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Appearance of the second coherent peak in the dynamical structure factor of an asymmetric spin-ladder is
suggested. The general arguments are confirmed by the first-order �with respect to the asymmetry� calculation
for a spin-ladder with singlet-rung ground state. Based on this result, an interpretation is proposed for the
inelastic neutron scattering data in the spin gap compound CuHpCl, for which some of the corresponding
interaction constants are estimated.
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I. INTRODUCTION

Inelastic neutron scattering is an effective method for
analysis of low-energy excitations in low-dimensional spin
systems.1 The dynamical structure factor �DSF� obtained
from this experiment produces an essential information about
the low-energy spectrum. Sharp peaks of the DSF line shape
correspond to coherent modes, while broad bands originate
from incoherent excitation continuums.

Theoretical study of a spin ladder DSF was developed in
the papers of Refs. 2 and 3. A strong antiferromagnetic rung
coupling corresponds to the DSF with a single coherent-
mode peak,2 while for a weak coupling the line shape has
only an incoherent background.3 The models studied in Refs.
2 and 3 are symmetric under exchange of the legs because
their couplings along both legs are equal to each other and
the same is true for the couplings along both diagonals. Such
requirement fails for an asymmetric spin-ladder.

The compound Cu2�C5H12N2�2Cl4 �CuHpCl� was first in-
terpreted as an asymmetric spin ladder4 �with nonequal cou-
plings along diagonals�. However, neutron scattering5,6 re-
vealed two coherent peaks in the DSF line shape for
CuHpCl. Since this type of behavior does not agree with the
results of Refs. 2 and 3 �obtained for the symmetric case�, it
was suggested in Ref. 6 that the magnetic structure of
CuHpCl is inconsistent with the spin-ladder model.

In this paper, we show the principal difference between
excitation spectra of symmetric and asymmetric spin-ladders
and we suggest argumentation confirming the existence of
the second coherent peak in DSF of an asymmetric spin-
ladder. As an example, we calculate the DSF for a weakly
asymmetric spin ladder with singlet-rung ground state and
produce an evidence for the second coherent peak.

II. HAMILTONIAN FOR AN ASYMMETRIC SPIN LADDER

The general Hamiltonian of an asymmetric spin-ladder
has the following form:

Ĥ = Ĥsymm + Ĥasymm, �1�

where Ĥsymm=�nHn,n+1
symm and Ĥasymm=�nHn,n+1

asymm. The local
Hamiltonian densities are given by the following expres-
sions:

Hn,n+1
symm = Hn,n+1

rung + Hn,n+1
leg + Hn,n+1

frust + Hn,n+1
cyc , �2�

where

Hn,n+1
rung = J�S1,n · S2,n,

Hn,n+1
leg = J�

symm�S1,n · S1,n+1 + S2,n · S2,n+1� ,

Hn,n+1
frust = Jfrust

symm�S1,n · S2,n+1 + S2,n · S1,n+1� ,

Hn,n+1
cyc = Jc��S1,n · S1,n+1��S2,n · S2,n+1� + �S1,n · S2,n�

��S1,n+1 · S2,n+1� − �S1,n · S2,n+1��S2,n · S1,n+1�� ,

�3�

and

Hn,n+1
asymm = J�

asymm�S1,n · S1,n+1 − S2,n · S2,n+1�

+ Jfrust
asymm�S1,n · S2,n+1 − S2,n · S1,n+1� . �4�

This structure is schematically represented in Fig. 1.

It is convenient to extract from the general Ĥsymm the

“singlet-rung” part Ĥs−r commuting with the following op-
erator:

Q̂ = �
n

Qn, �5�

where Qn= 1
2 �S1,n+S2,n�2. The commutativity condition,

FIG. 1. Schematic of the magnetic structure of an asymmetric
spin-ladder.
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�Ĥs-r,Q̂� = 0, �6�

or in equivalent form,

�Hn,n+1
s-r ,Qn + Qn+1� = 0, �7�

results to the following restriction on the interaction con-

stants for Ĥs−r:

Jfrust
s-r = J�

s-r −
1

2
Jc

s-r. �8�

According to Eq. �8�, the Hilbert space for Ĥs−r splits on the
infinite set of eigenspaces corresponding to different eigen-

values of Q̂,7,8

H = �
m=0

�

Hm, �Q̂�Hm = m . �9�

The one-dimensional subspace H0 is generated by the single
vector,

�0� = 	
n

�0�n, �10�

where �0�n is the nth rung singlet. The following restrictions,

J�
s-r � 2J�

s-r, J�
s-r �

5

2
Jc

s-r, J�
s-r + J�

s-r �
3

4
Jc

s-r, �11�

guarantee that the state �Eq. �10�� is the �singlet rung� ground

state for Ĥs−r. The operator Q̂ has a sense of the magnon

number8 associated with Ĥs−r.
We will use the decomposition,

Ĥsymm = Ĥs-r + �Ĥsymm, �12�

with the following additional restrictions on the interaction
constants of �Hsymm:

�J�
symm = �Jc

symm = 0, �J�
symm = − �Jfrust

symm. �13�

These restrictions guarantee the uniqueness of the decompo-
sition �Eq. �12��. Moreover, under Eqs. �13� and �4� the local

exchange relations between �Ĥsymm, Ĥasymm, and Q̂ have the
following forms:


�Hn,n+1
symm ,Qn + Qn+1� = 2�Hn,n+1

symm , �14�


Hn,n+1
asymm,Qn + Qn+1� = 3Hn,n+1

asymm, �15�

where 
.,.� means anticommutator.

As follows from Eq. �14�, the term �Ĥsymm does not mix
even and odd components in Eq. �9�. Therefore, the Hilbert
space H splits on two invariant subspaces of the operator

Ĥsymm,

H = Heven + Hodd, Heven = �
m=0

�

H2m, Hodd = �
m=0

�

H2m+1.

�16�

From Eq. �15� it follows that Ĥasymm mixes Heven and
Hodd; however, on the sector H0 its action is trivial. Really,

according to Eq. �15�, Hn,n+1
asymm�0�n�0�n+1 have to lie in the sec-

tor with Qn+Qn+1=3 that is impossible because the operator
Qn has only eigenvalues 0 and 1. So we have

Ĥasymm�0� = 0. �17�

More detailed analysis of the 16�16 matrix Hasymm �which
represents the action of Hn,n+1

asymm on the product of nth and n
+1 rungs� shows that it has only three �degenerative� eigen-
values: 0 and ±��J�

asymm�2+ �Jfrust
asymm�2. Therefore, for small

J�
asymm and Jfrust

asymm the state �0� remains as the ground state for

Ĥs−r+ Ĥasymm.
Now we may suggest the following interpretation for the

appearance of the second coherent mode in the DSF line
shape of an asymmetric spin-ladder. It is known7–9 that in the
strong rung-coupling regime, an excitation spectrum of an
symmetric spin-ladder has coherent modes of two types, the
one-magnon triplet state lying in Hodd and three-bound two-
magnon states �with total spin 0,1,2� lying in Heven. The
ground state also lies in Heven. In the Born approximation, a
scattering neutron creates a new state by flipping a single
elementary spin. It is a principal fact that the excited state
lies in Hodd. For this reason, in the symmetric case, only the
subspace Heven excites during the scattering process. How-
ever, even a little asymmetry results to excitations from
Heven and, in particular, the bound two-magnon mode with a
total spin of 1 which is respective for the appearance of the
second coherent peak in the DSF.

In the next sections, we shall confirm our arguments by

studying the simplest model for which �Ĥsymm=0 and the
ground state exactly has form �10�.

III. ONE AND TWO-MAGNON STATES FOR Ĥs−r

The eigenstates of Ĥs−r in the sectors with Q̂=1 and Q̂
=2 may be obtained exactly.7,8 From now we shall focus on
this special model omitting the upper indices s−r or symm in
the notation of interaction constants Jc, J�, and Jfrust. In other
words, we shall study the model �Eqs. �2� and �3�� with ad-
ditional restrictions �Eqs. �8� and �11�� on J�, J�, Jfrust, and
Jc.

According to the following formulas:

Hn,n+1
s−r �0�n�1�n+1

� = 
1

2
J� −

3

4
Jc��0�n�1�n+1

� +
Jc

2
�1�n

��0�n+1,

Hn,n+1
s−r �1�n

��0�n+1 = 
1

2
J� −

3

4
Jc��1�n

��0�n+1 +
Jc

2
�0�n�1�n+1

� ,

�18�

Hn,n+1
s−r �����1�n

��1�n+1
� = �J� − J� − Jc/4������1�n

��1�n+1
� ,

�19�
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where � ,� ,�=1,2 ,3 and �1�n
� is the triplet associated with

an nth rung,

�1�n
� = �S1,n

� − S2,n
� ��0�, �S1,n

� + S2,n
� ��1�n

� = i�����1�n
�,

�20�

one- and �spin 1� two-magnon states for Ĥs−r have the fol-
lowing forms:7,8

�k,magn�0
� =

1
�N

�
n

eikn
¯ �0�n−1�1�n

��0�n+1 ¯ ,

�k1,k2,scatt�0
� = Zscatt

−1 �k1,k2� �
m=−�

�

�
n=m+1

�

����

�ascatt�m,n;k1,k2� ¯ �1�m
�
¯ �1�n

�
¯ ,

�k,bound�0
� = Zbound

−1 �k� �
m=−�

�

�
n=m+1

�

����

�abound�m,n;k� ¯ �1�m
�
¯ �1�n

�
¯ , �21�

where

ascatt�m,n;k1,k2� = C12e
i�k1m+k2n� − C21e

i�k2m+k1n�,

abound�m,n;k� = eiu�m+n�+v�m−n�, u =
k

2
+ 
1 −

�1

��1��	

2
.

�22�

Here, Cab=cos��ka+kb� /2�−�1ei��ka−kb�/2�, �1=5/4−J� /Jc, v
�0, and

cos
k

2
= ��1�e−v. �23�

The normalization factors,

Zscatt�k1,k2� = 2N�cos2 k1 + k2

2
− 2�1 cos

k1 + k2

2
cos

k1 − k2

2
+ �1

2, Zbound�k� =�2

N cos2 k

2

�1
2 − cos2 k

2

, �24�

depend on N the number of rungs.
The corresponding dispersion laws are the following:

Emagn�k� = J� −
3

2
Jc + Jc cos k , �25�

Escatt�k1,k2� = 2J� − 3Jc + Jc�cos k1 + cos k2� , �26�

Ebound�k� = 2J� + ��1 − 3�Jc +
Jc

�1
cos2 k

2
. �27�

As follows from Eq. �25�, the one-magnon gap Egap
magn and

the one-magnon zone width �Emagn are given by the follow-
ing formulas:

Egap
magn = J� −

3

2
Jc − �Jc�, �Emagn = 2�Jc� . �28�

IV. FIRST-ORDER DSF FOR Ĥs−r+Ĥasymm

From Eqs. �4� and �20� it follows that

Hn,n+1
asymm�����1�n

��1�n+1
� = − i�J�

asymm − Jfrust
asymm��1�n

��0�n+1

+ i�J�
asymm + Jfrust

asymm��0�n�1�n+1
� ,

�29�

so,

0
��q,magn�Ĥasymm�k1,k2,scatt�0

�

=

2iJasymm�q�cos
q

2
sin

k1 − k2

2

k1+k2 q
��

�N
cos2 q

2
− 2�1 cos

q

2
cos

k1 − k2

2
+ �1

2� ,

0
��q,magn�Ĥasymm�k,bound�0

�

= �2iJasymm�q�
��1

2 − cos2 q

2

��1�

kq
��, �30�

where

Jasymm�q� = Jfrust
asymm cos

q

2
− iJ�

asymm sin
q

2
. �31�

Considering Ĥasymm as a small perturbation, we may ob-
tain the corresponding corrections for the one- and two-
magnon states. In the simplest case when the one-magnon
mode does not intersect the two-magnon sector, all the first-
order corrections to one- and two-magnon dispersions van-
ish. First-order one-magnon contributions to the S=1 two-
magnon states are the following:
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�k1,k2,scatt�1

=

2iJasymm�k1 + k2�cos
k1 + k2

2
sin

k1 − k2

2

�N
cos2 k1 + k2

2
− 2�1 cos

k1 + k2

2
cos

k1 − k2

2
+ �1

2�
�

1

�Escatt�k1,k2� − Emagn�k1 + k2��
�k1 + k2,magn�0,

�k,bound�1 = �2i

��1
2 − cos2 k

2
Jasymm�k�

�1�Ebound�k� − Emagn�k��
�k,magn�0.

�32�

We use the following expression for the zero-temperature
dynamical structure factor,1,5,6

S���q,�� = lim
N→�

1

N�
�

�0�Ŝ��q�������Ŝ��− q��0�
�� − E�� ,

�33�

where Ŝ�q� is the Fourier transformation of spin associated
with the two-dimensional vector q= �q ,qrung�. Here, q and
qrung are the corresponding leg and rung components. Since
the latter has only two possible values, 0 and 	, we may
study them separately,

Ŝ�q,0� = �
n

e−iqn�S1,n + S2,n� ,

Ŝ�q,	� = �
n

e−iqn�S1,n − S2,n� . �34�

According to the following two formulas,

�Q̂,Ŝ�q,0�� = 0, 
Q̂,Ŝ�q,	�� = Ŝ�q,	� , �35�

we may reduce the matrix elements in Eq. �33�,

���Ŝ�q,0��0� = 0, ���Ŝ�q,	��0� = �

�H1

���
��
�Ŝ�q,	��0� ,

�36�

so S���q ,0 ,��=0. For calculation of S���q ,	 ,��, let us note
that from Eqs. �20� and �21� it follows that

�0�Ŝ��q,	��k,magn�0
� = �N
��
kq, �37�

so, the DSF has a purely diagonal form, S���q ,	 ,��
=
��S�q ,	 ,��, where

S�q,	,�� = �
�

����q,magn�0
3�2
�� − E�� . �38�

The unperturbed DSF corresponding only to Ĥs−r consists
of a single one-magnon coherent peak

S�0��q,	,�� = 
�� − Emagn�q�� . �39�

In the first order with respect to the asymmetry, we have
to take into account only the two-magnon contributions. Us-

ing the substitution 2	�k→N�−	
	 dk, we obtain the following

formula:

S�1��q,	,�� = Abound�q�
�� − Ebound�q�� + Ascatt�q,�� ,

�40�

where

Abound�q� =

2�Jasymm�q��2
�1
2 − cos2 q

2
�

�1
2�Emagn�q� − Ebound�q��2 , �41�

Ascatt�q,�� =

2�Jasymm�q��2�cos2 q

2
− x2������1 − x2����

	�cos2 q

2
− 2�1x��� + �1

2��� − Emagn�q��2

.

�42�

Here, ��x� is the step function and x���= ��−2J�

+3Jc� / �2Jc�.
The first term in Eq. �40� corresponds to the second co-

herent peak carried from the sector Heven.
Formulas �41� and �42� will be correct only when the

energy of the one-magnon mode is smaller than the energy of
the bound state and the lower bound of the two-magnon
continuum. Contrary to the asymmetry mixing between H1

and H2, any intersection of the one- and two-magnon scat-
tering sectors will result to magnon decay.10 In order to avoid
this possibility, we shall obtain the “nonintersection” condi-
tion.

According to Eqs. �25� and �26�

2J� − 3Jc − 2�Jc�cos
k1 + k2

2

� Escatt�k1,k2� � 2J� − 3Jc + 2�Jc�cos
k1 + k2

2
, �43�

and the condition Emagn�k1+k2��Escatt�k1 ,k2� reduces to the
following form, Jc�cos k /2+ �Jc� / �2Jc��2�J� /2. This in-
equality will be automatically satisfied for Jc�0, while for
Jc�0 it results to 2J��9Jc or, using Eq. �28�, to an equiva-
lent form,

Egap
magn � �Emagn. �44�

The last formula has a clear interpretation. Really, Egap
magn

−�Emagn measures the difference between the one- and two-
magnon sectors. When it is satisfied, these sectors do not
intersect, a magnon decay is impossible, and formula �42� is
correct.

V. COMPARISON WITH THE EXPERIMENTAL DATA
FOR CuHpCl

As it was suggested in Ref. 5, the compound CuHpCl
corresponds to the case J�

asymm=0, and Jfrust
asymm=Jfrust. In other

words, it may be described by the Hamiltonian
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Hn,n+1
CuHpCl = Hn,n+1

rung + Hn,n+1
leg + Hn,n+1

diag + Hn,n+1
cyc , �45�

where the terms Hn,n+1
rung , Hn,n+1

leg , and Hn,n+1
cyc are given by Eq.

�3� and

Hn,n+1
diag = JdiagS1,nS2,n+1. �46�

Here, Jdiag=Jfrust+Jfrust
asymm=2Jfrust.

If one suggests that the state �Eq. �10�� is the exact ground
state, then condition �8� reduces to

2Jdiag = J� −
1

2
Jc. �47�

Under this condition �however, not proven experimen-
tally�, it is possible to estimate the parameters J� and Jc from
formulas �25� and �28� and experimental data. As it was pre-
sented in Ref. 11, Egap

magn�10.8 K corresponds to k=	; how-
ever, as it was shown in Ref. 12 by k=0 electron spin reso-
nance �ESR� measurements Egap+2�Emagn=13.1 K. These
data agree with the neutron scattering experiments.5,6 From
Eqs. �25� and �28� it follows that Jc�1.2 K and J�

�13.8 K.
Unfortunately, any quantitative interpretation fails for the

neutron scattering data obtained in Ref. 6. Really, all the
scans presented here correspond to the scattering with qrung
=0. However, as it was shown in the previous section,
S���q ,0 ,��=0. Therefore, the appearance of the scattering
peaks in Figs. 9 and 10�a� of Ref. 6 may be explained only
by a deviation of the initial state of the ladder from the
singlet-rung vacuum �Eq. �10��. The strength of this devia-
tion may be estimated only by comparison of the data pre-

sented in Ref. 6 with the same one related to the scattering
with qrung=	. However, the latter is not yet obtained.

In spite of the quantitative disagreement at qrung=0, our
argumentation qualitatively confirms the appearance of the
second coherent peak in the structure factor.

VI. SUMMARY

In this paper, we have demonstrated the principal differ-
ence between the excitation spectra of symmetric and asym-
metric spin-ladders. For the symmetric one, the Hilbert space
splits into two invariant subspaces, Heven and Hodd. In this
case, only the sector Hodd gives a nonzero contribution to the
dynamical structure factor. However, the picture is quite dif-
ferent for an asymmetric spin-ladder. The asymmetry term
mixes both the subspaces and the two-magnon bound state
from Heven contribute to the DSF resulting to the appearance
of the second coherent peak.

As an illustration, we have obtained the first-order DSF
for the special model of asymmetric spin-ladder with exact
singlet-rung ground state. The suggested model was applied
to the probably asymmetric spin-ladder compound CuHpCl
for which the existence of the second coherent peak was
observed experimentally. Despite the full agreement between
our special model and the experimental data was not con-
firmed, some of the interaction constants were estimated
from the inelastic neutron scattering and ESR data.
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