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The classical spin flop is the field-driven first-order reorientation transition in easy-axis antiferromagnets. A
comprehensive phenomenological theory of easy-axis antiferromagnets displaying spin flops is developed. It is
shown how the hierarchy of magnetic coupling strengths in these antiferromagnets causes a strongly pro-
nounced two-scale character in their magnetic phase structure. In contrast to the major part of the magnetic
phase diagram, these antiferromagnets near the spin-flop region are described by an effective model akin to
uniaxial ferromagnets. For a consistent theoretical description both higher-order anisotropy contributions and
dipolar stray fields have to be taken into account near the spin flop. In particular, thermodynamically stable
multidomain states exist in the spin-flop region, owing to the phase coexistence at this first-order transition. For
this region, equilibrium spin configurations and parameters of the multidomain states are derived as functions
of the external magnetic field. The components of the magnetic susceptibility tensor are calculated for homo-
geneous and multidomain states in the vicinity of the spin flop. The appreciable anomalies in these measurable
quantities provide an efficient method to investigate magnetic states and to determine materials parameters in
bulk and confined antiferromagnets, as well as in nanoscale synthetic antiferromagnets. The method is dem-
onstrated for experimental data on the magnetic properties near the spin-flop region in the orthorhombic
layered antiferromagnet �C2H5NH3�2CuCl4.
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I. INTRODUCTION

In antiferromagnetic crystals with a preferable direction
of the magnetization, a sufficiently strong magnetic field
applied along this easy-axis direction “overturns” the sublat-
tice magnetization vectors M1 and M2 �Fig. 1�. Néel demon-
strated this threshold-field effect theoretically for classical
two-sublattice antiferromagnets with sufficiently weak
anisotropy in 1936.1 Fifteen years later, this prediction of a
jumplike reorientation transition driven by an external mag-
netic field was confirmed by experiments on the antiferro-
magnet CuCl2 ·2H2O.2 Since that time the spin-flop
transition3 has been observed and was investigated in great
detail for a large group of antiferromagnets �see, e.g.,
Refs. 4–8 and further examples and bibliography in Refs.
9–11�. Originally, the name spin-flop �SF� transition was re-
stricted to the field-driven reorientation transition in two-
sublattice collinear easy-axis antiferromagnets following
Néel’s prediction. However, in many other classes of antifer-
romagnets similar mechanisms cause different types of field-
driven reorientation effects so that one can speak about a
class of spin-flop phenomena. These include field-driven
transitions in antiferromagnets with a Dzyaloshinskii-Moriya
interaction,8,12 in multisublattice,13,14 and in noncentrosym-
metric antiferromagnets.11

The spin-flop transition comprises the main features of
magnetic reorientation and phase transitions and it gives rise
to remarkable physical anomalies �see Refs. 15–26 and re-
view paper Ref. 10�. The investigations on spin flops made
important contributions not only in magnetism, but also in
general fields of physics as thermodynamics,10,27 nonlinear
physics,28,29 and the theory of phase transitions and critical
phenomena.30

During the last decade spin flops have been studied
in bulk antiferromagnets including antiferromagnetic

semiconductors,31 organic magnets,32 in cuprates, such as the
base materials for high-temperature superconductors
La2CuO4 and Nd2CuO4,13 or in noncentrosymmetric
antiferromagnets.11,33 However, the focus of current interest
in spin flops has now shifted towards nanomagnetic systems.
Many recently synthesized nanostructured materials have
magnetic constituents with antiferromagnetic coupling. The
vast class of antiferromagnetic nanostructures includes dif-
ferent types of ferromagnetic/antiferromagnetic bilayers.34

Synthetic or artificial antiferromagnets are designed for high-
density storage technologies, spin valves, and magnetic ran-
dom access memory �MRAM� devices.35,36 In addition to
layered systems, nanoparticles of antiferromagnetic materials
are currently investigated.37 Size-dependent electronic and
magnetic effects are highly relevant in such
nanostructures.38–42 In particular, experiments indicate that in
ferromagnetic/antiferromagnetic bilayers the reorientation
within the antiferromagnetic structures strongly influences
the interface interactions and thus magnetic properties of the
ferromagnetic subsystem.43,44

In this paper we give a comprehensive phenomenological
theory of the magnetic states and their evolution in applied
fields for a two-sublattice collinear antiferromagnet. The
model is explained in Sec. II. We calculate all possible mag-
netic configurations in the system �Sec. III� and give a physi-
cally clear description of the main features of the magneti-
zation processes. In particular, we calculate and analyze the
tensor of the static magnetic susceptibility �Secs. III B and
IV�. This enables us to generalize and systematize results on
bulk spin flop and formulate directions for the investigation
of this transition in bulk antiferromagnets and in antiferro-
magnetic nanostructures. In Sec. IV the occurrence of multi-
domain states by demagnetization effects is analyzed. There
are characteristic peculiarities of the field and angular depen-
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dencies of the magnetic susceptibility, which can be em-
ployed in experiments on the spin-flop transition. In Sec. V
we demonstrate this approach based on experimental data for
orthorhombic �C2H5NH3�2CuCl4, which is a layered model
antiferromagnet.45

II. MODEL AND EQUATIONS

Within the phenomenological theory of magnetism the
magnetic �free� energy for a bulk collinear two-sublattice
antiferromagnet can be written in the following form:10,46

W =� w�m1,m2�dV

=� �Jm1 · m2 + ea�m1,m2� − H�e� · �m1 + m2�M0
−1

−
1

2
H�m� · �m1 + m2�M0

−1�M0
2dV . �1�

We assume here that the vectors of the sublattice magnetiza-
tions M j do not change their modulus and their orientations
are described by unity vectors m j =M j /M0, M0= �M j�.
Hence, we develop our theory for constant low temperatures
in the antiferromagnetically ordered state. The energy �1�
consists of the exchange interaction with exchange constant
J, the magnetocrystalline anisotropy energy ea, and Zeeman
energy contributions due to the external magnetic field H�e�

and the demagnetization field H�m�, the latter giving the di-
polar stray field energy. In this paper we are interested in
antiferromagnets with a preferable direction of a magnetic
ordering, i.e., easy-axis systems. In uniaxial antiferromagnets
the easy-axis coincides with the principal axis of symmetry,
and in orthorhombic crystals with one of the orthorhombic
axes. In this paper we chose coordinates such that the easy
axis is along the z axis. In the vicinity of the spin-flop field
the second-order uniaxial anisotropy is “canceled” by the
applied magnetic field. Hence, higher-order terms must be
taken into account.10,16–18 Therefore, both second-order and
fourth-order terms must be included in the theory for spin
flops. One can write the uniaxial anisotropy as10

ea
�u��m1z,m2z� = −

K

2
�m1z

2 + m2z
2 � − K�m1zm2z −

K20

4
�m1z

4 + m2z
4 �

−
K21

4
m1zm2z�m1z

2 + m2z
2 � −

K22

2
m1z

2 m2z
2 . �2�

Usually, the second-order terms with constants K ,K� play the
dominant role for the orientation of the magnetic vectors.
But, the fourth-order terms �K2k� become vital near the spin
flop, as will be shown later.

The model Eq. �1� with anisotropy �2� describes a vast
group of antiferromagnetic crystals with collinear order, in-
cluding such well-studied compounds as MnF2, FeF2, Cr2O3,
GdAlO3, and others.10 In this class of antiferromagnets, ef-
fects of magnetic couplings are absent that violate a collinear
and spatially homogeneous order in the ground state, such as
competing exchange or Dzyaloshinkii-Moriya interactions.11

The equations minimizing the energy functional �1� to-
gether with the Maxwell equations for the magnetostatic
problem determine the distributions of the magnetization
fields mi�r� and the stray field H�m��r� in the sample.47 These
integrodifferential equations are too complex and impracti-
cal, even for brute-force numerical calculations. However,
the problem can be reduced to a number of simplified auxil-
iary problems.10,47 Following these standard methods we
start from the analysis of spatially homogeneous states in
fixed internal magnetic fields H=H�e�+H�m�.

In the antiferromagnetic crystals displaying a spin flop,
the exchange coupling is much stronger than the anisotropy
energy, J�wa. In this case it is convenient to use the net
magnetization vector, m= �m1+m2� /2, and the staggered
magnetization vector �or vector of antiferromagnetic order�,
l= �m1−m2� /2, as internal variables of the system. Because
�mi � =1 these vectors satisfy the constraints m · l=0, m2+ l2

=1.46 Independent minimization of Eq. �1� with respect to m
yields �see Refs. 11 and 12 for details�

m = �H − n�H · n��/He, He = �2JM0� , �3�

where n= l / �l� is the unity vector along the staggered magne-
tization and He is the so-called exchange field. As follows
from Eq. �3�, in this field m=1, i.e., the magnetization vec-
tors align along the field direction, which is a spin-flip tran-
sition. After the substitution of Eq. �3� and omitting gradients
of m the energy density w in Eq. �1� can be written as a
function of the vector n alone.

w = −
1

2J
�H2 − �H · n�2� + ea�n�M0

2. �4�

For the collinear antiferromagnets, further simplifications
are possible by restricting the spatial orientation of the mag-
netization vectors. In most practically important cases, the
equilibrium configurations mi and, correspondingly, the vec-
tors m and l remain in or close to the plane spanned by the
easy axis and the magnetic field.16–18 In this paper, we chose
coordinates with x0z as this plane. The restriction on the
magnetic configurations always holds true when the vector H
remains in the plane spanned by the “easy” and the “inter-
mediate” axes of an orthorhombic antiferromagnet. In the
uniaxial antiferromagnets, in-plane components of the mag-
netic field usually suppress orientational effects of the weak
in-plane anisotropy wa

�b�. Then, the vectors mi of equilibrium
states remain in the x0z plane. This means that only the
uniaxial anisotropy �2� may essentially influence the mag-
netic states. For the magnetic energy in terms of m and l, a
systematic analysis �see Refs. 16–18� shows that only the
following terms from the uniaxial anisotropy �2� must be
retained:

ea
�u� = − �K + K��mz

2 − B1lz
2 − B2lz

4, �5�

where B1=K−K�, B2= �K20−K21+K22� /2. Then, within the
x0z plane the magnetic states are described by only one in-
ternal variable, the angle � between the easy axis and the
staggered magnetization. The expansion of the energy in
terms of � with respect to the small parameter �ea

�u�� /J yields
the leading contribution,
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w0
�1���� = �4J�−1��Hz

2 − Hx
2 − H0

2�cos 2� + 2HxHz sin 2�� , �6�

H0 = 	2JB1M0, �7�

and the contributions to next order,

w0
�2���� = −

H0
2

4J

 B2

2B1
+

K

2J
�cos2 2�

−
H0

2

4J

 B2

2B1
+

K − K�

2J
�cos 2� . �8�

In the transformation of the energy density �4� into the sim-
plified energy density w0���=w0

�1����+w0
�2���� with the con-

tributions from Eqs. �6� and �8�, we have omitted higher-
order terms and a constant combination of materials
constants. The coefficients in w0

�1� in Eq. �6� are proportional
to H2. They are generally much larger than those in w0

�2�. In

wide regions of the magnetic phase diagram w0
�1��w0

�2� and
the energy contribution w0

�2� can be neglected. However, as
the magnetic field approaches the critical point �Hx ,Hz�
= �0,H0� the leading energy term in Eq. �6� vanishes and the
term w0

�2� from Eq. �8� must be taken into account. In the
following sections we analyze the magnetic states for models
�6� and �8�.

III. MAGNETIC PHASE DIAGRAMS

A. Equilibrium magnetic configurations

Outside the spin-flop region the equilibrium states are de-
scribed by the energy w0

�1���� �Eq. �6��. In easy-axis antifer-
romagnets the staggered vector l interacts with the applied
magnetic field via the coupling to the magnetization vector
m� l according to Eq. �3�. Correspondingly the interaction
with the applied field favors the state l�H. Note that in
isotropic systems one has H0=0, and the energy density
w0

�1����=H2 cos�2�−2�� with � the angle between H and the
z axis has minima for �=�±� /2. In easy-axis antiferromag-
nets the uniaxial anisotropy orientates l along the easy axis.
The competition between these two magnetic couplings de-
termines the equilibrium states. These states are sketched in
the �Hx ,Hz� phase diagram as shown in Fig. 2. Minimization
of Eq. �6� leads to the well-known Néel formula1 for the
magnetic configurations,

tan 2� =
2HzHx

Hz
2 − Hx

2 − H0
2 . �9�

Because the energy is invariant under the transformation �
→�+�, Eq. �9� describes solutions with antiparallel direc-
tions of the staggered vector. The equilibrium states �1,2 cor-
respond to the minima of the leading energy Eq. �6�, which
are given by w0

�1���1�=w0
�1���2��min�w0

�1�����. These wells in
the potential energy Eq. �6� are separated by a barrier. The
height of this potential barrier is �w=max�w����
−min�w����. For the potential �6� we obtain

�w0
�1� =

1

2J
	�Hz

2 − Hx
2 − H0

2�2 + 4Hx
2Hz

2. �10�

In a magnetic field directed along the easy axis Hx=0 the
collinear antiferromagnetic phase for H�H0 and the spin-
flop phase in the field range H0�H�He correspond to the
two branches of solutions for Eq. �9� with �=0 and �=� /2,
respectively �Figs. 1�a� and 1�b��. In magnetic fields that de-
viate from the easy axis, angular or canted phases are real-
ized �Fig. 1�c��. The equilibrium states described by Eq. �9�
result from the competition between the uniaxial anisotropy,
which favors the orientation of the staggered magnetization l
along the easy axis and the magnetic field, which orientates l
perpendicular to its direction. At low fields the net magneti-
zation is very small �m�� �l�, so the energy contribution B1lz

2

plays the dominating role for the orientation of the magnetic
configuration. The characteristic field H0 given by a geo-
metrical mean of the intrasublattice exchange J and the
second-order anisotropy for the staggered vector B1 mea-
sures the scale of the energy contributions favoring the easy-
axis ground state. Thus, for small fields �H��H0 the aniso-
tropy prevails and stabilizes states with the staggered vector
l nearly parallel to the easy axis, ��1, with small magneti-
zation, m�1.

In an increasing field l rotates towards the direction per-
pendicular to H, and the net magnetization m gradually in-
creases. In the �Hx ,Hz� phase diagram �Fig. 2� the hyperbola
Hz

2−Hx
2=H0

2 separates the regions with the angles ��� larger

FIG. 2. �Color online� �Hx ,Hz� phase diagram for easy-axis an-
tiferromagnets. The dashed line He gives the continuous transition
into the saturated states. The shaded area is the region of the meta-
stable states in the vicinity of the critical field �Hx=0,Hz=H0�.
Details of the phases diagram in these regions are shown in Fig. 3.

FIG. 1. �Color online� Basic spin configurations in collinear
uniaxial antiferromagnets. At zero field the magnetization vectors
mi are antiparallel �a�. The magnetic fields along the easy direction
H�H0 stabilizes the spin-flop phase �b�. In magnetic fields deviat-
ing from the easy direction canted states are realized �c�. In suffi-
ciently strong magnetic fields H�He, the spin-flop and canted
states transform into the saturated flip phase �d�. These solutions are
degenerate with respect to the sign of the staggered vector l, which
is represented by two-headed arrows in the bottom panel.
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and smaller � /4. At H=He the antiferromagnet transforms
into the saturated state with m=1 along the applied field
m H.

The Néel equation �Eq. �9�� has a singularity at �Hx ,Hz�
= �0,H0�. At this point �0,H0� in the phase diagram the main
competing forces completely compensate each other: the
leading energy contribution �6� equals zero, and the next-
order energy contribution w0

�2� in Eq. �8� plays a decisive
role. In this region, the full energy of the model w�0���� can
be written as

w0��� = −
	

4J
H0

2 cos2 2� +
1

4J
��Hz

2 − Hx
2 − HSF

2 �cos 2�

+ 2HxHz sin 2�� , �11�

with

	 =
B2

2B1
+

K

2J
, �12�

HSF = H0 + �H0, �13�

�H0 = 	2JB1M0
K + K�

4J
+

B2

2B1
� . �14�

Equation �11� represents a consistent expression for the phe-
nomenological energy near the SF field �0,H0�. It includes
those higher-order interaction terms that are mandatory ow-
ing to the compensation of leading energy contributions �see
Eq. �6��. These additional terms consist of intersublattice and
intrasublattice uniaxial second-order anisotropy terms with
parameters K, K� and the fourth-order anistropy B2 of the
staggered vector. Comparing energy densities w0

�1� from Eq.
�6� with Eq. �11� we find that these magnetic coupling terms
�i� shift the value of the SF field H0→HSF=H0+�H0, where
�H0�H0, and �ii� create an additional interaction term pro-
portional to cos2 2�. This energy contribution stabilizes the
magnetic states at the SF field �0,HSF� because it provides a
potential barrier �w0�HSF�= �	�H0

2 / �2J�.
Due to the relations �K� , �K�� , �K2k  �J, �B2�� �B1� the re-

gion, where w0
�1� and w0

�2� have the same order, is restricted to
the close vicinity of the point �Hx=0,Hz=H0�: �Hz−H0�
�H0 , �Hx��H0. In this region the energy density w0���
=w0

�1����+w0
�2���� can be reduced to the potential expression


��� =
2Jw0

H0
= −

sgn�	�
2

Hc cos2 2� + �Hz − HSF�cos 2�

+ Hx sin 2� . �15�

Here, the characteristic field

Hc = �	�H0 = � B2

2B1
+

K

2J
�	2JB1M0 � H0 �16�

sets the scale of the field region around the critical field
�0,H0�, where the interactions described by the energy den-
sity �15� produce noticeable effects. The energy density 
���
�Eq. �15�� functionally coincides with that of a uniaxial fer-
romagnet,


 f��� =
sgn���

2
Ha cos2 � − Hz cos � − Hx sin � , �17�

where � is the anisotropy constant, Ha= ���M0 is the aniso-
tropy field, and � is the angle between the magnetization M
and the 0z axis.47 In the ferromagnetic model �17� Ha
= ���M0 corresponds to the characteristic field Hc in Eq. �15�,
the components of the magnetic field �Hx ,Hz� correspond to
(−Hx ,−�Hz−HSF�), and the angle � to the angle 2�. Thus, the
behavior of the uniaxial antiferromagnet is reduced to the
well-known model and the corresponding mathematical re-
sults for the magnetic states of uniaxial ferromagnets.47,49 In
model �15� the parameter Hc �16� plays the role of an effec-
tive anisotropy and includes two different energy contribu-
tions connected with second-order intralattice anisotropy K
and fourth-order anisotropy of the staggered vector B2. Ac-
cording to the phenomenological theory the ratios B2 /B1 and
K /J are expected to be of the same order. However in many
compounds the former is considerably larger.

For the model �15� the equation for the equilibrium state
d
 /d�=0 is

sgn�	�Hc sin 2� cos 2� − �Hz − HSF�sin 2� + Hx cos 2� = 0,

�18�

and the existence region for metastable states is bounded by
the astroid

Hx
2/3 + �Hz − HSF�2/3 = Hc

2/3. �19�

The polar angle for the cusps on the sides of the astroid

�c = arctan��Hc�/H0� = arctan�	� � 	 , �20�

is the so-called critical angle of the spin flop. This is the
maximal angle for the existence of the metastable states in
obliquely applied magnetic fields. The notion of this “critical
angle” was introduced in Ref. 15, where the astroids of type
�19� have been calculated for the model with second-order
anisotropy. The character of the magnetic states within the
astroid �19� depends on the sign of the parameter 	 �11�:

�i� For 	�0 in magnetic field Hz=HSF, Hx=0, the first-
order transition occurs between the antiferromagnetic �AF�
and spin-flop �SF� phase. This is the proper jumplike spin-
flop transition. Note that the characteristic field H0 in the
Néel equation �9� differs from the spin-flop field HSF, Eq.
�14�. At finite transversal components of the magnetic field
Hx the first-order transition happens between distorted AF
and SF, i.e., canted phases at the line �Hz=H0 , �Hx�	�
�Fig. 3�a��. The solutions for these competing phases are �cf.
Refs. 6–18�

�1 = −
1

2
arcsin�Hx/Hc�, �2 = − �/2 − �1. �21�

For increasing Hx�Hc the difference between the competing
canted phases decreases. This difference disappears at end
points of the first-order transition lines. These end points
are located at the cusps of the astroid �19�, �Hc ,HSF�,
�−Hc ,HSF�. The configuration of the magnetic states in these
points is for both phases �1,2= �� /4 �Fig. 3�a��.
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�ii� For 	�0, the canted phases exist as stable states even
in magnetic fields along the easy axis within the astroid �19�.
Minimization of Eq. �11� for this case yields the deviation
angle of the solutions from the easy axis

�b = � − arccos��Hz − H0�/�Hc�� . �22�

These solutions describe a continuous rotation of the stag-
gered vector l from the AF phase at the low cusp Hz=H0
− �Hc�, to the SF phase at the high cusp Hz=H0+ �Hc� �Fig.
3�b��. The plane�s� of this rotation are determined by in-
plane magnetic anisotropy. Depending on the crystal symme-
try there are several such planes �half planes� spanned by the
easy-axis and easy-magnetization directions in the basal
plane. This degeneracy of the magnetic states is lifted by a
deviation of the applied field from the easy axis. In such a
field, the canted state with the largest projection of m onto
the field direction corresponds to the stable states, while
other states preserve metastability for small deviations of the
field and become unstable for larger deviations. This means
that the vertical axis of the astroid �19� given by H0− �Hc�
�Hz�H0+ �Hc� is a first-order transition line between sev-
eral canted phases. In particular, in orthorhombic antiferro-
magnets there is only one plane of rotation �spanned by the
easy and intermediate axis� and the phase transition occurs

between two canted phases with opposite rotation sense. The
results of this section generalize and systematize the solu-
tions obtained in Refs. 15–18, 46, 48, and 50 �see also Ref.
10�. In the following sections we analyze field dependencies
of the magnetization and the magnetic susceptibility.

B. Magnetization and magnetic susceptibility

For the field dependencies of the net magnetization M
=M0�m1+m2�=2M0m, one derives from Eq. �3�,

Mx =
1

2J
�Hx�1 + cos 2�� − Hz sin 2�� ,

Mz =
1

2J
�Hz�1 − cos 2�� − Hx sin 2�� , �23�

where � is the solution of Eqs. �9� and �18� minimizing the
energy. For the calculation of the magnetization vector and
susceptibility tensor in the vicinity of the SF field, it is con-
venient to rewrite the components of the total magnetization
�23� in the following form:

Mx = MSF�− sin 2� + �1���� ,

Mz = MSF��1 − cos 2�� + �2���� , �24�

where

�1��� =
�	�
Hc

�Hz sin 2� + Hx�1 + cos 2��� ,

�2��� =
�	�
Hc

�Hz�1 − cos 2�� − Hx sin 2�� . �25�

The magnetization

MSF = M0	B1

2J
= M0
H0

He
� �26�

characterizes the typical values of the net magnetization in
the spin-flop region. By virtue of the relation He�H0 the
magnetization MSF amounts only to a small fraction of the
saturation value M0.

In the SF region, given by Hx ,Hz�Hc �see Eq. �15��, the
functions �1 and �2 are very small, �i�1, i=1,2, and can
be omitted. By substituting the solutions �21� into Eq. �23�
we obtain the magnetization on the transition line for 	�0,

Mx
�1� = Mx

�2� =
MSF

2

Hx

Hc
� ,

Mz
�1,2� =

MSF

2
�1 �	1 − 
Hx

Hc
�2� . �27�

The transverse components Mx are equal in both phases. The
longitudinal components undergo a jump �Mz

=MSF	1− �Hx /Hc�2 at the SF �Fig. 4�. The parameter MSF

Eq. �26� is equal to the maximum value of the magnetization
jump at the SF transition.

FIG. 3. �Color online� Details of the phase diagram Fig. 2 in the
vicinity of the spin-flop field depend on the sign of 	 as defined in
Eq. �11�: �a� 	�0, �b� 	�0. Thin lines confine the astroid regions
with metastable states. Thick line segments give the first-order tran-
sition lines. The arrows show spin configurations in the competing
phases along the transition. Hollow points are the end points of the
first-order transitions.
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For 	�0 the magnetization in the competing phases have
antiparallel components perpendicular to the easy axis, while
the parallel components are equal to

Mx
�1,2� = �

MSF

2
	1 − 
Hz − HSF

Hc
�2

,

Mz
�1� = Mz

�2� =
MSF

2
�1 + 
Hz − HSF

Hc
�� . �28�

In this case the transverse components Mx undergo a jump
given by �Mx=MSF	1− �Hz−HSF�2 /Hc

2 at the first-order
transition.

The landscapes of the magnetization “surfaces”
Mx�Hx ,Hz�, Mx�Hx ,Hz� near the first-order transition and in
the adjacent regions of the phase space are shown in Fig. 4.
The shape of these surfaces is reflected by peculiarities of the
magnetic susceptibility. The components of the tensor of the
internal static magnetic susceptibility, �ij

�i�=�Mi /�Hj, are de-
rived from the equations �cf. Ref. 51�

�xx
�i� =

1

4J
�1 + cos 2� + 2H2����cos2�2� − ��� ,

�xz
�i� =

1

4J
�sin 2� + H2����sin�2� − ��cos�2� − ��� ,

�zz
�i� =

1

4J
�1 − cos 2� + 2H2����sin2�2� − ��� , �29�

where �−1���=d2
�cos 2�� /d�cos 2��2, 
�cos 2�� is de-
rived from Eq. �15�. These relations, together with Eq. �18�
yield field dependencies of the magnetization components
and the susceptibility tensor in the spin-flop region. Near the
SF field the expansion of Eq. �29� with respect to the small
parameter 	�1 allows a considerable simplification of the
expressions for �ij,

�xx = −
1

4J�	�
sin 2� cos2 2�

�sgn�	�sin3 2� + Hx/Hc�

= −
1

4J�	�
cos3 2�

�sgn�	�cos3 2� − Hz/Hc�
, �30�

�xz =
1

4J�	�
sin2 2� cos 2�

�sgn�	�sin3 2� + Hx/Hc�

= −
1

4J�	�
sin 2� cos2 2�

�sgn�	�cos3 2� − Hz/Hc�
, �31�

�zz = −
1

4J�	�
sin3 2�

�sgn�	�sin3 2� + Hx/Hc�

=
1

4J�	�
sin2 2� cos 2�

�sgn�	�cos3 2� − Hz/Hc�
. �32�

For antiferromagnets with 	�0 the expressions from Eqs.
�30�–�32� for �̂ij in dependence on Hx are convenient for
numerical calculations and those depending on Hz in the case

	�0. As the field approaches the stability limits, given by
the lines 
����2
 /��2→0, the functions �ij �1/
�� di-
verge. For applications to real antiferromagnets it is impor-
tant to distinguish the branches of the functions �ij�Hx ,Hz�
corresponding to the stable states. Typical field dependencies
of the components of �̂ij for the stable phases are plotted in
Figs. 5–7. The functions �xx�Hz� have qualitatively different

FIG. 4. �Color online� Field dependencies of the magnetization
components near the SF field for 	�0: transverse Mx�Hx ,Hz� �a�,
longitudinal Mz�Hx ,Hz� �b�, and their projections onto the
�Hz ,Mx�z�� planes ��c� and �d��. Only the magnetization curves cor-
responding to the stable states are plotted.

BOGDANOV, ZHURAVLEV, AND RÖßLER PHYSICAL REVIEW B 75, 094425 �2007�

094425-6



field dependencies within and outside the region near the
first-order transitions. In the former case �Hx��Hc, the
curves �xx�Hz� have an arrowlike shape with a maximum at
the transition field Hz=HSF. In the latter case �Hx��Hc, the
curves �xx�Hz� have a minimum in fields along a line prolon-
gating the transition line and two symmetric maxima

�xx
�max� =

1

4J	

1 −

1

3 cos2 �
� �33�

for fields lower and higher than the SF field HSF. The loca-
tion of these maxima in �Hx ,Hz� for Hx�Hc is determined
parametrically by a set of equations

Hx
�max 1� =

2Hc cos3 �

3 cos2 � − 1
,

Hz
�max 1� = ±

Hc sin3 �

3 cos2 � − 1
, �34�

with �=−� /2−2�. For �xz �Fig. 6� stationary points

��xz
�max�� =

1

8J	

3 cos2 � − 2

3�sin ��cos �
�35�

are situated on the lines

Hx
�max 2� =

Hc cos3 �

3 cos2 � − 2
,

Hz
�max 2� = ±

2Hc sin3 �

3 cos2 � − 2
. �36�

Similarly, functions ��ij /�Hk�H� also show qualitatively dif-
ferent dependencies in different parts of the phase diagram
and include extremal points. The field values for all these
anomalies are determined by the material constants of the
antiferromagnets. This connection between anomalous field
dependence of the susceptibility tensor in the SF region and
materials parameters can provide a basis for experimental
approaches to investigate the magnetic properties and mate-
rials parameters in antiferromagnets. Values of magnetic in-
teractions, in particular, higher-order contributions to the
magnetic anisotropy, can be determined by measurements of
the susceptibility tensor in the SF region and by fits of the �ij
data to the theoretical expressions shown above. This will be
demonstrated in Sec. V.

Here, we compare characteristic values of the magnetic
susceptibility for antiferromagnets �AFM� in the major part
of the magnetic field phase diagram and in the SF region. In
the �Hx ,Hz� phase diagram �Fig. 2� saturation is achieved at
the exchange field �H�=He. Thus, the average susceptibility
is ���AFM=M0 /He=1/ �2J�. This is exactly the value of the
susceptibility in the SF phase. The metastable region in the
phase diagram near the SF field has a width �H=2Hc
=2H0�c, Eq. �19�, while the magnetization changes by �M
=M0H0 /He, Eqs. �27� and �28�. Thus, the average suscepti-
bility in this region can be estimated to ���SF=M0 / �2�	�He�
=1/ �4J	��1/ �4J�c�. This average equals the expressions
from Eqs. �30�–�32� up to some numerical factor. The mag-
netic susceptibility near the SF field is strongly enhanced
compared to the average susceptibility in the major part of

FIG. 6. �Color online� Field dependencies of �xz�Hz�. Inset �A�
shows �xz�Hx� at the transition line Hz=HSF. In inset �B�, the loca-
tion of the extremal values from Eq. �35� are plotted by a solid line
and their amplitudes from Eq. �36� by a dashed line.

FIG. 7. �Color online� Field dependencies of �zz�Hz� for various
values Hx. The arrowlike shape of the functions �xx�Hz� within the
transition region ��Hx � �Hc� changes into a bell-like shape outside
this region. In both cases the functions �zz�Hz� have a maximum at
Hz=HSF. These maximum values are plotted as a function of Hx in
the inset.

FIG. 5. �Color online� Field dependencies of �xx�Hz� for various
values of Hx. This and Figs. 6 and 7 display susceptibility compo-
nents for antiferromagnets with 	�0. The susceptibility units are
1/ �4J	�. Only the branches corresponding to the stable states are
plotted.
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the phase diagram, ���SF= ���AFM�H0 / �2Hc��. This enhance-
ment is given by the ratio �H0 / �2Hc��=1/ �2�c�, which usu-
ally amounts to a factor of several hundreds. Note that the
absolute change of the magnetization �M =M0H0 /He�M0
is tiny. However, due to the extremely narrow width of the
metastable region near the SF field, the magnetic susceptibil-
ity becomes very strong in this region.

As was mentioned above, similar functional expressions
describe the field dependence of the magnetization M�f� for
the model of a uniaxial ferromagnet �17� and for the antifer-
romagnet in the SF regions following the basic approach Eq.
�24� with �i=0. In fact, one can derive

M�H/Hc� = 
 H0

2He
�M�f��H/Ha� + M0
 H0

2He
�a . �37�

The last term in Eq. �37� signifies a shift in direction of the
easy axis a. A corresponding relation between the compo-
nents of the magnetic susceptibility near the SF transition
and those of the ferromagnetic susceptibility �ij

�f� is given by

�ij�H/Hc� = 
 Ha

2He�	���ij
�f��H/Ha� . �38�

These relations demonstrate the physical similarity of the
field dependencies for the magnetic properties in uniaxial
ferromagnets and in easy-axis antiferromagnets near the SF
field. This equivalence is established by introducing reduced
units and a shift for the magnetization in Eq. �37�, and by
reduced units and a scale factor for the susceptibility in Eq.
�38�. It is a consequence of the formal similarity in the phe-
nomenological models Eqs. �17� and �24� for both systems.
The relations Eqs. �37� and �38� are useful for comparative
studies on reorientation transitions in uniaxial ferromagnets
and antiferromagnets near the spin flop.

C. Two-scale character of easy-axis antiferromagnets

The magnetic states analyzed in the previous two sections
display the pronounced two-scale character of easy-axis an-
tiferromagnets. The magnetic phase diagrams in Fig. 3 com-
prise the main features of the solutions in the spin-flop re-
gion. On the large scale of the �Hx ,Hz� phase diagram two
materials parameters rule the behavior: the exchange or satu-
ration field He and the SF field H0 defined in Eqs. �3� and �7�,
respectively �Fig. 2�. The former characterizes the strength of
the antiferromagnetic exchange interaction, and the latter
comprises the interactions favoring easy-axis states. The
equilibrium orientations of the staggered magnetization, de-
rived from the Néel Eq. �9�, result from the competition be-
tween these interactions and the applied field. Thus, the field
H0 sets the characteristic scale in the major part of the mag-
netic phase diagram. Note, this is the only material parameter
in the Néel equation �9�.

In the vicinity of the SF field, where two of the main
energy contributions cancel each other, much weaker �rela-
tivistic� interactions enter the scene set by Eq. �11�. The char-
acteristic scale in this region is given by the field Hc, as
introduced in Eq. �16�. Hence, �Hc��H0 defines a “fine”
scale of the system. This scale gives the value of the poten-

tial barrier �w0�HSF�=HcM0 at the spin-flop field and it fixes
the size of the metastable regions around the field H0, i.e.,
the astroids. The field �Hc� includes two physically different
contributions. One of them is the ratio between the sublattice
second-order anisotropy K and the antiferromagnetic cou-
pling J. The other is the ratio between fourth- and second-
order anisotropies B2 and B1 of the staggered vector �see Eq.
�5��. Generally, the two terms have the same order of mag-
nitude.

The strengths of the magnetic couplings in usual antifer-
romagnetic materials obey a well-defined hierarchy with
very strong exchange and weaker uniaxial anisotropy. This
hierarchy is given by the relations J�K ,K� ,B1�B2. Hence,
the field H0=He	B1 / �2J� is much smaller than the exchange
field He, and Hc= �K /J+B2 /B1�H0 /2 is much smaller than
H0. Correspondingly, the jump of the magnetization at the SF
transition is small �m�H0 /He�1 �see Eqs. �27� and �28��.
The potential barrier separating the stable states at the SF
field �w�HSF�=	B1M0

2 is again much smaller than the barrier
in the ground state �w�0�=B1M0

2, and the region of the meta-
stable states is restricted to a close vicinity of the SF field
�H�Hc. This causes the unusually high sensitivity of the
magnetic states near the SF field with respect to small
changes in strength and direction of applied fields. For ex-
ample, in an antiferromagnet with 	�0 the rotation of the
magnetic field H=HSF from �=−�c to �=�c causes a
change of the staggered magnetization from �=� /4 to
�=−� /4. This lability of the magnetic states is the underly-
ing reason for the appreciable magnetic effects in the SF
region.

IV. DEMAGNETIZATION EFFECTS
AND MULTIDOMAIN STATES

In the previous section the equilibrium magnetic configu-
rations have been derived as functions of the internal mag-
netic field H, which differs from the applied external field
H�e� due to the demagnetization field H�m� of the sample.47 In
a homogeneously magnetized ellipsoidal sample �including
the limiting cases, i.e., plates and long cylinders� the equa-
tion

H�e� = H + 4�N̂M�H� �39�

establishes the relation between the external and internal
magnetic fields. This relation allows one to express the solu-
tions for magnetic states as functions of the external field by

using the demagnetization tensor N̂ of the sample. However,
the relation between internal and external fields breaks down
at field-induced phase transitions.10,47 In the vicinity of such
transitions the homogeneous states are unstable with respect
to the transformation into multidomain structures consisting
of domains formed from the competing phases.10,47 Within
the thermodynamic approximation or generalized phase
theory, two-phase multidomain states are described by the
equation

H�e� = Htr + 4�N̂�M� , �40�

where Htr is the field value for the first-order transition.10,47

Here, �M�=�1M�1�+�2M�2� is the total average magnetiza-
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tion, and the variable parameters �i are the volume fractions
of the coexisting phases with magnetization M�i� �i=1,2,
�1+�2=1�. For the SF transition the phase theory approxima-
tion has been found to be valid practically in all regions of
the phase diagram, where multidomain states exist.10,16–18

For model �15� with 	�0 the phase theory equations �40�
can be written in the following form:

Hx
�e� = Hx�1 + �Nxx� + �Nxz��1 − �2�	Hc

2 − Hx
2 + �NxzHc,

Hz
�e� = HSF + Hx�Nxz + �Nzz��1 − �2�	Hc

2 − Hx
2 + �NzzHc,

�41�

�=2�MSF/Hc=� / �	J�, and Hx varies along the first-order
transition line ��Hx�Hc, Hz=HSF�. The parameter � mea-
sures the ratio of the stray field energy and the potential
barrier between the coexisting phases at the SF transition.
Equations �41� allow us to derive the parameters of the mul-
tidomain states, Hx, �i, as functions of the external field. In
particular, for the relevant case with Nxz=0, Eqs. �41� with
�1�2�=1 yield the boundary of the multidomain states as an
ellipse

1 = � Hx
�e�

Hc + 2�NxxMSF
�2

+ �Hz
�e� − HSF − 2�NzzMSF

2�NzzMSF
�2

,

�42�

with semiaxes a=Hc+2�NxxMSF, b=2�NzzMSF �Fig. 8�a��.
For 	�0 similar equations yield the boundary ellipse

1 = � Hx
�e�

2�NxxMSF
�2

+ �Hz
�e� − HSF − 2�NzzMSF

Hc + 2�NzzMSF
�2

, �43�

with semiaxes a=2�NxxMSF, b=Hc+2�NzzMSF �Fig. 8�b��.
The largest tilt angles between the applied field and the

easy axis, at which the multidomain states still exist, can be
readily derived from Eqs. �42� and �43�,

�cI
�e� =

Hc + 2�NxxMSF

HSF
= �c +

�Nxx

J
for 	 � 0,

�cII
�e� =

2�NxxMSF

HSF
=

�Nxx

J
for 	 � 0. �44�

The phase diagrams in Fig. 8 demonstrate the strong formal
resemblance for the two qualitatively different cases. In both
cases thermodynamically stable multidomain states arise
near the SF transition in a close vicinity to the SF field.
However, due to the different character of the phase transi-
tions for 	�0 and 	�0, Eqs. �21� and �22�, the evolution of
the magnetic states within the multidomain regions �42� and
�43� is different. For 	�0 the competing phases �21� coexist
along the horizontal line segment �Hz=HSF, �Hx�Hc�. In the
�Hx

�e�, Hx
�e�� phase plane a set of the vertical straight lines

describes regions with these fixed transition fields �Fig. 8�a��.
Due to the smallness of �cI

�e� �Eq. �44�� external magnetic
fields with fixed directions ���e���cI

�e� practically intersect
the region of the multidomain states �42� along the lines with
a fixed transition field. A variation of fields with such a fixed
orientation causes in the system magnetization processes

through the displacement of domain walls between the coex-
isting states. On the other hand, rotating magnetic fields with
fixed amplitude that cross the region �42� mainly cause a
continuous deformation of the magnetic configurations
within the domains. For 	�0 rotating fields cross the mul-
tidomain region �43� almost perfectly along lines corre-
sponding to fixed internal fields. Thus, a rotating field in-
duces a redistribution of the domains. On the other hand,
magnetic fields with fixed directions produce mainly reorien-
tation effects within the domains.

Correspondingly, the limiting angles �44� have a different
physical meaning in both cases. For systems with 	�0 the
critical points at ��e�= ±�cI

�e�, H�e�=HSF+2�NzzMSF corre-
spond to internal states where the difference between the
magnetic configurations in the coexisting phases disappears.
For antiferromagnets with 	�0 the transition into the homo-
geneous state at the critical points ��e�= ±�cII

�e�, H�e�=HSF
+2�NzzMSF occurs by a complete replacement of one of the
coexisting phases by the other through domain processes.

FIG. 8. �Color online� Magnetic phase diagrams in components
of the external field �Hx

�e� ,Hz
�e�� for 	�0 �a� and 	�0 �b� include

regions of the multidomain states indicated by shaded areas �see
Eqs. �42� and �43��.
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The quantitative description of the magnetization in the
multidomain states is provided by Eq. �40�. This equation
together with those for M�H� �Eqs. �27� and �28�� yields the
functions �M��H�e��. It follows from Eq. �40� that the mag-
netization is a linear function of the applied field only when
H�e� varies along lines corresponding to fixed internal transi-
tion fields. In the general case the variation of the transition
field H�t��H�e�� causes complex dependencies of the magne-
tization on the external field in the multidomain state. Dif-
ferentiation of �M� in Eq. �40� yields the equation for the
components of the magnetic susceptibility �cf. Ref. 10�

4�Nij� jk = �ik −
�Hi

�t�

�Hk
�e� . �45�

The first term on the right side of Eq. �45� describes the
process of a redistribution of volume fractions for the differ-
ent phases through displacement of domain walls, while the
second term is associated with the variation of the magnetic
states within the domains by rotations of the magnetization.

In homogeneous phases Eq. �39� allows one to relate the
external susceptibility �̂�e� and the internal susceptibility �̂,

�̂�e� = ��̂−1 + 4�N̂�−1. �46�

Equations �40�, �45�, and �46� transform the components of
the net magnetization �24� and magnetic susceptibility
�30�–�32� derived in the components of the internal field into
those in components of the external field. The tensor of ex-
ternal susceptibility �46� includes the internal susceptibility �̂

and the stray field contribution �̂m= �4�N̂�−1 known as shape
susceptibility.10 In the multidomain state with fields varying
along the lines of the fixed transition field the external sus-
ceptibility as given by Eq. �45� has only contributions from
the shape susceptibility, 4�Nij� jk=�ik. When the evolution of
a multidomain state involves a variation of the transition
field a specific susceptibility contribution arises that is asso-
ciated with the rotation of the magnetic states within in the
domains. In particular, for the multidomain states in Fig. 8
along the line Hx

�e�=0,

�zz
�e� =

1

4�Nzz
�	 � 0� ,

�zz
�e� =

1

4�	�J + 4�Nzz
�	 � 0� . �47�

For 	�0 the magnetic field varies along the line of the fixed
transition field, and the susceptibility includes only shape
contribution. For 	�0 the magnetic field varies along the
line with fixed volume fractions, �1=�2=1/2, and the evolu-
tion of the system consists of a continuous reorientation in
the domains �22�. For this process the net magnetization is
derived from Eq. �28�, and the internal susceptibility is �zz

=1/ �4�	�J�. The external susceptibility �zz
�e� �47� includes

both internal and shape contributions. Generally during the
SF transition the values of the internal susceptibility 1 / ��	�J�
�Eqs. �30�–�32�� arising due to variation of the homogeneous
magnetic states and the shape susceptibility 1 /N originating
from the reconstruction of the multidomain states are of the

same order and larger than the values for the external sus-
ceptibility outside of the SF region. For example, in the ex-
ternal field along the easy axis ��e� equals zero in the AF
phase, and in the SF phase �zz

�e�=1/ �2J+4�Nzz�.
Figure 9�a� shows the calculated external-field dependen-

cies of �xx�H�e�� for a number of fixed angles ��e� and with
materials parameters close to those for �C2H5NH3�2CuCl4.
According to previous investigations in this antiferromagnet,
	�0.24,51 The functions �xx�H�e�� for small angles ��e�

��cI
�e�, are given by lines 1–3 in Fig. 9�a�. They cross field-

dependent regions corresponding to homogeneous phases
�black solid lines� and areas with constant susceptibilities
�dashed blue lines� indicating multidomain regions. For
��e���cI

�e� the functions �xx�H�e�� �lines 5 and 6� have char-
acteristic features as described in the previous section �Fig. 5
and Eqs. �33� and �34��. The intermediate line 4 shows am-
bivalent features. In the center it includes a jump into the
multidomain states as the lines for ��e���cI

�e�, but outside this

narrow central feature the function �xx�H�e�� behaves simi-
larly to those for ��e���cI

�e�. This interesting effect is ex-
plained by strong deviations of the total magnetization from
the easy axis in the vicinity of the SF field. The enhanced

FIG. 9. �Color online� Dependencies of �xx
�e� on the external field

calculated for �C2H5NH3�2CuCl4 for different fixed values of ��e�:
0.1° �1�, 1.50° �2�, 2.86° �3�, 2.92° �4�, 2.98° �5�, 3.50° �6�. Black
solid lines correspond to the homogeneous phases and dashed
�blue� lines to the multidomain states. Hollow points indicate the
boundaries between these regions. Variations of the internal mag-
netic field H�H�e�� for fixed directions of the external field ��e�

=const �b�. The �red� arrow in �b� indicates the location of the end
point of first-order transition. The curved “trajectories” H�H�e�� ex-
plain the reentrant character of the �xx

�e��H�e�� functions in �a�.
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values of the transverse magnetization Mx �Fig. 4�c�� create a
strong demagnetization screening near the SF field. Accord-
ingly, for the external field varying along lines ��e�=const,
internal field “trajectories” H�H�e�� deviate towards the Hz

axis near the SF field, as depicted in Fig. 9�b�. The trajectory
for the evolution of the internal field H starts from outside
the transition region, i.e., �Hx��Hc but enters this area in the
vicinity of the SF field for the external field applied under an
angle ��e�=2°.

Due to the mathematical identity of models �15� and �17�
the equilibrium parameters of such domains including their
sizes can be derived from similar results for ferromagnetic
domains. For spin-flop domains the characteristic length47 is
of the order l�0.1Ja0, where a0 is the interatomic distance.18

In �C2H5NH3�2CuCl4 the exchange constant J=48.0 and the
average interatomic distance in the x0z plane a0=0.74 nm
yield the characteristic length l�3.5 nm. The equilibrium
period of domains in the center of the multidomain region
can be estimated as d=1.22�L�l /L�1/2, where L is the sample
size along the easy axis.16–18 For the investigated
�C2H5NH3�2CuCl4 samples this equation yields domain sizes
of few micrometers. The characteristic lengths l is small as
compared to usual ferromagnetic materials, and the relation
d�L should hold even for thin antiferromagnetic layers.
This conclusion and the estimates on domain sizes are sup-
ported by the only known microscopic observation from the
literature that shows spin-flop domains with an average pe-
riod d=42 �m in a MnF2 disk of thickness 1.27 mm.21

V. MAGNETIC PHASE DIAGRAM OF
„C2H5NH3…2CuCl4

An experimental investigation of the differential magnetic
susceptibility was carried out for �C2H5NH3�2CuCl4.45 This
model antiferromagnet has orthorhombic lattice structure
with space group Pbca. It orders at a Néel temperature TN
=10.20 K.8 The magnetic structure consists of ferromagnetic
layers parallel to the x0z plane in the notation of this paper
with weak antiferromagnetic couplings. According to Ref. 8
the ferromagnetic intralayer interactions correspond to an ef-
fective field 500 kOe, while antiferromagnetic coupling be-
tween layers is JM0=837.5 Oe. A weak second-order aniso-
tropy in the x0z plane KM0=76 Oe stabilizes the collinear
ground state with the sublattice magnetizations Mi along the
z axis. At T=4.2 K the spin-flop field is HSF=305 Oe. Mag-
netic interactions in �C2H5NH3�2CuCl4 include a
Dzyaloshinsky-Moriya coupling described by an energy con-
tribution wD=D�M1xM2y −M2xM1y� with an effective field
DM0=119 Oe.8 Generally this interaction rotates the magne-
tization vectors Mi away from the basal plane x0z. However,
due to the strong orthorhombic anisotropy with a value of
1504 Oe, the vectors Mi are practically confined to the basal
plane. Deviations from this plane do not exceed 2°.24 Thus,
the planar model �11� can be applied to this antiferromagnet.

The differential magnetic susceptibility components were
measured with an inductive technique using three pairs of
modulating and pickup coils arranged along perpendicular
directions. The modulating fields had amplitudes between
0.3 and 1.0 Oe at frequencies of 9, 17–21, 86, and 133 Hz.

The three samples used for the measurements were cut from
a �C2H5NH3�2CuCl4 single crystal. The samples had the fol-
lowing geometrical parameters: �sample No. 1� a sphere with
diameter 3.1 mm �Nxx=Nzz=1/3�; �sample No. 2� an ellip-
soid with axes ax=5.00 mm, ay =1.75 mm, az=5.00 mm
�Nxx=0.185, Nzz=0.185�; �sample No. 3� an ellipsoid with
ax=3.43 mm, ay =2.45 mm, az=5.75 mm �Nxx=0.344, Nzz

=0.186�. All the measurements of components �ij
�e� have been

carried out at T=4.2 K. The recorded data for all investi-
gated samples are in close accordance with the theoretical
results expounded in previous sections. An example is shown
in Fig. 10, where �xx

�e� components are plotted for the spheri-
cal sample. The experimental data follow closely the theo-
retical results of Eq. �30� as sketched in Fig. 9. In particular,
the dependencies of �xx

�e��H�e�� for ��e�=3.5°, 4.0°, and 5°
display the reentrant behavior imposed by the rotation of the
internal field towards the Hz axis, as demonstrated in Fig. 9.
By fitting experimental data for the �ij

�e� components and their
field derivatives with the theoretical dependencies, values of
the material parameters can be deduced and the magnetic
phase diagram of this antiferromagnet has been constructed.
Figure 11 shows the locations of the extremal points for �xx

�e�

and d�xx
�e� /dH�e� and the region of the multidomain states in

the �H�e� ,��e�� phase diagram of the ellipsoidal samples.
The experimental �H�e� ,��e�� phase diagram for the

spherical sample is shown in Fig. 12. In particular, for the

FIG. 11. �Color online� Location of extremal points of �xx
�e� and

��xx
�e� /�H�e� in the phase plane �H�e� ,��e�� for an elliptical

�C2H5NH3�2CuCl4 sample �no. 3�. The shaded area indicates the
region of multidomain states.

FIG. 10. Experimental dependencies of �xx
�e� on the external field

H�e� for a number of fixed angles ��e� for a sphere of
�C2H5NH3�2CuCl4 �sample no. 1� at T=4.2 K.
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maximal angle �cI
�e� the following results have been obtained:

�spherical sample No. 1� 3.50° ±0.65°, �sample No. 2�
2.70° ±0.45°, �sample No. 3� 3.55° ±0.65°. These results
yield the values of the spin-flop field HSF=306 Oe, the criti-
cal angle �c=1.7°, and the characteristic fields H0=300 Oe
and Hc=9.1 Oe. The characteristic fields JM0=837.5 Oe,
KM0=76 Oe from Ref. 8 yield the ratio K /J=4.5�10−2.
Then, Eqs. �14� and �20� allow one to derive B2 /B1=−3.14
�10−2 and the characteristic field B2M0=−2.387 Oe. Hence,
the hierarchy of parameters, B2�B1, K�J is valid for this
material. The results demonstrate how the two-scale charac-
ter shows up in magnetic properties and that it allows one to
determine tiny anisotropy effects, K /J and B1 /J�0.091 and
B2 /J�2.8�10−3.

VI. CONCLUSIONS

Magnetic configurations for an extended class of two-
sublattice collinear easy-axis antiferromagnets have been ob-
tained as functions of the values and directions of the applied
magnetic field, and the corresponding magnetic phase dia-
grams have been constructed. The magnetic behavior of
these materials strongly depends on the strengths of the ap-
plied field. In the main part of the magnetic phase diagram
they are described by the well-known Néel model �6�. In the
vicinity of the SF field they are described by an effective

model for a reorientation transition that is formally equiva-
lent to the Stoner-Wohlfarth model of a uniaxial ferromagnet
�15�. This two-scale character of easy-axis antiferromagnets
has been ignored in most previous investigations. The analy-
sis of magnetic-field-driven reorientation effects and the con-
comitant multidomain states provides a consistent picture of
the magnetization processes near the SF transition. At the SF
transition the weak intrinsic higher-order couplings of the
antiferromagnetic material cause important and noticeable
effects and must be included in the analysis �Sec. III�. The
thermodynamic multidomain states arising in the spin-flop
region �Sec. IV� are of special interest. Their nucleation and
evolution cause anomalies including complex magnetization
processes, enhanced magnetic susceptibility �Eqs.
�45�–�47��, and reentrant effects �Fig. 9�. The phase theory
equations determine the domain evolution �41� and external
field ranges, where these domains can exist �Eqs. �42� and
�43��. The validity of the theoretical results has been demon-
strated by an application to the orthorhombic antiferromag-
net �C2H5NH3�2CuCl4. This compound is a convenient sys-
tem for detailed investigations of spin-flop phenomena due
to the unusually low value of the SF field and relatively large
critical angles.45

The results on bulk antiferromagnets may also be ex-
tended to confined antiferromagnetic systems by including
surface- or interface-induced interactions into the phenom-
enological models. In Ref. 52 it was shown that the interplay
between surface-induced and intrinsic magnetic interactions
yield a rich variety of specific magnetic states including spa-
tially inhomogeneous twisted states in the vicinity of the SF
field. The further development of the theory for such cases
will be important for an understanding of the magnetization
processes in ferromagnetic/antiferromagnetic bilayers,38,44,53

and in antiferromagnetic nanoparticles.37 The phenomeno-
logical model of the two-sublattice antiferromagnet �1� and
its variants can be adopted also to describe magnetic states in
synthetic antiferromagnets.40,41
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