this ratio by the
DMRG method for various parameters to determine the tran-
sition line in Fig. 1. The results of Fig. 6(a) clearly show an
excellent agreement with the predictions of the low-energy
approach. In particular, we observe that R(x) ~ 1/x near the
critical point. In the deconfined phase, R(x) saturates at
large distance as it should and is almost independent
of x [R(x) ~ o(U)®] when one enters the critical regime [for
U.<U<U" in Fig. 6(b)]. The plot in Fig. 6(c) demonstrates
that o(U) ~(U-U,)"3, in full agreement with Ising critical-
ity. In this respect, the situation is in sharp contrast with the
F=1/2 well-known case where the 2k;-ADW and BCS in-
stabilities coexist for attractive interaction.!

Mott phase. At quarter-filling, a Mott transition might take
place if K;< 1/2 with the formation of a density gap.®’ For
the repulsive SU(4) Hubbard chain (V=0), the QMC study
of Ref. 16 found a transition from a gapless spin-density
wave (SDW) to a generalized Mott SDW with three gapless
spin modes (see Fig. 1). For V<0, we expect an entirely
different Mott phase due to the presence of a spin gap and
the breaking of the 7, symmetry Y. In the Mott region in Fig.
1 (solid circles), the BCS singlet pairing becomes short-
ranged as shown in Fig. 7(a) and we find that, as the density
gap opens, the local density almost does not fluctuate and
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FIG. 7. (Color online) Mott phase for V<<0. (a) By increasing
U, pairing correlations obtained from DMRG change from alge-
braic to exponential decaying. (b)—(d) The BOW Mott transition is
seen from DMRG computations with the appearance of the 4kp
order parameter #(x) across the transition.
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N(x)~1. In contrast, the local kinetic bond #(x)
=(2 o€} 141Cant+H.c.) orders with a 4k,=m modulation remi-
niscent of a doubly degenerate ground state as can be seen in
Figs. 7(b)-7(d) for V=-2r. We therefore conclude on the
emergence of a bond-ordered wave (BOW) Mott phase with
periodicity 2 (Mott BOW in Fig. 1).

Concluding remarks. We conclude this Rapid Communi-
cation in emphasizing that the existence of a quartet super-
fluid phase where quartet correlations dominate over the
2k -~ADW instability relies on the nonuniversal Luttinger pa-
rameter K, Though K,;<2 at quarter filling, we expect that
at sufficiently low densities, K; may become larger than 2,
which marks the onset of the quarteting phase. The formation

of this exotic phase will be discussed in a forthcoming paper.
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