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We study nonconventional superconductivity on a ladder, improving the predictions of the Hubbard model.
The determination of the Fermi surface, in two or three dimensions, remains a very hard task, but it is exactly
solvable for a single ladder. We use functional renormalization group methods, which prove, here, scheme
dependant. In the superconducting phase, the binding-antibinding gap is stabilized, but in the antiferromagnetic
phase, it shrinks and the ladder turns one dimensional.
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INTRODUCTION

The mechanism of unconventional superconductivity re-
mains a major source of interest for theorists. Anisotropic
crystals, in particular organic ones, are expected, both from a
theoretical point of view and experimentally, to show uncon-
ventional behavior. Among the many materials, which are
currently studied, Sr14−xCaxCu24O41 �Refs. 1 and 2� or
�LaY�y�SrCe�14−yCu24O41 �Refs. 3 and 4� show very aniso-
tropic structures, and can be well represented by a single
ladder. Indeed, unconventional superconductivity has been
observed in these materials;5,6 in particular, superconducting
�SC� phases are found in the vicinity of antiferromagnetic
ones, sometimes with a gapped phase in between.7 These
observations indicate the possibility of coexistence of mag-
netism and superconductivity.

The materials we have studied in this work belong to the
class of strongly correlated quasi-one-dimensional systems
of electrons. One important peculiarity of these systems is
the existence of nearly degenerate phases with different sym-
metries and, therefore, the possibility of very rich phase dia-
grams, commonly observed experimentally and often pre-
dicted theoretically. In quasi-one-dimensional systems, it is
well established that two kinds of Fermi surface instabilities
can occur: �i� Cooper instabilities, including singlet or triplet
superconducting ones; �ii� Peierls instabilities, including spin
density wave �SDW� or charge density wave �CDW� ones. A
very important and quite general property is that these two
kinds of instability are coupled, because of the topology of
the phase space in one dimension. The questions about how
these instabilities compete and sometimes coexist are very
important for the physics of these systems. Because of this
instability coupling, such a discussion cannot be done in a
Fermi liquid approach, but requires more sophisticated meth-
ods.

Different approaches have been used, to understand un-
conventional superconductivity, like Monte Carlo simula-
tions with the t-J model8,9 or with the Hubbard model,10,11 or
exact diagonalization,12 DMRG method13 or variational
approach,14 etc.15

An important step forward has been taken with the use of
the renormalization group �RG�.16 Not only can these calcu-
lations predict a SC phase,17,18 but they give a new interpre-
tation of this unconventional mechanism: it results from the
competition between the Cooper channel �formation of pairs

of electrons� and the Peierls channel �formation of electron-
hole pairs�.19

The RG method is a fixed point method, its application in
condensed matter has a severe drawback: the RG flow is
always diverging, so that no exact fixed point can be ob-
tained; in other words, it is impossible to calculate the renor-
malized parameters of these systems. Nevertheless, one can
calculate the phase diagram, by examining which suscepti-
bilities are diverging �i.e., are unstable� and which are re-
maining finite: the processes corresponding to nondivergent
susceptibilities are negligible compared to those correspond-
ing to divergent ones.

This paper is devoted to the study of a ladder system,
which consists of two coupled chains of atoms, the intrac-
hain coupling is written t�, the interchain one t�, with
t�� t�. We use the Hubbard model, which has been widely
studied by theorists,20 though its complete analysis has not
yet been achieved. Fabrizio21 has previously calculated the
phase diagram of the ladder by a two-loop expansion using
RG equations. He obtains a very rich diagram, with Hubbard
parameter U ranging over �0,18�v f� �v f is the Fermi veloc-
ity� and t� over �0,1.2�o� ��o is the half band width�,
though its validity is somehow questionable, since U /v f is
the parameter of this expansion. If one focuses on range
U� �0,2�v f�, Fabrizio predicts a superconducting phase,
which he named phase I; in this phase, the RG flow of sus-
ceptibilities shows several divergences: the SDW channel co-
exists with the superconducting one.

We proved recently, for small values of the interchain
interaction t�, the existence of an extra SDW phase, in this
region of parameters, by including K� dependence of the
couplings.22 This phase is characterized by the flow of all
superconducting susceptibilities, which remain finite, while
SDW ones diverge. These calculations have been performed
with a fixed Fermi surface. This work also established the
importance of high energy processes �like the backward in-
terband scattering gb, see below� during the RG flow: al-
though these processes die before the flow becomes diver-
gent, they prove eventually influential.

In this paper, we will discuss the effect of the renormal-
ization of the Fermi surface, in the line of these K� dependent
RG calculations. One of the questions is whether our results,
in particular the existence of a SDW phase, are valid or not.
The answer is fortunately yes.

In the last decade, RG methods have achieved very so-
phisticated schemes: here, we use either the one particle ir-
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reducible �OPI� scheme, following Refs. 23 and 24, or the
Wick-ordered one, following Ref. 25, and calculated the
scatterings in a one-loop expansion. The renormalization of
the Fermi surface remains valid, in this approximation.

A remarkable result is that the phase diagram becomes
scheme dependent. This question was first addressed by
Schulz, who argued that high energy processes would be
influent in specific cases: this implies that the way they are
included in the RG calculation would matter.18 The response
it receives here contradicts the usual opinion, shared by a
number of specialists, that all schemes are equivalent and
give identical results.

We will first describe the model and the RG equations,
then discuss the choice of the RG scheme and analyze our
results.

MODEL

In a ladder, there are two separated bands in the disper-
sion diagram �0, binding and �, antibinding�, because of the
Coulombian interaction between the chains. In other words,
in the K� direction, there are only two physical points, O and
� /b �b is the interchain distance�. There are four Fermi
points �−kf0 ,−kf� ,kf� ,kf0� in the K� direction �see Fig. 1�.
We will simply note K, for the momenta in the K� direction
�and k will always be the relative momentum to a given
Fermi point�.

The Fermi surface gap is defined as �kf �kf0−kf�. From
Luttinger theorem, kf0+kf� is constant, so �kf is the only
Fermi surface parameter. It relates t� the interchain interac-
tion by �kf =2t� /v f.

The kinetic Hamiltonian is linearized around the Fermi
points26 with a single Fermi velocity v f, and writes �R reads
right moving particle and L left moving one�

Hcin = �
�

v f��
K

�K − kf0�R0�
† �K�R0��K�

+ �K − kf��R��
† �K�R���K� + �K + kf0�L0�

† �K�L0��K�

+ �K + kf��L��
† �K�L���K�	 .

The interaction Hamiltonian writes

Hint =
1

N
�

K1,K2,K1�,K2�

K1+K2=K1�+K2�

�
�1,�2

G4RK1��1

† RK2��2

† RK2�2
RK1�1

+ G4LK1��1

† LK2��2

† LK2�2
LK1�1

+ G1�K1,K2,K2�,K1��RK1��1

† LK2��2

† RK2�2
LK1�1

+ G2�K1,K2,K2�,K1��RK1��1

† LK2��2

† LK2�2
RK1�1

in which G� is the two-particle coupling, and we have used
the g-ology representation. More precisely, there are eight
different couplings g0, g�, gf0, gf�, gt0, gt�, gb0, and gb�,
corresponding to the interaction processes shown in Fig. 2
�in this way, all K� dependence of the couplings is included
in the symbolic names, whereas all K� dependence is given in
their arguments, see more details in Ref. 22�, plus the
G4=G�RRRR�=G�LLLL� couplings which are not renormal-
ized in a one-loop expansion. At the beginning of the RG
flow ��=�0�, all scatterings G� are set to U, the Hubbard
constant, thus one simply gets G4=U.

RG EQUATIONS

The RG equations for scatterings g0 ,g� ,gf0 , . . . ,gb� ex-
press their derivative as the sum of two terms: the first term
is usually called Cooper term, since it comes from an
electron-electron diagram; the second one is called Peierls
term, since it comes from an electron-hole diagram. One can
write, in a generic way,

�G
��

�K1,K2,K3,K4�

= C �
K�,K�

G�K1�,K2�,K3�,K4��G�K1�,K2�,K3�,K4��

+ P �
K�,K�

G�K1�,K2�,K3�,K4��G�K1�,K2�,K3�,K4�� �1�

in which C and P are coefficients �C stands for Cooper term
while P stands for Peierls term�; explicit and detailed sums
are given in Appendix B of Ref. 22; � is the flow parameter
�the half band width is �=�oe−��.

For all couplings, except gb0 and gb�, we get, in the OPI

scheme, C=1/ �4+2
K̃1+ K̃2
� and, in the Wick-ordered one,

C=1/ �4−2
K̃1+ K̃2
� �here K̃�v fK /��; we get, in the OPI

scheme, P=1/ �4+2
K̃1− K̃3
� and, in the Wick-ordered one,

P=1/ �4−2
K̃1− K̃3
�. In fact, the generic expression �1� does

FIG. 1. The 2-band dispersion in � direction.

FIG. 2. Schematic definitions of the couplings G.
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not apply to couplings gb: the Cooper term splits into two
terms, one with the same C factor, one with a special factor

Csp=1/ �4+2
K̃1+ K̃2±2�k̃f
� for the OPI scheme and

Csp=1/ �4−2
K̃1+ K̃2±2�k̃f
� for the Wick-ordered one

��k̃f �v f�kf /��; the Peierls term splits into two terms, one
with the same P factor, one with a special factor

Psp=1/ �4+2
K̃1− K̃3±2�k̃f
� for the OPI scheme and

Psp=1/ �4−2
K̃1− K̃3±2�k̃f
� for the Wick-ordered one ��
reads � for gb0 and - for gb��.

The RG equation for �kf is obtained through the two-loop
expansion of the self-energy 	, following a standard
calculation.21,27,28 Let Go=Z / �−i
+v f�K−kf�+��� be the
free right-hand propagator of the band � ��=0,��, and � the
chemical potential, one can write

	R� = Go
−1 =

1

Z
�v f�K − kf�� − v fkf� + �� −

Go
−1

Z
Z .

In Fig. 3, we show the tadpole diagram, corresponding to
a one-loop contribution in this expansion of 	: after all sim-
plifications �one must subtract carefully the contribution of
��, one gets, in this one-loop expansion,

kf0 = − kf� =
Z

�v f
2�g�2 − g02 + gf�2 − gf02

−
g�1 − g01 + gf�1 − gf01

2
	 .

It is obvious, in this formula, that �kf depends on K�,
however, this dependency gives very small variations and
can be neglected.

There are two different two-loop diagrams, represented in
Fig. 4. The first one �a� gives no contribution, and the second
one �b� �sunrise� gives three.

Two of them give logarithmic terms; in fact, these two
contributions can be deduced one from the other using sym-
metry AA� �see notations in Ref. 22�.

The only contribution containing G4 is

���kf��2-loop
G4

= −
4ZU2�

�2v f
3 ��

−�+2vf�kf

0 d�

− 2� + 2v f�kf

− �
−�−2vf�kf

0 d�

− 2� − 2v f�kf
+ �

0

�+2vf�kf d�

2� + 2v f�kf

− �
0

�−2vf�kf d�

2� − 2v f�kf
	

= −
4ZU2�

�2v f
3 �

1 + 2v f�kf /�

1 + v f�kf /�
if � � 2v f�kf ,

2v f�kf /�

1 − v f
2�kf

2 /�2 if � � 2v f�kf .
We have calculated the complete expression of the two-

loop expansion, including K� dependence, both in the OPI
scheme and in the Wick-ordered one. Except for the last G4
contribution, these expressions depend on the RG scheme. It
would be too fastidious to explicit all contributions: instead,
let us skip all K� dependence. We get the following contribu-
tion:

���kf�� 2-loop
except G4

= �
4Z�

�2v f
3 � v fk − �


v fk − �

+

v fk + �


v fk + �


+ 2 ln� − 2�o − v fk

− � − 
� − v fk
	
+ 2 ln� 2�o − v fk

� + 
� + v fk
	�
� ��G1�2 + �G2�2 − G1G2�

for each g0, gf0, gt0 �for which � reads ��, g�, gf�, and gt�
�for which � reads ��. This is similar to previous calcula-
tions �Ref. 29 for the OPI scheme, Ref. 30 for the Wick-
ordered one�, but we would like to emphasize one major
point: for gb0 and gb�, the second factor is modified and
writes

v f�k ± 2�kf� − �


v f�k ± 2�kf� − �

+

v f�k ± 2�kf� + �


v f�k ± 2�kf� + �


+ 2 ln� − 2�o − v f�k � 2�kf�
− � − 
� − v f�k � 2�kf�


2�o − v f�k � 2�kf�
� + 
� + v f�k ± 2�kf�


	
in which the � reads as in the first factor.

To end with technical details, let us explain the approxi-
mations used in the RG equations. First, all scattering G de-
pend on three arguments �k1 ,k2 ,k3�, which are replaced by
their 2pi�kf �pi�Z� approximation. This is generalized to all
other couplings. Second, the list of all functional couplings
G�k1 ,k2 ,k3� is truncated by setting 
pi
=2, 3 or 4. Extra cou-
plings are replaced by the closer element in the list using
symmetry preserving relations �cf. Ref. 22�. Last, couplings
G�k1 ,k2 ,k3� in which some 
ki
�2�kf are replaced by U, the

FIG. 3. One-loop tadpole diagram.

FIG. 4. Two-loop tadpole diagram.
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Hubbard constant �this happens when the initial half band
width �0��kf, i.e., for small values of t�; it mostly arises
from the logarithmic contributions�.

CHOICE OF THE RG SCHEME

It is not the place here to derive the RG equations for the
OPI scheme,31 nor for the Wick-ordered one.32 What matters
here is that one can express the RG flow in terms of cou-
plings G, Fermi gap �kf, Fermi velocity v f, and renormaliza-
tion factor Z. As far as we will not distinguish v f0 and v f�,
we need not discuss the renormalization of v f and Z, which
only induces a global scaling of the other couplings, subse-
quently we will forget these parameters.

To get the RG equations, one expands diagrammatically
all couplings, as in the Cauchy expansion in U /v f. For a
given energy scale �, one of the inner energies is integrated
in the range ��−� ,�+��, where � is infinitesimal; in
the OPI scheme, all other inner energies are integrated over
�� ,�0�; in the Wick-ordered scheme, they are integrated
over �0,��.33 OPI and Wick-ordered schemes not only differ
according to these rules, they also give different C and P
factors, as explained before.

From a theoretical point of view, both schemes should
converge to the same fixed point, however, the RG flows are
divergent and therefore never reach the fixed point: the inte-
gration of energy is incomplete; therefore, it is crucial to
choose whether one will integrate over UV energies first
�i.e., 
E
��, as in the OPI scheme� or over IR energies first
�i.e., 
E
��, as in the Wick-ordered one�.34

This choice is expected to be more influential when high
energy processes are taken into account. Within the Wick-
ordered scheme, such processes participate in the RG flow at
the very beginning, when ���0, but they are skipped when
� is increased. In the OPI scheme, they are always taken into
account.

In the ladder system, there is one such process, corre-
sponding to the backward interband scattering gb. It is indeed
a high energy process, only permitted for 
E
�2�kf. Within
the Wick-ordered scheme, this contribution is suppressed for
�� ln�2v f�kf /�0�. After these considerations, one could ex-
pect that the RG calculations performed with a fixed Fermi
surface would bring different results, depending on which
scheme is chosen. However, the weight of the gb contribution
is proportional to C, Csp, P or Psp. In the OPI scheme, all
these terms vanish as 1/ �1+

�kf

�
�, when � is increased, so gb

mostly contributes to the RG flow at the beginning, as in the
Wick-ordered scheme. We have indeed performed both cal-
culations and found a difference which is meaningless and
negligible.35

However, if the Fermi surface is correctly renormalized
during the RG flow, in the case when �kf →0 as far as �
→0, the weight of the gb contribution keeps finite during the
RG flow, in the OPI scheme, whereas it is still suppressed for
large values of � in the Wick-ordered one; so, the results of
RG calculations should prove significantly different, using
one or the other scheme.

In our opinion, the choice of the OPI scheme is more
convenient, because, in the Wick-ordered scheme, the weight

of high energy processes is underestimated. This is, in par-
ticular, the conclusion of Nickel, who has performed a care-
ful comparison of different RG schemes �see Sec. 3.4 of Ref.
32�.

There is another indication that it is more correct to use
the OPI scheme: in his pioneer work with Schulz and
Zanchi36 has proved that some terms in the 3-loop expansion

FIG. 5. Flow of the susceptibilities for 2t� /�0=1.4 �a� or

2t� /�0=1.5 �b�, and Ũ=0.5. �s
SC�d��0� is the intraband singular SC

susceptibility of d symmetry, �t
SC�f��0� is the intraband triplet SC

susceptibility of f symmetry, �C
DW�0� is the intraband CDW suscep-

tibility, �S
DW�0� is the intraband SDW susceptibility, �C

DW� �

b
� is the

interband CDW susceptibility and �S
DW� �

b
� is the interband SDW

susceptibility �the difference between site and bond susceptibilities
as well as the symmetry classification are explained in Sec. III of
Ref. 22�.
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induce an integration of energies 
E
��. Therefore, the OPI
seems the only self-coherent scheme, when one tries to in-
clude further terms in the perturbative expansion.

RESULTS

The results of these calculations confirm those of Ref. 22,
done with a fixed Fermi surface �i.e., �kf was kept constant�.
We find two distinct regions; in the SDW region, no super-
conducting susceptibility is diverging, while SDW ones are
�see Fig. 5�a��; in the SC region, both are diverging, but the
superconducting susceptibility always dominates �see Fig.
5�b��. However, the intermediate region, described in Ref.
22, in which superconducting susceptibilities, although di-
verging, are not dominating, vanishes completely.

In Fig. 6, the two phase diagrams are presented, according
to the choice of the RG scheme. Let us repeat that, when �kf
is not renormalized, both schemes give almost the same
phase diagram.35 Here, on the contrary, one observes that the
SDW region quantitatively depends on the RG scheme. In-
deed, for all values of U, except very small ones, in the
Wick-ordered calculation, a constant critical value t�c can be
defined, which separates the SDW and the SC regions. In the
OPI calculations, the evolution of this critical value t�c is
smoother, with a linear part of slope �8.6 at small U. On the
whole, the critical line t�c�U� which separates both regions
differs quantitatively, except for small values of U.37 With
the Wick-ordered RG scheme, the SDW area is reduced by a
factor 3, compared to the result of the RG with the OPI
scheme.

The difference of results coming from the choice of the
RG scheme has already been suggested by several authors. It
was, in particular mentioned in Ref. 29.

The behavior of the Fermi surface, during the RG flow,
brings no surprise. Let us first present the results in the SC
phase, then in the SDW one.

In the SC phase, �kf increases slowly, while not diverg-
ing. The flow diverges at some �c, and �kfc is the final value
of �kf. The numerical values of �kfc /�0 are not realistic,
however the general trend is very satisfactory and indicates
that the binding-antibinding separation is necessary to the
existence of superconductivity. We believe that, if one would

FIG. 6. Phase diagram, versus parameters t� and Ũ= U
�v f

; the
central area belongs to the SDW phase, according to the OPI
scheme, and to the SC one, according to the Wick-ordered scheme.
The parameter n indicates range �−2n�kf ,2n�kf� in which K� de-
pendency is exactly taken into account. We did not distinguish the
curves for n=2 and n=4 in the Wick-ordered scheme, because they
hardly separate de visu.

FIG. 7. Flow of the �kf: in the SDW phase, �a� using OPI RG
calculations, or �b� using Wick-ordered RG calculations; in the SC
phase, �c� using OPI RG calculations, or �d� using Wick-ordered
RG calculations.
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include a greater number of chains in the model, one would
obtain more realistic values for �kfc.

Let us emphasize the importance of a nonzero value of
�kf. As discussed by Clarke, Strong, and Anderson,38 the
properties of Luttinger liquid, which have been established
for a single one-dimensional chain, can extend in the case of
a quasi-one-dimensional system �spin-charge separation,
power-law behavior of correlation functions�; that is, even
though the band structure extends in the � dimension �as
�kf �0�, the system will not converge to the two-
dimensional Fermi liquid. These authors claim that � super-
conductivity originates from this mechanism, which also re-
lates to confinement in the � dimension. From this point of
view, unconventional superconductivity and Luttinger liquid
concept �in particular spin-charge separation� are interplay-
ing; this gives an explanation for the possibility of coexist-
ence of SDW instabilities and superconductivity.

In this SC phase, we also observe a quantitative difference
between the results obtained using a OPI or a Wick-ordered
scheme. In the first case, the value of �kf lies in the interval
�25, 30�, while in the second, it lies in �4, 5� �see Figs. 7�c�
and 7�d��.

In the SDW phase, �kf →0 as �→�c �see Figs. 7�a� and
7�b��. This proves that this phase relates to the Luttinger
solution. Contrary to the SC phase, the band structure re-
mains purely one dimensional. This system, however, is dif-
ferent from Luttinger’s original one, because, in real space,
there are still two chains, with nonzero hopping in between.
Let us examine in detail the behavior of the scattering sus-
ceptibilities. Couplings g01 and g02 are not diverging �see
Fig. 8�, contrary to what is observed in the SC phase. The
curves of all couplings are very close to those obtained when
�kf is kept constant. These results are very different from
that of Fabrizio, who finds the behavior of a single chain �see
Ref. 21 and compare with Fig. 8 here�.

One must observe that, as �kf →0, the effective range of
K� shrinks, so that, when one approaches the critical scale

�c, the K� dependence is extremely badly taken into account.
On could even expect to recover usual RG calculations, for
which no SDW phase is found; however, the observation of
this phase has proved surprisingly robust; the explanation is
probably that, just before �c, the divergence of �S

DW domi-
nates already in such a way that it prevents any divergence of
�s

SC�d�. Nevertheless, this discussion sheds also light about
serious numerical convergence problems that arise in this
region, and have required technical answers.

Let us compare these calculations with experimental data.
No direct determination of U or t� are available, one can
only get indirect determinations by matching experimental
and theoretical curves, as it is done in Ref. 39, for
Sr14−xCaxCu24O41 compounds �with x=12�. These authors
compare several experimental and theoretical spin suscepti-
bility curves �including uniform spin susceptibilities� and ob-
tain a best fit for U / t� �4 and 
t�
� t� �those values corre-

spond here to Ũ�1 and 2t���0�, which corresponds here
to predictions done with the Wick-ordered scheme; other de-
terminations are available, which correspond to the OPI
scheme. Actually, the determinations are accurate within an
order of magnitude, thus it is not possible, from experimental
data, to decide which scheme gives the right predictions.
However, many theoretical predictions, and a few experi-
mental fits, are located in this region of parameters, close to

point �Ũ�1,2t� /�0�1� in the phase diagram �for instance
by a factor 2�. In particular the boundary, between SC and
SDW phases, is located in the same region of parameters.
Therefore, even if we cannot discriminate between Wick-
ordered and OPI schemes, the phase diagrams we have cal-
culated are qualitatively in good agreement with experimen-
tal observations.

In conclusion, we would like to emphasize that these cal-
culations confirm the determination of a pure SDW phase
using a very simple ladder model, which was far from being
obvious until now. The SC phase also indicates a possible
coexistence of magnetism and superconductivity, as it is in-
deed observed, both theoretically and experimentally.

We have also established the importance of the choice of
the RG scheme. Even if this alternative only raises quantita-
tive differences, they are not negligible, so this must be care-
fully taken into account. We hope that in further and more
precise models, a clear discrimination between the two
schemes will be possible, and that it will confirm our con-
jecture that the OPI scheme is more accurate.
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FIG. 8. Flow of couplings g01 and g02 during the RG flow, for

Ũ=0.5 and 2t� /�0=1.485.
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