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The problem of the survival of superconductivity in a small superconducting grain placed in a metal
substrate is addressed. For this aim the pair correlations and superconducting gap around and inside a negative-
U impurity in one and two dimensions are calculated in a discrete tight-binding model and a continuous model.
Using a mean-field decomposition, it is shown that finite pairing in the grain develops when the system has a
degeneracy between a successive number of electron pairs, and thus may oscillate as a function of the chemical
potential. For finite pairing in the island, pair correlations in the normal part exhibit a crossover from being
long ranged to exponentially decaying, depending on the strength of interaction in the grain. It is shown
analytically that there is a minimal island size under which pairing vanishes, which is different from that given
by Anderson’s criterion �J. Chem. Phys. Solids 11, 26 �1959��, and that it scales as a power law with island
size, rather than exponentially as in isolated grains.
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I. INTRODUCTION

While superconductivity �SC� on the nanoscale has been a
long-standing issue, dating back to the seminal work of
Anderson,1 only in the last decade has technological ad-
vancement enabled the realization of such systems in
experiment.2 Since then, manifestations of SC on the nanom-
eter scale has been observed not only in isolated grains3 or
granule on insulating substrate,4 but also in inhomogeneous
superconducting thin films, where well-separated supercon-
ducting and normal regions have been observed.5 In such
hybrid systems, the proximity between the superconducting
and normal phases gives rise to different effects, mainly
manifested in the local density of states �LDOS�, which may
be directly measured using scanning tunneling microscopy.6

Encouraged by technological advancement, we ask the
following question: what would be the properties of an ultr-
asmall SC grain placed on a metallic �or a doped semicon-
ducting� substrate? In such a case, would the gap in the grain
still obey Anderson’s criteria,1 or will the proximity effect
yield a different criteria for the destruction of SC in such a
grain, as seen in, e.g., thin superconducting layers attached to
a normal layer?7,8 Furthermore, in such systems one expects
that the superconducting properties of the grain would be
strongly affected by the properties of the surrounding metal,
and that the proximity to a superconducting grain would gen-
erate pair correlations that would impinge on the local prop-
erties of the metallic area, such as its LDOS.9 The above
question is also interesting from a technological point of
view, as Josephson arrays fabricated on metallic or semicon-
ducting substrate seem to have a large technological potential
as nanoelectrical devices.

In order to examine these issues, a minimal model of a
single superconducting grain placed in a clean metal matrix
is studied by means of a negative-U Hubbard Hamiltonian in
which the interactions are confined to a small region in space
�so-called negative-U impurity�. Applying a Hartree-Fock-
Gorkov mean-field decomposition10 leads to the Bogoliu-
bov–deGennes �BdG� Hamiltonian,11 which serves as a start-
ing point in the calculation.

The effect of the proximity between the superconducting
grain and normal area is investigated by numerically solving
a tight-binding BdG Hamiltonian in one and two dimensions.
It is found that the pairing in the grain is strongly affected by
the chemical potential �i.e., density� of the substrate, and that
on the normal area pair correlations may either be suppressed
exponentially away from the impurity or be long ranged,
depending on the value of the attractive interaction in the
grain.

The dependence of the gap size in the grain is studied
using a continuous version of the BdG Hamiltonian. Solved
analytically, the dependence of the gap on island size is
found to diminish as a power law rather than exponentially
�as in an isolated grain13�, and the minimal island size under
which SC vanishes in the grain14 is evaluated and is found to
depend on the properties of the substrate.

II. NEGATIVE-U IMPURITY IN THE TIGHT-BINDING
MODEL

Let us start by examining the discrete tight-binding model
for the negative-U impurity. The model Hamiltonian is

H = − t �
�ij��

ci�
† cj� − ��

i�

ci�
† ci� − Uc0↑

† c0↓
† c0↓c0↑, �1�

where t is the hopping element, � is the chemical potential,
and U�0 is the attractive interaction, which is only present
in a single site at the origin �the negative-U impurity�. By
applying the Hartree-Fock-Gorkov decomposition,10 the
BdG mean-field Hamiltonian11 is obtained,

H = − t �
�ij��

ci�
† cj� + �

i�

��i − ��ci�
† ci� + ��c0↑

† c0↓
† + H.c.� ,

�2�

where �=−U�c0↑
† c0↓

† � is the pairing potential and �i

=�i0���U��c0�
† c0�� /2=�i0 �U��n0� /2 is the Hartree shift. This

mean-field approach is justified by noting that little is known
about this system, and hence a preliminary mean-field treat-
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ment is in place. The importance of maintaining the Hartree
shift term, which naturally appears from the derivation of the
mean-field Hamiltonian, has been discussed and demon-
strated in Ref. 12, where a similar decomposition was used
to study the properties of a disordered superconducting
sample.

Introducing a Bogoliubov transformation, one obtains
from the Hamiltonian of Eq. �2� the BdG equations11 for the
quasiparticle �QP� u�ri� and quasihole excitations v�ri�,

		̂ + ��i − �� ��i0

�*�i0 − 	̂ − ��i − ��

	uk�ri�

vk�ri�

 = Ek	uk�ri�

vk�ri�

 .

�3�

In Eq. �3�, 	̂uk�ri�=−t��̂uk�ri+ �̂�, where �̂= ± x̂ , ± ŷ and
similarly for vk�ri�, and the energies are the QP excitation
energies Ek
0. The pairing potential � and the electron den-
sity per site ni are to be determined self-consistently in terms
of the QP amplitudes u�ri� and v�ri�,

� = �U��
k

uk�0�vk
*�0�, �ni� = 2�

k

�vk�ri��2. �4�

The pairing amplitude � is finite only on the negative-U
impurity. However, the proximity to the impurity induces
pair correlations f i= �ci↑

† ci↓
† � even for i�0, that is outside the

impurity.

III. RESULTS IN ONE AND TWO DIMENSIONS

The pair correlations are investigated by solving Eq. �3�
numerically and self-consistently for a one-dimensional �1D�
and a two-dimensional �2D� metallic substrate, from which
both the densities and pair correlations may be calculated. In
Fig. 1 the pairing amplitude f0 �bright points in Fig. 1� is
plotted as a function of � and U for a 1D lattice of size L
=49 and a 2D lattice of size 7�7 �Figs. 1�a� and 1�b�, re-
spectively�. In the calculation, hard-wall boundary condi-

tions were taken, but similar calculation using periodic
boundary conditions showed no qualitative change in the re-
sults. In one dimension, finite pairing is only visible along
the line of constant density �n��0. In two dimensions,
stripes of finite pairing appear on lines of constant density,
which are the boundary lines between sequential even
�mean� number of electrons, N, in the system. It is clear that
the phase space available for finite pairing is much larger in
two dimensions than in one dimension.

In Fig. 2 the number of electrons N and the pairing po-
tential � are plotted as a function of � for a 13�13 system
with U / t=3.5. As seen, the pairing potential �stars, right
axes� is finite only at the transition between plateaus of con-
stant even electron number N �diamonds, left axes�.

The reason for this behavior of the pairing is that the
Hamiltonian of Eq. �2� couples between states with no elec-
trons and two electrons at the impurity. Thus, the self-
consistent pairing is finite only when states with N and N
+2 electrons are degenerate at the Fermi energy. In one di-
mension, this only happens when the occupation changes
from N=0 to N=2. In two dimensions, however, this degen-
eracy is much more common, resulting in many regions of
finite pairing in �-U phase space, and hence in the oscilla-
tory behavior shown in Fig. 2. We note that while for three
dimensions the computation is numerically demanding and
will not be presented here, we expect similar behavior, with
even more phase space available for SC in the grain. Such a
case may be more relevant from the experimental side.

Further insight may be gained by studying the dependence
of � on the interaction strength U. Although from Eq. �4� it
would seem that the two are linearly dependent, this is not
the case. Due to the Hartree term, U affects both the occu-
pation of the impurity and the energy levels of the system,
pushing the system in and out of the N-N+2 degeneracy
required for finite pairing. This is demonstrated in Fig. 3,
where � �stars, right axes� and N �diamonds, left axes� are
plotted as a function of U for a 9�9 system at � / t=−2.4.
This chemical potential corresponds to a low ��0.25� elec-
tron filling, which is relevant for a semiconducting substrate.
��U� is a nonlinear �and nonmonotonic� function, only finite
above a certain critical interaction Uc���, in the transition

FIG. 1. �Color online� Color plot of the pairing amplitude in the
impurity, f0, as a function of chemical potential � and interaction
strength U for �a� one dimension and �b� two dimensions. The
bright area indicates a large pairing amplitude.

FIG. 2. The pairing potential � �stars� and mean total electron
number N as a function of chemical potential for a 13�13 system
with U / t=3.5. The pairing potential �stars, right axes� is finite only
at the transition between plateaus of constant even electron number
N �diamonds, left axes�.
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region of N from N=18 to N=20. We note that by changing
� one may find finite pairing at higher electron densities.
However, this is unlikely to occur above half-filling, as the
Hartree term will suppress the pair function in that case.

In the region where the pairing in the superconducting
island is finite, the proximity effect should yield pair corre-
lations away from the impurity, f i= �ci↑

† ci↓
† �. In Fig. 4 we plot

f i on a chain of length15 L=51 �normalized to unity� for two
values of interaction, U / t=1.5 �stars�, within the energy
band, and U / t=2.5 �squares�, outside the band. The chemical
potential is adjusted for each value of interaction in order to
maintain finite pair correlation in the impurity. When U lies
outside the band, it is found that the hole excitations v�n�
become localized, resulting in an exponential decay of the
pair correlations. On the other hand, if U lies within the
band, the hole excitations are periodic and generate long-
range pair correlations. While this effect may be due to the
finite size of the normal system, these long-ranged correla-
tions may have a crucial effect16 on the global behavior of a
system with many negative-U impurities �so-called dilute
negative-U model14,17,18�, as they determine the effective Jo-
sephson coupling between the different impurities.

IV. TWO-DIMENSIONAL CONTINUOUS MODEL

The starting point for the following calculation is the con-
tinuous negative-U Hamiltonian �with �=1�:

H = �
�
� d2r
�

†�r�	−
1

2m
�2 − �

��r� + HI, �5�

where � is the chemical potential, and

HI =� d2rU�r�
↑
†�r�
↓

†�r�
↓�r�
↑�r� , �6�

where U�r��0 is a short-range attractive electron-electron
interaction. The existence of a negative-U impurity is mod-
eled by limiting the interaction to a finite islandlike region in
space,14 i.e.,

U�r� = 
− �U� , r � I ,

0, else,
� �7�

where I is a disk with radius a around the origin.
Using the BdG mean-field decomposition,11 we substitute

HI by

H� = �
r�I

d2r„��r�
↑
†�r�
↓

†�r� + H.c.… , �8�

where ��r�= �U��
↑�r�
↓�r�� is the pairing potential. The
Hamiltonian H� is now expanded with a being a small pa-
rameter �specifically kFa�1�,

H� � 
�a2
↑
†�0�
↓

†�0� + H.c.

+
1

4!
�2a4�2��
↑

†�r�
↓
†�r� + H.c.��r=0� , �9�

where ����0�. Since �2�↑
†�r��↓

†�r��r=0�kF
2
↑

†�0�
↓
†�0�, the

second term in Eq. �10� is smaller than the first term by a
factor of �kfa�2 and can be neglected, and we are left with the
first term in Eq. �10� which can be treated as a local pertur-
bation. Notice that � is not assumed to be small, as it might
not be.

For typical metals, the condition kFa�1 yields an island
size of a few nanometers, for which the continuum formula-
tion is inappropriate. For semiconductors, where the Fermi
wavelength may be a few orders of magnitude larger than in
metals, the continuum limit will still be valid. In semicon-
ductors which exhibit true superconductivity, due to the low
carrier density, the key role is played by intervalley
processes.19 In the above model, on the other hand, attractive
interactions take place only on the impurity and the sample
as a whole need not become superconducting �on the con-
trary, it is assumed that it remains normal�. Thus, local su-
perconducting correlations will probably not be detected by
conventional transport measurement. However, the manifes-
tation of pairing correlations can still be detected via local
measurements of, e.g., the LDOS, in which a minigap should
appear �see Eq. �12� below�.

As a first step, let us calculate the single particle LDOS
in the presence of the impurity, given by ��r ,��
=− 1

�IGr�r ,r ,��, where Gr�r ,r� ,�� is the retarded Green’s
function, which obeys the Dyson equation �depicted in Fig.
5�,

FIG. 3. �Color online� The pairing potential ��0� and mean total
electron number N as a function of interaction strength U for a 9
�9 lattice with � / t=−2.4, showing that ��U� is a nonmonotonic
function, only finite above Uc when N fluctuates between N=18 and
N=20. Inset: the numerical data �stars� in the region U�Uc is fitted
with the function ��U�� �U /Uc−1�x��U−Uc� �solid line�, yielding
x�1/2.

FIG. 4. Spatial structure of the pair correlations f i= �ci↑
† ci↓

† � in a
linear chain of length L=51 for two values of interaction, U / t
=1.5 �stars� and U / t=2.5 �squares�. When U lies within the band
there are long-range pair correlations, but an exponential decay of
the correlations for U outside the energy band.
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Gr�r,r�,�� = gr�r,r�,�� + �2a4gr�r,0,��

�gr�0,0,− ��Gr�0,r�,�� , �10�

where gr�r ,r� ,��=−i��J0��2m��+���r−r��� is the
Green’s function for a clean 2D system, J0 is the zero-order
Bessel function, and � is the 2D density of states �DOS� at
the Fermi energy. The solution for Eq. �10� is

Gr�r,r�,�� = gr�r,r�,�� −
i

��

�

1 + �
gr�r,0,��gr�0,r�,�� ,

�11�

where �= ����a2�2. This yields for the DOS

��r,�� � �	1 −
�

1 + �
J0��2m�� + ���r��2
 , �12�

which shows a decrease �the so-called minigap� in the LDOS
at the location of the island, and Friedel-type oscillations
from the island. The oscillations persist on a length scale
��� /�, independent of the pairing potential in the island,
which only affects the depth of the minigap. Due to these
oscillations in the LDOS, one expects that the charge density
will redistribute �and also exhibit oscillations� around the
superconductor-semiconductor interface. One also expects
that the density will redistribute within the superconducting
island. However, this effect cannot be probed within the
point-island limit �Eq. �10��, and will be discussed in a future
study.

Next, we turn to a self-consistent calculation of �. Using
the Dyson equation for the anomalous Green’s function
F�x ,x� , t�= �T�↑

†�x ,0��↓
†�x� , t�� �Fig. 5�b��, one finds

F�x,x�,�� =
�a2

1 + �
g�x,0,��g�0,x�,− �� . �13�

The asymptotic properties of Bessel functions yield F�x�
�1/x far from the impurity, independent from the value of
interaction strength, as expected in a normal-SC interface.
This is in contrast with the exponential decay in the tight-
binding model.

The self-consistency equation for the pairing potential
reads �see, e.g., Ref. 11�

��x� = − �U��
−�D

�D

d� F�x,x,�� , �14�

where �D is the frequency cutoff of the interaction. Substi-
tuting Eq. �13� yields

��x� = − �U��a2	 �

1 + �

��x� , �15�

where ��x�=�−�D

�D d� g�x ,0 ,��g�0,x ,−��. At the center of
the impurity, ��0�=−2����2�D. Inserting this into Eq. �15�
results in an algebraic equation for ��0�,

1 = 2����2a2�U��D	 ���a2�2��0�2

1 + ���a2�2��0�2
 , �16�

which is easily solved to give

��0� =
1

��a2 �2�2�2�U��Da2 − 1�1/2. �17�

This self-consistent solution vanishes when a=aI
= �2�2�2�D�U��−1/2, which is the minimal island area. Let us
estimate the minimal island size, 	a�aI

1/2 for a realistic sys-
tem, composed of a Nb island embedded in a semiconduct-
ing quantum well made of Si or GaAs. Taking the effective
masses m* /m=0.98 and m* /m=0.063 for Si and GaAs,
respectively,20 one can estimate the 2D-DOS in the quantum
well. Taking for Nb Tc=9.26 K and �D=275 K,21 one finds
that for the Nb/Si hybrid the minimal island radius is 	I
�80 nm, and for the Nb/GaAs system 	I�20 nm. Both
these lengths are still in the point-island regime, since the
Fermi wavelength may be an order of magnitude larger for
such quantum wells.

Equation �17� also supplies us with a dependence of � on
the island size and interaction strength. In the inset of Fig. 3,
we plot a fit of the numerical data in the region U�Uc
�stars� to a function of the form ��U�� �U /Uc−1�x��U
−Uc� �solid line�, as in Eq. �17�. The fit yields the exponent
x=0.5002, in good agreement with the continuous model.

In the definition of the model �Eqs. �5�–�7��, we have
neglected the boundary conditions on the normal-
superconducting interface. Omitting the boundary effect is
hard to justify a priori, especially when the size of the su-
perconducting grain is smaller than the superconducting co-
herence length. The boundary should be accounted for by
solving Eqs. �13�–�15� with an additional constraint ��a�
=0. However, the comparison between the numerical calcu-
lation �in which the boundary conditions are inherently
implemented� and the analytical result �inset of Fig. 3� shows
a striking equivalence between them. This indicates that ne-
glecting the boundary effect merely results in a quantitative
modification. It does not change the qualitative behavior,
which is mainly characterized by the power-law dependence
specified in Eq. �17�.

V. DISCUSSION

One main feature of the result shown in Eq. �17� is that, in
contrast to previous works on the proximity effect,7,8,14 the
length scale is not the usual superconducting coherence
length 	, but rather a different length scale aI
= �2�2�2�D�U��−1/2. In order to understand the origin of this
length scale, we cast the criterion for the vanishing of SC
correlations in the island given by Eq. �17� to the form

FIG. 5. �a� Dyson’s equation for the single particle Green’s
function. �b� Dyson’s equation for the anomalous Green’s function.
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1
�2

	 �U�
�D


1/2

2�a2��D = 1. �18�

The factor 2�a2��D is nothing but the number of electrons
with energy in the range �D within the island, and thus the
condition turns out to be a continuous version of the Ander-
son criteria, which states that SC vanishes in a grain once the
number of pairs, roughly given by � /�, where � is the level
spacing, becomes less than unity. However, in the above
model there is no discreteness of energy levels. Rather, the
number of pairs is restricted due to the finite region to which
the interaction is limited. It is also clear from this argument
why 	 does not play a role in this system, as 	 indicates the
existence of a region where superconductivity is developed
to its bulk value, which is not the case here.

Yet another way of understanding the result of Eq. �17� is
to note that in a superconductor-semiconductor junction, one
expects that due to the low density on the normal side, the
suppression of pair correlations in the superconductor �due to
the proximity effect� will no longer be on a length scale 	 as
in a superconductor-metal junction, but rather a different
length scale, which in the point-island approximation corre-
sponds to 	I�aI

1/2. Thus, if the superconducting island is
smaller than the length scale on which pair correlations are
suppressed, SC in the island will vanish. One also expects
that upon increasing the island size �beyond the point-island
approximation�, this length scale will change. This problem
is beyond the scope of the present work and will be ad-
dressed in a future study.

In Eq. �17�, � has a power-law dependence on the grain
size. This is in contrast to the case of an isolated grain, where
an exponential dependence on size is predicted.13 Further-
more, due to the renormalization of electron number and the
dependence of critical island size on the DOS, the critical
size may be either larger or smaller than that given by Ander-
son’s criteria. This may affect the possibility of fabricating

devices made from superconducting grains embedded on a
metallic matrix. This effect may be tested experimentally by,
e.g., varying the DOS of the metallic substrate by changing
its carrier density �by gating the sample, for instance�.

More intuition on the existence of a critical island size or
interaction strength may be obtained by noting the similarity
between Eq. �17� and Anderson’s criteria for the existence of
a magnetic impurity in a metal.22 This similarity, along with
the Friedel-type oscillations of Eq. �12�, implies that the
negative-U impurity is screened by the free electron gas, in
an analogous way to the screening of a magnetic impurity. It
would thus be intriguing to investigate the possibility of the
formation of an effect equivalent to the charge Kondo
effect,23 resulting from the presence of embedded supercon-
ducting grains.

We conclude by noting that these results may be tested
experimentally by planting superconducting impurities on a
metallic substrate and measuring the local gap, in a similar
way to that of Ref. 4. Another system in which our results
may be valid is a superconducting grain strongly coupled to
matching leads �i.e., superconducting aluminum grain and
normal aluminum leads�, where the existence of SC may be
verified as a function of grain size. While this may be ex-
perimentally challenging, it may be achieved by, for in-
stance, planting magnetic impurities in the leads. The depen-
dence of the SC gap on the properties of the substrate, as
seen in Fig. 2 for instance, may be tested by changing the
density on the metallic substrate.
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