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The linear response of itinerant transition-metal ferromagnets to transverse magnetic fields is studied in a
self-consistent adiabatic local-density approximation. The susceptibility is calculated from a microscopic
Hamiltonian, including spin-conserving impurities, impurity-induced spin-orbit interaction, and magnetic im-
purities using the Keldysh formalism. The Gilbert damping constant in the Landau-Lifshitz-Gilbert equation is
identified, parametrized by an effective transverse spin dephasing rate, and is found to be inversely propor-
tional to the exchange splitting. Our results justify the phenomenological treatment of transverse spin dephas-
ing in the study of current-induced magnetization dynamics in weak, itinerant ferromagnets by Tserkovnyak et
al. �Phys. Rev. B 74, 144405 �2006��. We show that neglect of gradient corrections in the quasiclassical
transport equations leads to incorrect results when the exchange potential becomes of the order of the Fermi
energy.
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I. INTRODUCTION

The drive to miniaturize and reduce power demands of
electronic appliances motivates research in nanoscale mag-
netoelectronics, i.e., the science and technology that exploits
additional functionalities offered by ferromagnets integrated
into electronic circuits and devices. Spectacular advances
have been realized already in the last decade, mainly in the
area of magnetic disk and magnetic random access memo-
ries. Itinerant transition metals and its alloys are the materi-
als of choice for magnetoelectronic applications due to their
high electric conductivity and Curie temperatures. Increasing
speed and reducing energy demands of switching a bit of
information encoded by the magnetization direction of a fer-
romagnetic grain is one of the key problems in the field. A
thorough understanding of the dynamics of the magnetiza-
tion order parameter in transition metals is necessary to make
progress in this direction.

Phenomenologically, the low-temperature magnetization
dynamics in ferromagnets is well described by the Landau-
Lifshitz-Gilbert �LLG� equation.2,3 Ferromagnetic resonance
�FMR� experiments can be fitted to obtain accurate values
for the parameters of the LLG equation, viz., the Gilbert
constant that parametrizes viscous damping and the effective
�demagnetization and crystal anisotropy� fields. The LLG
phenomenology has been successfully applied to explain a
rich variety of dynamic magnetic phenomena.4,5 Some
progress has been made in predicting magnetic crystal
anisotropies by first-principles calculations.6 However, in
spite of being a crucial device parameter that governs the
switching time of magnetic memory elements, the material
dependence of the intrinsic magnetization damping has not
yet been understood. The Gilbert damping parameter also
plays an important role in current-induced magnetization ex-
citations and domain-wall motion.7,1

Deriving a microscopic description of the dynamics of
transition-metal ferromagnets is a formidable task; even the

nature of the ground state is still under debate. Two different
viewpoints can be distinguished. On one hand, ferromag-
netism can be seen to be caused by the atomic correlations in
partially filled and essentially localized d orbitals. The s elec-
trons that are responsible for electron transport are in this
picture affected by the magnetic order only indirectly via
local exchange interactions. Such physics is expressed by the
so-called s-d model, in which the spin of localized d elec-
trons, Si, interacts with free s-electron spins s�ri , t� through a
Heisenberg exchange term.

In the opposite point of view, the d electrons are not only
broadened into bands but are also strongly hybridized with
neighboring s-p orbitals. A separate treatment of states with
different orbital symmetries is then not warranted for the
description of low-energy properties at long time scales. The
Stoner model represents the essence of this itinerant magne-
tism in terms of two �minority and majority� parabolic en-
ergy bands that are split by a constant exchange potential.
Spin density-functional theory in a local-density approxima-
tion is the modern version of itinerant magnetism, forming
the basis of most band-structure calculations to date. The
nature of the real wave function of 3d ferromagnets that
combines features of both extremes is presumably captured
by sophisticated many-body frameworks such as the dynami-
cal mean-field model. It is at present not obvious, however,
how to compute the low-energy collective dynamics of fer-
romagnets taking disorder as a well as local correlations into
account.

The Gilbert damping coefficient in the LLG equation,
usually denoted by �, has attracted quite some theoretical
attention. Incoherent scattering of electron-hole pair excita-
tions by phonons and magnons is a possible mechanism by
which energy and angular momentum can be dissipated.
Heinrich et al.8 suggested a model in which conduction elec-
tron spins become polarized by scattering with magnons. The
spin angular momentum is subsequently transferred to the
lattice by spin-orbit mediated relaxations. The resulting
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damping coefficient was found to be proportional to the elec-
tronic scattering rate, ���−1. We will return to this result in
Sec. IV B. More recently, a phenomenological treatment of
the Gilbert damping has also been reported in Ref. 9.

A different relaxation process was proposed in Ref. 10
and was further elaborated in Refs. 11–14: In the presence of
spin-orbit interaction, the electronic energy levels depend on
a time-dependent magnetization direction, giving rise to the
notion of a “breathing Fermi surface.” The time lag of the
electronic distribution response to a moving magnetization
vector is equivalent to dissipation. In this model, the Gilbert
damping coefficient is proportional to the scattering time,
���. Extrinsic contributions to the FMR linewidth such as
eddy currents excited by time-dependent magnetic fields,15

sample inhomogeneities, or two-magnon scattering pro-
cesses16–18 have been suggested as well.

In diluted magnetic semiconductors such as �Ga, Mn�As,
the magnetism originates mainly from the local spins of the
half-filled spin-5 /2 Mn d shells. The spins are coupled by a
local exchange interaction to the valence-band holes and
nonlocally, via the holes, ferromagnetically to each other.
The holes contribute only slightly to the magnetization but
are exclusively responsible for the finite conductivity. The
s-d model is therefore appropriate for understanding the
magnetization damping in ferromagnetic semiconduc-
tors.19,20 Magnetization damping in the s-d model can be
understood in terms of the so-called spin-pumping
mechanism.21–24 The motion of the localized spins pumps a
spin current into the conduction-electron bath, in which the
thus created spin accumulation is dissipated by spin-flip scat-
tering. Reference 20 reported a nonmonotonous dependence
of the damping on the scattering rate, i.e., ���−1 for clean
and ��� for dirty samples. As mentioned above, the s-d
model does not necessarily give a good description of trans-
port and dynamical properties of transition-metal ferromag-
nets. The notion of d electrons pumping spins into an
s-electron system becomes doubtful when the hybridization
is very strong. Recently it has been demonstrated that the
magnetization dynamics in the s-d model and in an itinerant
Stoner model can be quite different indeed.1 For example, for
a given spin-flip relaxation mechanism, the Gilbert damping
is significantly suppressed in the s-d description by a factor
of the �usually small� fraction of the total magnetization car-
ried by the delocalized s electrons.

The Gilbert damping and the nonadiabatic current-
induced spin torque term �, postulated by Zhang and Li,7

have been derived in Ref. 1 under the assumption that the
exchange splitting is small compared to the Fermi energy.
Recently, Kohno et al.25 reported a diagrammatic derivation
of these parameters, which was not restricted to weak ferro-
magnets. The differences in these results turned out to be
very small for transition metals.1

In the present paper, we generalize the treatment of the
transverse spin dephasing of Ref. 1 beyond the relaxation
time approximation. We relax the previous limitation to weak
ferromagnets and derive the corresponding Gilbert damping.
We use a self-consistent adiabatic local-density approxima-
tion �ALDA� model in the presence of a dilute concentration
of scalar and magnetic impurities, as well as spin-orbit inter-
action originating from impurities, and we demonstrate how

to generalize the previous treatment to strong ferromagnets.
The generalization of the Keldysh approach is nontrivial and
introduces subtle but important gradient corrections that do
not play a role in normal metals. We work out the details for
a model Hamiltonian. In order to make connections with real
experiments, we would have to make at least educated
guesses about the disorder potentials and compute scattering
matrix elements for realistic band structures. This is beyond
the scope of the present paper; however, we do hope to
stimulate experiments in which transport and magnetization
dynamics are measured as a function of controlled disorder,
which, in turn, would stimulate a quantitative theoretical
study.

Our main result is that for spatially homogeneous itinerant
ferromagnets, the Gilbert damping constant is given by

� =
�

���

, �1�

where � is the modulus of the local-density exchange-
correlation potential and ��

−1 is a transverse �Bloch� spin
dephasing rate caused by spin-orbit interaction and magnetic
disorder. This appears to be at variance with Kohno et al.,25

who found a Gilbert damping constant that depends on both
the longitudinal and the transverse scattering rates. Except
for this issue, we obtain the same detailed expression for �.
This is gratifying since these theoretical machineries are
completely different.

This paper is organized in the following way: The micro-
scopic model as well as the simplifying ALDA are presented
in Sec. II, while the linear-response formalism, microscopi-
cally and phenomenologically, will be treated in Sec. III. The
detailed derivation of the linear-response function, starting
from the Keldysh Green’s function formalism, is the topic of
Sec. IV. Conclusions are summarized in Sec. V.

II. TIME-DEPENDENT ADIABATIC LOCAL-DENSITY
APPROXIMATION

Density-functional theory �DFT� is a successful and
widely used method in the study of electronic structure and
magnetism in transition-metal ferromagnets.26 In the Kohn-
Sham implementation, noninteracting pseudoparticles are in-
troduced, which exhibit the same ground-state density as the
interacting many-electron system. This is realized by intro-
ducing a fictitious exchange-correlation potential that has to
be determined self-consistently by energy minimization.27

DFT can be expanded to handle time-dependent phenomena
in systems out of equilibrium.28

We study the magnetization dynamics in a simplified
time-dependent DFT in the local spin-density approximation,
in which noninteracting Kohn-Sham particles are treated as
free electrons. We realize that the transition metals have
complex energy bands and wave functions also in the local-
density approximation and that even integrated properties
such as conductivities are not necessarily well described by
free electrons. However, since we are interested in dirty sys-
tems, in which an additional scrambling occurs by elastic
impurity scattering between different bands, we are confident
that our treatment is a good starting point for more sophisti-
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cated computations that take the full band structure into ac-
count.

Our model for itinerant ferromagnetism is described by
the Hamiltonian

Ĥ = 1̂�H0 + V�r�� +
1

2
��H�̂z +

1

2
��Hxc�	̂�r,t�� · �̂

+
1

2
��h�r,t� · �̂ + V̂so�r� + V̂m�r� . �2�

Matrices in 2
2 spin space are denoted by a hat � ˆ �. Spin

independence is indicated by the unit matrix 1̂, and �̂ is a
vector of the Pauli matrices. Here, H0 is the translationally
invariant Hamiltonian of noninteracting electrons, and V�r�
is the elastic spin-conserving impurity potential. H�0 is an
effective magnetic field in the z direction consisting of inter-
nal anisotropy fields and externally applied contributions,
and −��0 is the electronic gyromagnetic ratio. Electron-
electron interactions are described by the exchange-
correlation �vector� field Hxc. The weak, transverse magnetic
driving field is denoted by h�r , t�, and the potentials due to
impurity-induced spin-orbit interaction and a magnetic disor-

der configuration are denoted by V̂so�r� and V̂m�r�, respec-
tively.

The published approximation schemes for time-dependent
exchange-correlation functionals are still rather crude and/or
untested. The simplest approximation is known as the adia-
batic local-density approximation �ALDA�. Here, the con-
ventional local-density exchange-correlation potential is
adopted for the instantaneous time-dependent density.29,30

The ALDA potential is therefore local in both spatial and
temporal degrees of freedom and reduces for the current
problem to

��Hxc�	̂��r,t� � �m�r,t� , �3�

where � is an effective exchange splitting constant and
m�r , t� is the local magnetization direction of the ferromag-
net. By construction, the exchange field is always parallel to
the magnetization direction and thus automatically satisfies
the zero-torque theorem.31 Since we are interested in the
low-energy transverse magnetization dynamics, the �atomic-
scale� position dependence of � is disregarded.

In the ALDA, the exchange-correlation potential is re-
leased from a possible functional dependence on the history
of the system. The ALDA should therefore be valid only
when the system is close to the equilibrium configuration,
i.e., for a slowly varying magnetization direction in both
space and time. This is the case when ��t
� and �r
kF,
with kF being a characteristic Fermi wave vector. Improved
descriptions of the exchange potential have been proposed
�e.g., the generalized gradient approximation�, but for slowly
varying uniform perturbations, such corrections are believed
to be small.32

III. LINEAR RESPONSE

For a weak magnetic driving field, the response of the
ferromagnet can be formulated within the linear-response

theory. An expression for the response to the perturbative
field h�r , t� is derived quantum mechanically from the ALDA
Hamiltonian, which is defined by Eqs. �2� and �3�, in Sec.
III A. The response derived from the phenomenological
Landau-Lifshitz-Gilbert equation is presented in Sec. III B.
These results are then used in Sec. IV to find a microscopic
expression for the Gilbert damping coefficient.

A. Quantum linear response

The Kubo formalism provides expressions for the linear
response to a time-dependent perturbation. The response
functions can be derived by considering the time evolution of
the nonequilibrium density matrix. Starting from the effec-
tive Hamiltonian �2� in the ALDA of Eq. �3�, the small time-
dependent perturbation operator should include the self-
consistent exchange as

Hint�t� =� dr��

�
�m�r,t� + �h�r,t�	 · s�r� ,

where s�r� is the spin-density operator. The emphasis of this
paper is on the transverse, nonequilibrium components of the
spin density. We denote s0= 
s0
 and �s�=−s0ez+ ��s�, where
��s��ez. Hence, 
s
=s0 and m=−�s� /s0 in the ALDA.

For axially symmetric systems, the nonequilibrium spin-
density response can be expressed conveniently in terms of
�s±=�sx±i�sy. The transverse part of the response to the
magnetic field can then be written as

��s−�q,��� = − �−+�q,��� �

��
�m−�q,�� + h−�q,��	 , �4�

where the retarded susceptibility tensor

����r,r�;t� =
i�

2�
��t���s��r,t�,s��r�,0��� ,

has been introduced. The brackets �¯� indicate a commuta-
tor and the angular brackets �¯� a thermodynamical average.
In the derivation of the above expression, we have made use
of axial symmetry under which �++=�−−=0. In the ALDA,
Eq. �4� can be simplified to

��s−�q,��� = − �̃−+�q,��h−�q,�� , �5�

where the self-consistent linear response to the driving field,

�̃−+
−1�q,�� = �−+

−1�q,�� −
�

��s0
�6�

has been introduced. Hence, in the ALDA, the linear re-
sponse of an interacting system reduces itself to calculating
the response �−+ of a noninteracting system with a fixed
�Stoner enhancement� exchange field.33

B. Landau-Lifshitz-Gilbert susceptibility

The phenomenological Landau-Lifshitz equation2 is
widely used to model transverse magnetization dynamics.
The magnetization direction m�r , t� is treated as a classical
field whose dynamics is governed by an effective magnetic
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field Heff�r , t�, obtainable from the free-energy functional of
the system, F�M�:

Heff�r,t� = − �MF�M� .

The Landau-Lifshitz equation describes undamped �i.e., free-
energy conserving� precessional motion about the local ef-
fective magnetic field:

�tm�r,t� = − �m�r,t� 
 Heff�r,t� ,

preserving the magnitude of the magnetization. The field
Heff�r , t� includes contributions from external, exchange, de-
magnetization, and crystal-anisotropy magnetic fields.

The Landau-Lifshitz equation does not dissipate energy,
since the effective magnetic field always points normal to the
instantaneous constant-free-energy surfaces. However, the
electronic degrees of freedom do not respond infinitely fast
to the magnetization dynamics, which means that in reality
the effective field is a functional of the time-dependent mag-
netization at previous times. A finite lag in the response of
the dynamics corresponds to energy dissipation. In a mag-
netic system, the energy-loss implies a lowering of the Zee-
man energy by a torque in the direction of the cross product
of magnetization and its time derivative; the energy loss can
be parametrized by the phenomenological Gilbert damping
constant �.3 Hence, we arrive at the following Landau-
Lifshitz-Gilbert �LLG� equation:

�tm = − �m 
 Heff + �m 
 �tm .

Here, Heff only depends on the instantaneous magnetic con-
figuration of the ferromagnet. Generally, the damping is a
tensor quantity with symmetries reflecting the crystal
structure,18 but in practice anisotropic corrections to damping
are small compared to those in the free energy.34

By assuming an external field of the form �Heff�r , t�
=�0�r , t�ez and a small rf driving field h�r , t�, the excited
small-angle transverse magnetization dynamics can be com-
puted easily by the linearized LLG equation

m−�q,�� =
�h−�q,��

�0�q,�� − � − i��q,���
,

which corresponds to a susceptibility

�̃−+�q,�� =
�s0

�0�q,�� − � − i��q,���

that can be directly compared with the microscopic response
function �−+ by Eq. �6�. Assuming that � /�� �� ,�0�, one
obtains19,20

��q,� → 0� =
�2

��2s0
lim
�→0

�� Im �−+�q,�� . �7�

Hence, finding a microscopic expression for the Gilbert
damping is equivalent to determining the quantum-
mechanical transverse susceptibility.

It is worth noting that, in general, the damping coefficient
may depend on the spin-wave wave vector q. A damping of
the form ��q ,�→0��q2 will introduce an additional dissi-
pative term in the LLG equation �tm�−�m
�2�tm, which

is similar in form to the exchange field �m
�2m for aniso-
tropic ferromagnets. The main emphasis in this paper, how-
ever, is on the isotropic part of the Gilbert damping.

IV. MICROSCOPIC DERIVATION OF THE
SUSCEPTIBILITY

In this section, we determine the susceptibility function
according to time-dependent spin DFT in the ALDA for a
disordered ferromagnet. The Keldysh Green’s function for-
malism is used, and the assumption of weak and slowly vary-
ing perturbations in space and time allows us to use the sim-
plifying gradient expansion. Finally, Eq. �7� is invoked to
obtain the Gilbert damping coefficient.

A. Kinetic equation

We proceed from the ALDA Hamiltonian �see Sec. II�:

Ĥ = 1̂�H0 + V�r�� +
1

2
�� + ��H��̂z

+
1

2
��h�r,t� · �̂ + V̂so�r� + V̂m�r� . �8�

In the following discussion, we assume a homogeneous static
magnetic field H, define ��=�+��H, and drop the prime for
brevity.

The impurities are assumed to be randomly distributed
over positions ri with short-range, scalar disorder potentials

V�r� = 

i

v0�ri���r − ri� .

The scattering potentials are Gaussian distributed with zero
average and a white noise correlator

�V�r�V�r��� = ���r − r�� .

We define a characteristic scattering time � by �−1=���↑
+�↓�� /�, with �s being the density of states at the Fermi
level for electrons with spin s. The spin-orbit interaction as-
sociated with impurities is described by the potential

V̂so�r� = i��̂ · „�V�r� 
 �… ,

where � is a spin-orbit interaction strength given by
−�2 /4me

2c2, in terms of the electron mass me and the speed of
light c. The magnetic disorder in the ferromagnet is modeled
as

V̂m�r� = 

i

vm�ri���r − ri�S�ri� · �̂ ,

where S�ri� denotes the spin of an impurity at position ri.
The internal degrees of freedom of the magnetic impurities
are assumed to be frozen. Also, the vector impurity exchange

field V�r�= 1
2Tr�V̂m�r��̂� is taken to be distributed according

to Gaussian white noise characteristics, i.e., �V��r��=0 and

�V��r�V��r��� = �m
��������r − r�� ,

where � and � denote spatial components of the vector field,
and the strength of the second moment is given by
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�m
��� = ���, � = x,y

�� , � = z ,
�

similar to Ref. 25.
We employ the Keldysh Green’s function formalism35 to

calculate the spin susceptibility defined earlier. This method
has distinct advantages over the equilibrium formalism when
it comes to describing nonequilibrium phenomena but also
has some drawbacks. However, as we will see in Sec. IV B,
in particular, whereas the equilibrium formalism requires te-
dious calculations of vertex corrections, the Keldysh formal-
ism requires that one carefully accounts for subtle gradient
corrections in order to obtain the correct dynamics.

The Green’s function in Keldysh space, denoted by an
inverted caret � ˇ � takes the form36

Ǧ�1,2� = �ĜR�1,2� ĜK�1,2�

0 ĜA�1,2�
� .

The retarded, advanced, and Keldysh Green’s functions are
given by

ĜR�1,2� = − i��t1 − t2�����1�,�†�2��� ,

ĜA�1,2� = + i��t2 − t1�����1�,�†�2��� ,

and

ĜK�1,2� = − i����1�,�†�2��� ,

respectively. The brackets �¯� indicate a commutator and
the curly brackets �¯� an anticommutator, while ��†� is a
fermion annihilation �creation� operator. In this notation, all
field variables �position, time, and spin� are contained in the
numerical indices 1 and 2.

In the presence of slowly varying perturbations, the two-
point propagator variables can be transformed into the
Wigner representation, viz., the center-of-mass coordinates
and the Fourier transform of the Green’s function with re-
spect to the relative coordinates:

Ǧ�X,k� =� dx e−ikxǦ�X + x/2,X − x/2� .

Here, a four-vector formulation has been introduced, where
the vector for the center-of-mass coordinates is X= �R ,T�, the
corresponding relative coordinates are given by x= �r , t�, and
finally k= �k ,��. The four-vector product is defined as k ·x
=−�t+k ·r. The Wigner representation is particularly conve-
nient when the variation of the Green’s function on center
coordinates is slow on the scale of the Fermi wavelength,
since this allows us to perform a gradient expansion in these
coordinates. Subtracting the Dyson equation and its conju-
gate, one finds the relation

�Ǧ0
−1 − �̌ � Ǧ� = 0, �9�

where the symbol � denotes a convolution �in position, time,
and spin�, the commutator corresponds to the 2
2 Keldysh

matrix structure, and Ǧ0
−1 is the inverse of the Green’s func-

tion in the absence of any impurities. It is diagonal in

Keldysh space with the inverse of the retarded and advanced
Green’s function as elements. In the Wigner representation
each of them has the structure

Ĝ0
−1�R,T;k,�� = 1̂�� − �k� −

1

2
��̂z −

1

2
��h�R,T� · �̂

�10�

in spin space, with �k denoting the free-electron energy mea-
sured with respect to the chemical potential. The final com-

ponent in Eq. �9�, �̌, is the self-energy due to the impurity
configurations and spin-orbit interaction. One can show by a
formal Taylor expansion that the convolution can be repre-
sented by

�A � B��X,k� = ei��X
A·�k

B−�k
A·�X

B�/2A�X,k�B�X,k� �11�

in the Wigner representation.36

Physical quantities such as occupation probabilities and
densities are expressible in terms of the distribution Green’s

function Ĝ�, which is given by the combination

Ĝ� =
1

2
�ĜK + iÂ� ,

where we have introduced the spectral function Â= i�ĜR

− ĜA�. To derive a kinetic equation for Ĝ�, we subtract the
diagonal components of Eq. �9� and combine the result with
the Keldysh component of the same equation. In summary,
one finds the kinetic equation

�ĜR�−1
� Ĝ� − Ĝ�

� �ĜA�−1 = �̂�
� ĜA − ĜR

� �̂�.

Assuming slowly varying perturbations, we now use the gra-
dient expansion, in which the exponential in Eq. �11� is ex-
panded and only the first two terms of the expansion are
kept.37 This results in a simplified kinetic equation for the
distribution Green’s function, viz.,

�Ĝ0
−1,Ĝ�� +

i

2
�Ĝ0

−1,Ĝ��p −
i

2
�Ĝ�,Ĝ0

−1�p

− ��̂RĜ� − Ĝ��̂A� + �ĜR�̂� − �̂�ĜA�

=
i

2
���̂R,Ĝ��p − �Ĝ�,�̂A�p� −

i

2
��ĜR,�̂��p − ��̂�,ĜA�p� .

�12�

All terms to first order in the generalized Poisson bracket are

kept, �X̂ , Ŷ�p=�XX̂ ·�kŶ −�kX̂ ·�XŶ, where the four-vector no-
tation implies �X ·�k=�R ·�k−��T��. We see that the gradient
expansion reduces the complex convolution of the Dyson
equation �9� to the 2
2 matrix multiplication of Eq. �12�.

It is important to carefully consider all contributions to
first order in the Poisson brackets. The correct dynamics is
captured only when gradient corrections to the spectral func-
tion are kept and, in the case of anisotropically distributed
magnetic impurities, those to the self-energies as well. Such
gradient corrections are caused by a nonuniform driving field
in magnetic metals. For simple systems such as normal met-
als, such corrections are irrelevant. We address this point in
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more detail in Sec. IV B, and we also refer the reader to the
Appendix, where one can explicitly see from, e.g., Eq. �A1�
that the gradient corrections to the retarded and/or advanced
Green’s functions are proportional to � for weak disorder.
The corrections vanish when the normal metal limit �→0 is
taken. Boltzmann equations that disregard certain Poisson
brackets36 should therefore not be generalized naively to
strong ferromagnets.

The final ingredient that transforms Eq. �12� into a useful
kinetic equation is an expression for the self-energy. For
weak impurity scattering, the self-consistent Born approxi-
mation is appropriate:

�̌�1,2� = �V̂tot�1�Ǧ�1,2�V̂tot�2�� ,

where V̂tot is the total potential �which is diagonal in Keldysh
space�, angular brackets �¯� denotes impurity potential av-

eraging, and Ǧ�1,2� is already an impurity averaged Green’s
function. This expression can be separated into four different
self-energy contributions. The spin-conserving impurity scat-
tering is described by

�̌imp�R,T;k,�� = �� dk�

�2��3Ǧ�R,T;k�,�� .

Introducing n=k
k�, the terms arising from the spin-orbit
interaction can be written as

�̌so
�1��R,T;k,�� = − i��� dk�

�2��3 �Ǧ�R,T;k�,���̂ · n

− n · �̂Ǧ�R,T;k�,���

and

�̌so
�2��R,T;k,�� = ��2� dk�

�2��3n · �̂Ǧ�R,T;k�,���̂ · n .

The magnetic impurity configuration results in

�̌m�R,T;k,�� = 

i=x,y,z

�m
�i� � dk�

�2��3 �̂iǦ�R,T;k�,���̂i.

Finally, to make connection with the spin density, one can
use that

�s�R,T�� =
�

4i�
�

−�

�

d�� dk

�2��3Tr��̂Ĝ��R,T;k,��� .

All necessary quantities are now defined, and a kinetic equa-
tion for the distribution Green’s function can be derived. In
the next section, the details are worked out for a bulk, single-
domain ferromagnet.

B. Homogeneous ferromagnet

We concentrate in the following on the Gilbert damping
constant in the limit of vanishing spin-wave wave vector, q
→0, as measured in FMR experiments. In this limit �and the
ALDA�, only spin-orbit interaction and magnetic disorder
can transfer angular momentum out of the spin dynamics
into the lattice. Without it, spin and orbital degrees of free-

dom are completely decoupled and the Gilbert constant van-
ishes. Spin waves with finite wavelengths may decay also by
spin-conserving scattering, which is likely to dominate mag-
netic impurity or spin-orbit interaction scattering when q be-
comes larger.38

We simplify the notation by defining the time- and
energy-dependent density matrix

	̂�T,�� =� dk

�2��3Ĝ��T;k,��

and solve Eq. �12� to obtain a diffusion equation for this
quantity. In detail, we find that

i��T	̂ −
1

2
���̂z, 	̂� −

1

2
��h�T� · ��̂, 	̂� +

i

4
��2��T�h · �̂�,��	̂�

= 

i

�m
�i� � dk

�2��3„�̂iĜ
R�̂i	̂ − ĜR�̂i	̂�̂i − �	̂�̂iĜ

A�̂i

− �̂i	̂�̂iĜ
A�… + 


i

i�m
�i�

2
� dk

�2��3„��̂iĜ
R�̂i, 	̂�p

− �ĜR,�̂i	̂�̂i�p − ��	̂,�̂iĜ
A�̂i�p − ��̂i	̂�̂i,Ĝ

A�p�…

+ 

i,j

��2� dk�

�2��3 � dk

�2��3ninj„�̂iĜ
R�̂ jĜ

�

− ĜR�̂iĜ
��̂ j − �Ĝ��̂iĜ

A�̂ j − �̂iĜ
��̂ jĜ

A�…

+ 

i,j

��2

2
� dk�

�2��3 � dk

�2��3ninj„��̂iĜ
R�̂ j,Ĝ

��p

− �ĜR,�̂iĜ
��̂ j�p − ��Ĝ�,�̂iĜ

A�̂ j�p − ��̂iĜ
��̂ j,Ĝ

A�p�… .

�13�

Here, the arguments of 	̂�T ,��, ĜR/A�T ;k ,��, and
Ĝ��T ;k� ,�� are not written out explicitly for the sake of
notation. Summation indices i and j run over Cartesian com-
ponents x, y, and z. On the left-hand side of the equation, we
recognize precession around the fixed exchange field and the
driving field, as well as a gradient term due to the nonuni-
formity of the driving field. On the right-hand side, we find
collision integrals due to spin-orbit interaction and magnetic
impurities. We also see that there are gradient corrections to
the collision integrals in the above equation. These correc-
tions are often neglected but are important for strong ferro-
magnets to be discussed below. As explained, scalar disorder
does not affect the uniform spin dynamics and drops out of
the kinetic equation.

For the response function �−+��� introduced in Sec. III A,
we need to find an expression for ��s−����, the transverse
part of the spin density. To this end, we extract the upper
right matrix component of 	̂�T ,��, a matrix component we
simply denote �s−�T ,��. This is now related to the nonequi-
librium spin density by

��s−�T�� =
�

2i�
�

−�

�

d� �s−�T,�� .
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With ���k� being the density of states at energy �k, we find that

i��T�s−�T,�� − ��s−�T,�� + ��h−�T�	z��� +
i

2
��2�Th−�T� � d�k���k���Gd

��k,��

= − 2i��� + ��� � d�k���k��Ad�k,���s−�T,�� − 	d���A−�T;k,��� − ���� − ��� � d�k���k����Az�k,���T�s−�T,��

− ��	z����TA−�T;k,��� − 4��� − ��� � d�k���k��Re Gz
R�k,���s−�T,�� + 	z���Re G−

R�T;k,��� + 2i���� + ��� � d�k���k�


���	d����T Re G−
R�T;k,�� + �� Re Gd

R�k,���T�s−�T,��� −
8i

9
��2� d�k���k�k2� d�k����k��


k�2�Ad�k,��G−
��T;k�,�� − Gd

��k�,��A−�T;k,��� +
8i�

9
��2� d�k���k�k2� d�k����k��


k�2���Gd
��k�,���T Re G−

R�T;k,�� + �� Re Gd
R�k,���TG−

��T;k�,��� , �14�

where have used the convenient matrix notation

Ĝ = 1̂Gd + G · �̂ . �15�

We now need to Fourier transform and integrate this formi-
dable equation over energy to obtain a diffusion equation for
��s−����. Before we proceed with this calculation, we notice
that the real part of the response function simply determines
the resonance condition for the system and is thus unimpor-
tant for the determination of the Gilbert damping. With this
in mind, we write

��� − ����s−����

=
�

�
��� + ����

−�

�

d�� d�k���k�


�	d���A−��;k,�� − Ad�k,���s−��,���

+
�2�

2�
��� − ����

−�

�

d�� d�k���k�


���Az�k,���s−��,�� − ��	z���A−��;k,���

+
4�

9�
��2�

−�

�

d�� d�k���k�k2� d�k�


���k��k�2�Gd
��k�,��A−��;k,��

− Ad�k,��G−
���;k�,��� + F���h−��� , �16�

where F��� is real and thus does not contribute to the damp-
ing. The dissipation is now determined by the above integrals
over energy and momentum. Notice how the signs between
the longitudinal and transverse magnetic impurity scattering
strength enter in the above equation. For simple isotropic
magnetic impurities, i.e., with ��=��, the second line of Eq.
�16� does not contribute to the dissipative dynamics. This
term is due to gradient corrections involving self-energies in
the original kinetic equation �12�. To correctly capture the
dynamics when the magnetic impurities are anisotropically

distributed, it is essential to include such gradient corrections
as well.

In order to calculate the integrals, we need expressions for

G−
�, �s−, and the spectral function Â. Since these quantities

enter the collision integrals, we can solve for �s− and Â to
zeroth order in scattering rates. To this end, we solve Eq.
�12� for the Fourier transform of G−

� and find that

G−
���;k�,�� �

��h−���
�

�1 +
��

�
�Gz

��k�,��

+
��2�h−���

2�
��Gd

��k�,�� + O„�,�m
�i�
… .

�17�

At this point, we take Gd
��k� ,��= inF���Ad�k� ,��, with nF the

Fermi-Dirac distribution, so that

��Gd
��k�,�� = − i����Ad�k�,�� + inF�����Ad�k�,��

at low temperatures. Additionally, we use that

�s−��,�� =� dk�

�2��3G−
���;k�,��

in combination with Eq. �17� to solve for the second quantity
in question.

In the dilute limit, the Lorentzian shape of the spectral
function approaches a Dirac delta function, and two quasi-
particle spin bands, split by the exchange field �, are re-
solved. For a uniform, time-independent transverse magnetic
field, one finds

Â0�k,�� = �

s

��� − �ks��1̂ + s�̂z + s
��h · �̂

�
� . �18�

The two spin bands are denoted by s= ↑ , ↓ =±, and the no-
tation �ks=�k+s� /2 has been introduced. A nonuniform
driving will also introduce terms in the spectral function that
are linear in gradients. A detailed derivation of the spectral
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function to first order in the Poisson brackets for a time-
dependent driving field h�T� is given in the Appendix, with
the main result being

Â�T;k,�� = Â0�T;k,�� +
i��2

�2


�Az�k,�� +
�

2
��Ad�k,����̂z�T�h · �̂� , �19�

where Â0 is the spectral function from Eq. �18�. We see that
the weak, transverse driving field induce off-diagonal gradi-
ent corrections to the “instantaneous” spectral function. The
diagonal components are unchanged and are given by

Ad�k,�� = �

s

��� − �ks�

and

Az�k,�� = �

s

s��� − �ks� .

We are now in a position to calculate the above energy
integrals. To be more specific, considering the integrals due
to magnetic disorder, we find that these terms become

� d�k���k��	d���A−��;k,�� − Ad�k,���s−��,���

=
i�2��2h−����

2�
������↑ + �↓�2

and

��� d�k���k����Az�k,���s−��,�� − ��	z���A−��;k,���

=
i�2��2h−����

�
������↑ − �↓�2.

One also can derive analogous results for the spin-orbit con-
tribution in Eq. �16�. Equation �16� then becomes

��� − ����s−���� � F���h− +
2i���3

9�
h−���2���↑

2kF↑
4

+ �↓
2kF↓

4 � + 2�↑�↓kF↑
2 kF↓

2 �

+
i���3

�
h−������↑

2 + �↓
2� + 2���↑�↓� .

Using Eq. �5� to identify �the low frequency� Im �−+, we find
from Eq. �7� that the Gilbert damping is given by

� =
2��

9s0
��2���↑

2kF↑
4 + �↓

2kF↓
4 � + 2�↑�↓kF↑

2 kF↓
2 �

+
��

s0
�����↑

2 + �↓
2� + 2���↑�↓� , �20�

which agrees with the diagrammatic calculation of Kohno et
al.25

Next, we would like to relate the Gilbert damping con-
stant in Eq. �20� to other physical quantities. Comparing a

Bloch-Bloembergen1,39 equation of motion for the magneti-
zation vector with the corresponding LLG equation, we find
for weak driving fields and small-angle magnetization dy-
namics that

� =
�

���

, �21�

where, in our case,

1

��

=
1

�so
+

1

�m
.

Above, we have defined the effective transverse scattering
rates from spin-orbit interaction and magnetic impurities,
viz.,

1

�so
=

2��

9s0
��2���↑

2kF↑
4 + �↓

2kF↓
4 � + 2�↑�↓kF↑

2 kF↓
2 �

and

1

�m
=

��

s0
�����↑

2 + �↓
2� + 2���↑�↓� .

By comparison, the longitudinal spin-relaxation rate obtained
from, e.g., Fermi’s golden rule reads

1

��

=
4�

�
��↑ + �↓���� +

2

9
��2kF↑

2 kF↓
2 	 .

For weak ferromagnets, the density of states and momentum
at the Fermi energy are not strongly spin dependent, i.e., �s
��F and kFs�kF. Therefore, 2s0����F, which implies
equal transverse and longitudinal scattering rates for
impurity-induced spin-orbit interaction and isotropic mag-
netic impurity scattering, i.e., ��=��.25

Since we succeeded in reproducing the general diagram-
matic result of Ref. 25, we also identified the necessary mea-
sure to transcend the semiclassical treatment of Ref. 1. Most
important are the gradient corrections to the spectral func-
tion, but in the presence of anisotropically distributed mag-
netic impurities, gradient corrections to the self-energies
should be included as well.

In a metal, the longitudinal spin-orbit induced scattering
time depends on the spin-conserving elastic scattering time.
Experimentally, one typically finds that the ratio of spin-
conserving to non-spin-conserving scattering events, �
=� /��, is not very sensitive to the concentration of
impurities.21 This means that in systems where spin-orbit in-
duced dephasing dominates the Gilbert damping, � is pro-
portional to the resistivity of the system,

� =
�ne2

2�m
	� ,

where n is the electron concentration and 	 is the resistivity.
A linear relation between Gilbert damping and resistivity
was found in a recent experimental study of electronic trans-
port in thin Permalloy films by Ingvarsson et al.40

The present discussion is mainly focused on the low-
temperature regime, but the linear dependence on the scatter-
ing rates suggests that the damping should increase with in-
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creasing temperatures. It is experimentally known that � is
not very sensitive to variations in temperature.41 Conse-
quently, we expect that the Gilbert damping constant is pro-
portional to the resistivity also at higher temperatures.

Since the Gilbert damping coefficient is proportional to
�−1, dissipation is reduced in the strong ferromagnet limit.
Since the damping in Eq. �21� depends on the transverse spin
dephasing rate, Gilbert damping does not vanish in half met-
als in which the chemical potential falls below the band edge
of one of the spin bands.

As mentioned in Sec. II, we introduced the simplifying
assumption of free electrons with a parabolic band structure.
Whereas our qualitative results are not affected by this
choice, realistic band structures will introduce several com-
plications such as wave vector and band-index dependent
exchange splittings and scattering rates. Effectively, the split-
ting and scattering rates found here might have to be re-
placed by complicated Brillouin-zone integrals. Generaliza-
tions in this direction have our full attention.

The form of the damping coefficient found in Eqs. �20�
and �21� agrees with previous studies on spin-flip mecha-
nisms for magnetization damping. Nearly four decades ago,
Heinrich et al.8 suggested, based on the s-d exchange inter-
action between localized d electrons and itinerant s electrons,
that electron-hole pairs could be excited by magnons. As-
suming that the exchange splitting is much larger than the
spin-flip rate and denoting the fraction of the total spin car-
ried by the delocalized electrons by ��1, they found �
=��2�F /2s0�sf in the long wavelength limit. The result is
expressed in terms of �sf, a phenomenological electron-hole
pair lifetime. This result can be compared with Eqs. �20� and
�21� by using the approximation 2s0����F. We see that
when the magnetization is mainly carried by the d electrons,
which are not affected by spin-flip scattering, the predicted
damping in the s-d model is much weaker than in our Stoner
model.

In order to progress the field, the relation between, e.g.,
impurity doping species and densities with corresponding
spin-flip diffusion lengths and Gilbert damping in ferromag-
netic metals and semiconductors should be carried out. Sys-
tematic studies in this direction will be of great importance
in order to verify any future theoretical predictions based on
realistic disorder potentials and band structures.

V. CONCLUSION

In conclusion, we present a kinetic equation for the dis-
tribution matrix of itinerant ferromagnets in the adiabatic
local-density approximation. The spin susceptibility and Gil-
bert damping constant are obtained microscopically for a ho-
mogeneous ferromagnet by the Keldysh Green’s function
formalism. Magnetization damping arises from magnetic dis-
order in the ferromagnet, and we have shown that it is im-
portant to keep all terms to linear order in the Poisson brack-
ets to obtain the correct result in the presence of impurity-
induced spin-orbit interaction magnetic disorder. The Gilbert
coefficient can be expressed in terms of an effective trans-
verse spin dephasing rate that has been introduced earlier as
a phenomenological constant.1 Our framework can be gener-

alized to handle first-principles band-structure calculations
for specific types of impurities and disorder. We hope that
our work will stimulate more systematic studies of electron
transport and Gilbert damping as a function of material pa-
rameters.
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APPENDIX: SPECTRAL FUNCTION

In this section, we derive the spectral function to first
order in the Poisson brackets in the presence of a weak,
time-dependent transverse driving field h�T�. Since the spec-
tral functions appearing in Eq. �16� are already proportional
to scattering rates, we will not keep gradient terms involving
self-energies in the following derivation.

To proceed, we consider ĜR, which is determined from
the relation

ĜR
� �ĜR�−1 = 1̂,

where �ĜR�−1= Ĝ0
−1− �̂R and Ĝ0

−1 is the inverse Green’s func-
tion in the clean limit, viz., Eq. �10�. To first order in the
Poisson brackets, one can show that in the Wigner represen-
tation,

ĜR�T;k,�� = �1̂ −
i

2
�Ĝ0

R,�ĜR�−1�p�Ĝ0
R + O��¯�p

2� ,

where now

Ĝ0
R�T;k,��

=
1

det��ĜR�−1�
�� − �k + 1

2� − �22
R 1

2��h− + �−
R

1
2��h+ + �+

R � − �k − 1
2� − �11

R � ,

with det�¯� denoting a matrix determinant, is simply the
inverted retarded Green’s function to zeroth order in the
Poisson brackets. Matrix manipulations result in

ĜR�T;k,�� � Ĝ0
R�T;k,�� −

i��2

�
G0,z

R �k,��2�̂z�T�h · �̂� ,

�A1�

where once more we have used the convenient matrix nota-
tion introduced in Eq. �15�.

A similar relation can also be found for ĜA, and we finally

use that Â= i�ĜR− ĜA� to obtain an expression for the spec-
tral function linear in gradients, viz.,

Â�T;k,�� = Â0�T;k,�� +
��2

�
�G0,z

R �k,��2

− G0,z
A �k,��2��̂z�T�h · �̂� ,

where
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Â0�T;k,�� = �

s

��� − �ks��1̂ + s�̂z + s
��h · �̂

�
�

is the spectral function to zeroth order in gradients. Using
that, we can rewrite

G0,z
R �k,��2 − G0,z

A �k,��2 =
i

�
Az�k,�� +

i

2
��Ad�k,�� ,

and we find the spectral function

Â�T;k,�� = Â0�T;k,�� +
i��2

�2


�Az�k,�� +
�

2
��Ad�k,����̂z�T�h · �̂� .

�A2�

Hence, the weak, transverse driving field induces off-
diagonal gradient contributions to the spectral function.
These prove to be essential in order to correctly capture the
transverse magnetization dynamics.

1 Y. Tserkovnyak, H. J. Skadsem, A. Brataas, and G. E. W. Bauer,
Phys. Rev. B 74, 144405 �2006�.

2 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2, 3rd
ed., Course of Theoretical Physics Vol. 9 �Pergamon, New York,
1980�.

3 T. L. Gilbert, Phys. Rev. 100, 1243 �1955�; see also T. L. Gilbert,
IEEE Trans. Magn. 40, 3443 �2004�.

4 S. M. Bhagat and P. Lubitz, Phys. Rev. B 10, 179 �1974�.
5 B. Heinrich and J. F. Cochran, Adv. Phys. 42, 523 �1993�.
6 G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys.

Rev. B 41, 11919 �1990�.
7 S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 �2004�.
8 B. Heinrich, D. Fraitová, and V. Kamberský, Phys. Status Solidi

23, 501 �1967�.
9 F. Piéchon and A. Thiaville, cond-mat/0611320 �to be published�.

10 V. Kamberský, Can. J. Phys. 48, 2906 �1970�.
11 V. Korenman and R. E. Prange, Phys. Rev. B 6, 2769 �1972�.
12 V. Korenman, Phys. Rev. B 9, 3147 �1974�.
13 J. Kuneš and V. Kamberský, Phys. Rev. B 65, 212411 �2002�.
14 J. Kuneš and V. Kamberský, Phys. Rev. B 68, 019901�E� �2003�.
15 W. S. Ament and G. T. Rado, Phys. Rev. 97, 1558 �1955�.
16 M. Sparks, R. Loudon, and C. Kittel, Phys. Rev. 122, 791 �1961�.
17 V. S. Lutovinov and M. Y. Re�zer, Zh. Eksp. Teor. Fiz. 77, 707

�1979� �Sov. Phys. JETP 50, 355 �1979��.
18 D. L. Mills and S. M. Rezende, Spin Dynamics in Confined Mag-

netic Structures II, Topics in Applied Physics Vol. 87 �Springer-
Verlag, Berlin, 2003�, pp. 27–58.

19 J. Sinova, T. Jungwirth, X. Liu, Y. Sasaki, J. K. Furdyna, W. A.
Atkinson, and A. H. MacDonald, Phys. Rev. B 69, 085209
�2004�.

20 Y. Tserkovnyak, G. A. Fiete, and B. I. Halperin, Appl. Phys. Lett.
84, 5234 �2004�.

21 Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin,
Rev. Mod. Phys. 77, 1375 �2005�.

22 D. L. Mills, Phys. Rev. B 68, 014419 �2003�.
23 E. Šimánek and B. Heinrich, Phys. Rev. B 67, 144418 �2003�.
24 E. Šimánek, Phys. Rev. B 68, 224403 �2003�.
25 H. Kohno, G. Tatara, and J. Shibata, J. Phys. Soc. Jpn. 75,

113706 �2006�.
26 J. Kübler, Theory of Itinerant Electron Magnetism �Oxford Uni-

versity Press, New York, 2000�.
27 W. Kohn, Rev. Mod. Phys. 71, 1253 �1999�.
28 E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 �1984�.
29 A. Zangwill and P. Soven, Phys. Rev. Lett. 45, 204 �1980�.
30 E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 �1985�.
31 K. Capelle, G. Vignale, and B. L. Györffy, Phys. Rev. Lett. 87,

206403 �2001�.
32 Z. Qian and G. Vignale, Phys. Rev. Lett. 88, 056404 �2002�.
33 F. Green, D. Neilson, L. Świerkowski, J. Szymański, and D. J. W.

Geldart, Phys. Rev. B 47, 4187 �1993�.
34 B. Heinrich, S. T. Purcell, J. R. Dutcher, K. B. Urquhart, J. F.

Cochran, and A. S. Arrott, Phys. Rev. B 38, 12879 �1988�.
35 L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 �1964�.
36 J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 �1986�.
37 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics:

Green’s Function Methods in Equilibrium and Nonequilibrium
Problems �Benjamin, New York, 1962�.

38 Y. Tserkovnyak �unpublished�.
39 N. Bloembergen, Phys. Rev. 78, 572 �1950�.
40 S. Ingvarsson, L. Ritchie, X. Y. Liu, G. Xiao, J. C. Slonczewski,

P. L. Trouilloud, and R. H. Koch, Phys. Rev. B 66, 214416
�2002�.

41 F. J. Jedema, M. S. Nijboer, A. T. Filip, and B. J. van Wees, Phys.
Rev. B 67, 085319 �2003�.

SKADSEM et al. PHYSICAL REVIEW B 75, 094416 �2007�

094416-10


