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An experiment demonstrating the quantum simulation of a spin-lattice Hamiltonian is proposed. Dipolar
interactions between nuclear spins in a solid state lattice can be modulated by rapid radio-frequency pulses. In
this way, the effective Hamiltonian of the system can be brought to the form of an antiferromagnetic Heisen-
berg model with long range interactions. Using a semiconducting material with strong optical properties such
as InP, cooling of nuclear spins could be achieved by means of optical pumping. An additional cooling stage
is provided by adiabatic demagnetization in the rotating frame down to a nuclear spin temperature at which we
expect a phase transition from a paramagnetic to antiferromagnetic phase. This phase transition could be
observed by probing the magnetic susceptibility of the spin lattice. Our calculations suggest that employing
current optical pumping technology, observation of this phase transition is within experimental reach.
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I. INTRODUCTION

Many-body problems are common in condensed matter
physics. However, computations of interesting quantities,
such as critical exponents of a phase transition, are difficult,
specifically because the dimension of the associated Hilbert
space increases exponentially with the system size. Recent
quantum simulation experiments using cold atoms in an op-
tical lattice1,2 have opened new possibilities for the study of
these systems. The idea consists of controlling the interac-
tions inside a many-body system so that they take a desired
form, and performing measurements on the macroscopic be-
havior of the system. It is interesting to explore how this
quantum simulation concept could be implemented in differ-
ent physical systems.

Spin-lattice models are a convenient, simple model to de-
scribe magnetic phenomena.3 It was recently realized, how-
ever, that various apparently unrelated problems can be cast
into this same language. An example is the half-filled Hub-
bard model in the limit of large positive on-site Coulomb
repulsion U.4 This observation makes spin-lattice models in-
teresting not only for fundamental studies of magnetism, but
also as a means to attack several other problems. Although
spin-lattice models have been studied for about a century,
exact results only exist for special cases of low spatial di-
mensionality. Approximation methods such as mean-field
theory offer an alternative, but they typically involve as-
sumptions that are not rigorously justified. On the other
hand, numerical methods such as Monte Carlo simulation5

have limited efficiency for calculations in real three-
dimensional magnetic systems. This motivates the investiga-
tion of other techniques to study spin-lattice models.

In this paper, we consider a solid-state lattice of nuclear
spins as a simulator of a specific spin-lattice model, in which
interactions between spins are modulated by rapid radio-
frequency pulses. The potential of nuclear magnetic reso-
nance �NMR� techniques6,7 for simulating an artificial many-
body Hamiltonian is theoretically explored. Nuclear spins

interact predominantly via a magnetic dipolar interaction,
which can be modulated by varying the orientation of the
crystal relative to the applied magnetic field, applying NMR
pulse sequences, or using different material systems. By op-
tically cooling the nuclear spins8,9 or by implementing a
similar dynamic polarization technique, it is possible that the
system eventually reaches a nuclear spin temperature7,10,11

where a phase transition3 occurs. In particular, in Sec. V we
describe the transition from a paramagnetic to an antiferro-
magnetic phase that we expect to occur in our proposed sys-
tem. In this context, we are not considering a generic spin-
Hamiltonian simulator, but rather a problem-specific
machine, where we have the ability to change some aspects
of the spin-lattice Hamiltonian and the spin temperature, us-
ing the freedom provided by the particular experimental sys-
tem.

The proposed experiment proceeds as follows. We first
optically pump a sample of bulk InP in low physical tem-
perature and high magnetic field, so that the resulting
nuclear-spin polarization is maximum.12,13 We then perform
adiabatic demagnetization in the rotating frame �ADRF� to
transfer the Zeeman order to the dipolar reservoir.14,15 This is
a cooling technique analogous to slowly switching off the dc
magnetic field in the laboratory frame. If it is performed
adiabatically, i.e., with no loss of entropy, the ordering due to
alignment of the spins along the dc magnetic field is trans-
ferred to ordering due to local correlations of the spin orien-
tations. By applying a suitably chosen NMR pulse sequence,
we can transform the inherent Hamiltonian of the system to
the desired one in an average sense, to be described below. In
particular, we use NMR techniques to engineer an antiferro-
magnetic Heisenberg model with long range interactions.
This transformation is validated by average Hamiltonian
theory �AHT�.16 Our system has two species of nuclear mag-
netic moments. We argue that in the ground state of the de-
scribed Hamiltonian each nuclear species is ordered antifer-
romagnetically, so that each nuclear species consists of two
sublattices of opposite spin orientation. Antiferromagnetic
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ordering with two sublattices can be observed in the NMR
spectrum as the appearance of two peaks of opposite phase:
In a system with two nuclear species A and B of widely
separated Larmor frequencies, we can rotate the spins A to
the horizontal plane using a �

2 pulse, and observe their free
induction decay �FID� signal. If the spins B are in an antifer-
romagnetically ordered state, they create a spatially oscillat-
ing local field that modulates the Larmor frequency of spins
A. This means that spins A in different sublattices will pro-
duce the FID signals of different frequencies. However, to
decide whether a phase transition occurs, we need to measure
the magnetic susceptibility of the system.17,18 In particular,
the longitudinal susceptibility has a maximum at the transi-
tion temperature, while the transverse susceptibility exhibits
a plateau inside the ordered phase. Nuclear spin susceptibili-
ties can be easily extracted from the Fourier-transformed FID
signals recorded after a short pulse. This measurement ex-
ploits the Fourier-transform relationship between transient
and steady-state response of a system to a small perturbation.

All individual pieces of this experiment have already been
demonstrated, but putting them together is challenging.
Nuclear ordering has been observed in a series of
experiments.15,19–21 However, the effect of NMR pulse se-
quences to engineer an artificial Hamiltonian has not been
studied in detail, and this is an issue that the current study
addresses. We should note that the class of Hamiltonians that
can be simulated with this method is severely limited by the
characteristics of the particular material system, although
many interesting cases can be studied, for example, frus-
trated spin lattices.

This paper is organized as follows. In Sec. II, we briefly
describe adiabatic demagnetization in the rotating frame
�ADRF�, which is essentially a cooling technique for nuclear
spins. Section III discusses the calculation of thermodynamic
quantities for systems obeying the spin Hamiltonians of in-
terest, and in particular, the evolution of spin temperature
during ADRF in our proposed material system. In this way,
we can calculate the spin temperature reached by the spin
lattice after ADRF. In the subsequent two sections, we de-
scribe the spin Hamiltonians that can be simulated by this
method. In particular, a suitable NMR pulse sequence is dis-
cussed in Sec. IV, and an experimental material system is
presented in Sec. V. Finally, in Sec. VI, we give an estimate,
based on mean-field approximation, of the initial polarization
needed to observe a phase transition.

II. DESCRIPTION OF ADIABATIC DEMAGNETIZATION
IN THE ROTATING FRAME (ADRF)

The term “adiabatic” is used in two different meanings in
physics, one quantum mechanical, and the other
thermodynamic.7,10 ADRF is based on the thermodynamic
definition, which is a reversible process with no heat transfer,
in which the entropy of the system remains constant. The
term “isentropic” also applies to this case. By contrast, in
quantum mechanics, the term “adiabatic” usually means that
the relative populations of the various energy eigenstates of
the system are kept constant. The two definitions are in gen-
eral incompatible.

The system of nuclear spins interacts only weakly with
the crystal lattice. The relevant timescale for this interaction
is T1.7 So, if we are interested in phenomena much faster
than T1, we can treat the system as being effectively isolated,
and describe it in terms of its nuclear spin temperature,11

which can be very different from the lattice temperature. Of
course, if we let the system relax over several timescales T1,
these two temperatures eventually become equal.

Consider a lattice of nuclear spins in a dc Zeeman mag-
netic field B0 along the z direction. During ADRF, we apply
a rotating radio-frequency �rf� magnetic field in the x−y
plane of magnitude B1 and angular frequency �1, so that the
Hamiltonian in the frame rotating with angular frequency �1
�rotating frame� is

Ĥrot = − �
i

����iB0 − �1�Îi
z + �iB1Îi

x� + ĤD� , �1�

where Îi
x,y,z and �i are the spin operators and gyromagnetic

ratio of the ith spin dipole, and ĤD� denotes the secular part
of the dipolar interaction Hamiltonian. The latter follows af-
ter dropping the rapidly oscillating terms. The three terms in
the above equation we called the Zeeman, the rf �radio fre-
quency�, and the dipolar part of the total Hamiltonian, re-
spectively. In the case where the lattice consists of nuclear
spins of the same species14

ĤD� =
�0

4�
�2�I

21

2�
i�j

1 − 3 cos2��ij�
rij

3 �Îi
zÎ j

z −
1

2
Î i

+Î j
−�

�
1

2�
i,j

uij�Îi
zÎ j

z −
1

2
Î i

+Î j
−� = ĤII� . �2�

The distance between the spins i and j is rij, �ij is the angle
between the vector rij and the direction of the Zeeman mag-

netic field ẑ, while Îi
±= Îi

x± iÎi
y and �I is the common gyromag-

netic ratio of the spins.38 Note the role of the term

−�i��iB1Îi
x in Eq. �1� allowing the Zeeman and dipolar res-

ervoirs to exchange energy. In the absence of the rf field, the
Zeeman and dipolar parts of the Hamiltonian are separate
constants of motion, and the conditions of thermal equilib-
rium are not satisfied. In the presence of the rf field, a com-
mon spin temperature is established, and the system is de-
scribed in the rotating frame by the density matrix

�̂rot =
exp�− 	Ĥrot�

Tr�exp�− 	Ĥrot��
. �3�

The process of establishment of thermal equilibrium is de-
scribed by the Provotorov equations.22 When the rf term be-
comes comparable to the Zeeman term, Zeeman order is es-
tablished along the direction of the effective magnetic field
�B0−

�1

�I
�ẑ+B1x̂. After �1 reaches �IB0, we switch off the rf

field B1 adiabatically, so that all the initial Zeeman order is
transferred to the dipolar reservoir.
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III. EVOLUTION OF SPIN TEMPERATURE DURING
ADRF

During ADRF, the entropy of the system remains con-
stant. So, if we have an expression for the entropy as a func-
tion of the inverse spin temperature 	, we can calculate the
spin temperature during the ADRF. In particular, we can es-
timate the desired initial polarization, that is required in or-
der to observe a phase transition.

In the rest of the paper, we drop the superscript “rot,” as
we are only going to work in the rotating frame. We also use
the word “temperature” to denote nuclear spin temperature.

In the high temperature approximation,14 we can expand
the expression for the density matrix �3� to first order in
inverse temperature 	

�̂ = A�1̂ − 	Ĥ� , �4�

where A is a suitably chosen constant, so that Tr��̂�=1. The
entropy S then follows from the equation

S = − kBTr��̂ ln �̂� . �5�

For N spin-j particles of the same species, with gyromagnetic
ratio �, interacting through the dipolar interaction of Eq. �2�
we find, in the rotating frame

S
NkB

= ln�2j + 1� − 	2�2�2 j�j + 1�
6

	�B0 −
�1

�
�2

+ BL
2
 ,

�6�

where

BL
2 �

3

4

j�j + 1�
3�2�2 �

j

�uij�2. �7�

In the above equation, we have ignored the rf field B1. BL can
be interpreted as a “local field” due to the neighboring spins.

We follow the procedure described in Refs. 22–24 to ex-
tend this description to the case of lower temperature. The
idea is to include more terms in the expansion �4�, applying
a diagrammatic technique similar to that used in perturbation
theory. The Zeeman term is considered as the free part of the
Hamiltonian, and is treated to all orders. The dipolar interac-
tion term is considered as a perturbation, and by grouping the
resulting terms using a procedure that recalls Wick’s
theorem,25 we are able to efficiently perform the summa-
tions. In this calculation, we ignore the rf term in Eq. �1�, as
this has only the effect of bringing the Zeeman and dipolar
reservoirs to equilibrium. Also, far from resonance, the two
spin species cannot exchange energy, because their interac-

tion takes the form �ikvikÎi
zŜk

z, which cannot induce flip flops.
When the rf part in Eq. �1� becomes comparable with the
Zeeman part, the two reservoirs can exchange energy, be-
cause in this case the Zeeman ordering is not along the ẑ
direction. This means that the Zeeman and interaction parts
of the Hamiltonian do not commute, so they are not sepa-
rately constants of motion, and the conditions for the estab-
lishment of thermal equilibrium are satisfied. In our approxi-
mation, we do not study this effect. Our calculation consists
of defining the initial polarization of one spin species, and
calculating the spin temperature in the rotating frame during

the ADRF, with the constraints that the system is described
by one spin temperature, and that the entropy is invariant.

To study the feasibility of observing a phase transition, we
estimate Tc by the condition that the longitudinal magnetic
susceptibility vanishes, as the ordered state is expected to be
an antiferromagnet. This is not an accurate calculation, how-
ever, because only a few diagrams are involved in the high-
temperature expansion, while in the critical region higher
order terms become increasingly important. A common pro-
cedure to take the latter into account is described in Ref. 3, in
which extrapolation procedures are used to compute the lim-
iting behavior of high-temperature expansion series given
only the knowledge of the first few terms. Also, antiferro-
magnets have a more rich phenomenology than this simple
picture. In particular, Refs. 4, 26, and 27 imply that 1D
Heisenberg antiferromagnetic spin chains, in the limit of
large spin, are gapless for half-integer spin, so that the sus-
ceptibility does not vanish at the critical point. The mean-
field description17 is quite different, as well. A much better
way, based on mean-field theory, to calculate critical quanti-
ties, is presented in Sec. VI.

A. The longitudinal case

Assume that the spin interaction is longitudinal; that is,
the Hamiltonian has the form

Ĥ = 
�
i

Îi
z +

1

2�
i,j

uijÎi
zÎ j

z � ĤZ + Ĥ�. �8�


 stands for the detuning ���IB0−�1�. After thermalization,
the system is described by the density matrix

�̂ =
exp�− 	0ĤZ − 	Ĥ��

Tr�exp�− 	0ĤZ − 	Ĥ���
. �9�

We allow for different temperatures for the Zeeman and di-
polar reservoir for convenience in the calculation. In the end,
we are going to set these temperatures equal. Defining the

zeroth order thermal average for an operator Q̂ as

�Q̂�0 =
Tr�exp�− 	0ĤZ�Q̂�

Tr�exp�− 	0ĤZ��
, �10�

and treating the interaction term as a perturbation, we have
the following expansion for the true thermal average

�Q̂� =

�
n=0

�

�− 	�n��Ĥ��nQ̂�0/n!

�
n=0

�

�− 	�n��Ĥ��n�0/n!

. �11�

�Ĥ��n involves multiple sums, and the bookkeeping becomes
complicated, unless we define the semi-invariants Mi

0

��Î j
z�n�0 = �

i1+i2+¯+ip=n

Mi1
0 Mi2

0
¯ Min

0 . �12�

With this definition, we can write down a diagrammatic ex-
pansion, like the one described in Ref. 24. The advantage
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over the brute-force expansion �11� is that the resulting sums
are unrestricted, i.e., no constraints such as i� j are involved
in the summations. If we define connected diagrams as those

involving Q̂, and disconnected ones as those not involving it,
we can factor the numerator as the product of the sum of
connected diagrams times the sum of disconnected ones. The
latter serves to cancel the denominator, so that only con-
nected diagrams matter.

The calculation of the semi-invariants is straightforward.
With the definitions

� = − 	0
 ,

f j��� = tr�e�Îz
� =

sinh	�� j +
1

2
�


sinh��

2
� ,

tj
�n� =

1

f j���� d

d�
�n

f j��� , �13�

the first few semi-invariants can be written as

M1
0 = tj

�1�, �14a�

M2
0 = tj

�2� − �tj
�1��2, �14b�

M3
0 = tj

�3� − 3tj
�2�tj

�1� + 2�tj
�1��3. �14c�

The general case is covered in Appendix A.

B. Calculation of thermodynamic quantities

In this subsection, we calculate the entropy as a function
of inverse temperatures 	 and 	0 and detuning 
. In the final
formulas, we always set 	0=	, but we consider 	 and 	0 as
independent variables in the calculation of derivatives. We
first need to calculate the average polarization:



�

�	
�Îz� =

�

�	0
�ĤD� � =

�

��
�ĤD� �

d�

d	0
= − 


�

��
�ĤD� � .

�15�

Performing the integral, we find

�Îz��	0,	�
N

= t�1� − �
n

	n+1

n + 1



�

��
Gn�t�1����,t�2����, . . . ,t�n+1����� . �16�

The functions Gn are defined in Appendix B. If we keep
terms to first order in 
, we can estimate the longitudinal
magnetic susceptibility:

1

N
�Îz� 
 − �	
�

j�j + 1�
540

�180 − �33 + 56j + 56j2�	2���BL�2� .

�17�

This formula provides a method to estimate the critical tem-
perature of the paramagnetic to antiferromagnetic phase tran-

sition from the temperature at which the susceptibility be-
comes zero. For spin-1

2 and spin-9
2 , we find

kBTC� j =
1

2
� = 0.645���BL� , �18a�

kBTC� j =
9

2
� = 2.81���BL� . �18b�

This is a very rough estimate, as discussed in the beginning
of this section. Further, it refers to the ordering of each spe-
cies in its own lattice, not involving coupling between them.
Eventually we will use these couplings to create the artificial
Hamiltonian described in Sec. IV.

The free energy follows from the expression

ln Z�	0,	� = ln Z�	0,0� − �
0

	

�ĤD� ��	0,��d� , �19�

which can be expressed in terms of the functions Gn

1

N
ln Z�	0,	� = ln f j�− 	0�0� − �

n

	n+1

n + 1


Gn�t�1����,t�2����, . . . ,t�n+1����� .

�20�

We are now ready to calculate the entropy:

S
kB

= 	0�0�Îz� + 	�ĤD� � + ln Z�	0,	�; �21�

in terms of the functions Gn,

S
NkB

= − �tj
�1� + ln f j��� + �

n

	n+1

n + 1
�nGn + �

�

��
Gn� .

�22�

C. Results

During ADRF, the entropy remains constant. In order to
obtain an ordered final state, we need the initial state to be
sufficiently polarized. A rough estimate for spin-1

2 species is
to set the spin temperature kBT of the initial paramagnetic
state equal to the level spacing ��B0. This means that we
need the initial polarization, which is defined as the thermal
average magnetization over maximum magnetization, to be

p = tanh���B0

2kBT
� = 0.46. �23�

Section VI gives a better picture of how the initial polariza-
tion influences the ordering observed under the artificial
Hamiltonian we wish to implement.

In Fig. 1 we present the results of our numerical calcula-
tion. About 50% initial polarization of the spins is required in
order to reach a spin temperature where a phase transition
can be observed. Details about the proposed material system
are presented in Sec. V.
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IV. PULSE SEQUENCE AND THE ARTIFICIAL
HAMILTONIAN

If the system has been sufficiently cooled via optical
pumping and ADRF, it might be in dipolar-ordered state be-
cause of the inherent interaction between spins. On the other
hand, by applying a WAHUHA �Refs. 28 and 29� or MREV8
�Refs. 30–32� pulse sequence16 on resonance, we can de-
couple spins of the same species, and transform the interac-
tion between unlike spins from an Ising-like interaction to a
Heisenberg-like interaction.

In particular, the WAHUHA pulse cycle is given by

� − Px − � − P−y − 2� − Py − � − P−x − � , �24�

where P� and P−� denote �
2 and − �

2 pulses, respectively,
around the � axis ��=x ,y�. � and 2� denote the time interval

between the application of consecutive pulses. The pulse
cycle time is tc=6� plus the duration of the four pulses.
MREV8 contains two WAHUHA-type pulse cycles, concat-
enated to mitigate pulse imperfection effects. If the pulses
are short enough, then their effect can be modeled as an
instantaneous transformation of the Hamiltonian. To first or-
der in tc relative to the magnitude of the Hamiltonian, the
system dynamics are described by the time-averaged Hamil-
tonian over the pulse cycle. Average Hamiltonian theory
�AHT� is covered in detail in several textbooks �see, for ex-
ample, Ref. 16�. To first order in AHT, the dipolar interaction
in the rotating frame between nuclei of the same species �2�
is eliminated. If we simultaneously apply this pulse sequence
to both species, their dipolar interaction in the rotating frame

ĤIS� = �
i,k

wikÎi
zŜk

z �25�

is transformed to a Heisenberg-like interaction

H�
ˆ

IS = �
i,k

wik
1

3
Îi · Ŝk. �26�

In the above sums, the index i runs over the spins I, whereas
the index k runs over the spins S. wik has a similar expression
as uij in Eq. �2�:

wik =
�0

4�
�2�I�S

1 − 3 cos2��ik�
rik

3 . �27�

If we use the modified WAHUHA pulse cycle

�1 − Px − �2 − P−y − 2�2 − Py − �2 − P−x − �1, �28�

the effective interaction Hamiltonians to first order in AHT
are

H�
ˆ

II��1,�2� =
�1 − �2

tc
�
i,j

uij�Îi
zÎ j

z −
1

2
Îi

+Î j
−� , �29�

H�
ˆ

IS��1,�2� = �
i,k

wik	2�1

tc
Îi

zŜk
z +

2�2

tc
�Îi

xŜk
x + Îi

yŜk
y�
 , �30�

where tc=2�1+4�2. By keeping tc constant and varying �2

adiabatically from 0 to
tc

6 , we can get an interpolation be-

tween the initial and final Hamiltonians Ĥinit, Ĥfin, and trans-

form the state of the system from the thermal state of Ĥinit

with entropy S to the thermal state of Ĥfin with the same
entropy. In this way, we can study the thermodynamics of the
particular Heisenberg model for varying entropy. An alterna-
tive method is to keep �1=�2 and vary the width of the
pulses, so that they induce rotations by an angle �, same for
all pulses. By varying � from 0 to �

2 , we have a similar
effect, but the equations for the effective interactions are
more complicated.

V. CHOICE OF THE EXPERIMENTAL SYSTEM

Bulk InP is a suitable material for this experiment. As
described in Sec. IV, two spin species are required to imple-

FIG. 1. Evolution of spin temperature T vs detuning 
 during
ADRF. Dotted line: high temperature approximation. Broken line:
first order approximation. Continuous line: second order approxi-
mation. These approximations are discussed in Sec. III and the ap-
pendix. Insets: Initial polarization of 50%. The parameter BL �local
field� is defined in Eq. �7�, Tc is calculated in Eq. �18�. The calcu-
lation involves one spin species with spin 1

2 or 9
2 in an fcc lattice

and the Zeeman magnetic field along the �111� crystalline direction.
For high initial polarization, large spin, and near resonance, the
calculation does not converge.

QUANTUM SIMULATION OF SPIN ORDERING WITH… PHYSICAL REVIEW B 75, 094415 �2007�

094415-5



ment the desired model Hamiltonian. A strained lattice, on
the other hand, like a quantum well exhibits strong quadru-
polar broadening. This is because spins higher than 1

2 , such
as 113In and 115In, include a quadrupole term in the Hamil-
tonian, which gives a nonzero contribution in the presence of
electric field gradients. When this contribution is the domi-
nant one, it can be expected that any ordering due to the
dipolar interaction term is destroyed. Phosphorous has only
one isotope 31P with spin − 1

2 , while Indium has two isotopes,
113In and 115In have the same spin � 9

2
� and are close in Lar-

mor frequency for typical NMR magnetic fields, so we can
consider indium to be homonuclear. InP is a direct-gap semi-
conductor with strong optical properties, and efficient optical
cooling has already been demonstrated.12,13 InP has a
zincblende structure; if a dc magnetic field is applied along
the �111� crystalline direction, and couplings between spins
of the same species are neglected during the application of
the NMR pulse sequence as described in Sec. IV, then the
magnetic dipolar interaction between nuclei creates the fol-
lowing structure �note that the gyromagnetic ratio � of both
In and P nuclei is positive�. The planes of indium and phos-
phorous nuclei are grouped into pairs. The coupling between
nearest neighbors �NN�, which are always of different spe-
cies, is antiferromagnetic if both nuclei belong to the same
pair of planes, and ferromagnetic if the nuclei belong to suc-
cessive pairs of planes. Second nearest neighbors are of the
same spin species, and so their interaction is averaged out.
Some third-nearest-neighbor interactions cause frustration,
but the magnetic field orientation ensures that their effect is
small. Ignoring interactions farther than third nearest neigh-
bors leads the rather nice picture shown in Fig. 2. Interac-
tions within each pair of planes are antiferromagnetic. Cou-
pling between plane pairs is ferromagnetic. It is possible �but
by no means certain� that in the absence of an offset dc
magnetic field in the rotating frame, each plane pair acts as a
two-dimensional antiferromagnet, where the ferromagnetic
interaction between plane pairs merely ensures that all of
them have the same structure.

A complementary picture results if we consider each spin
species independently. In our proposed structure, each spe-
cies forms a lattice with anti-ferromagnetically ordered spins.
Antiferromagnetic ordering with spins of the same species
results in an indirect way, through interactions with spins of
the other species, as shown in Fig. 2.

How reasonable is it for us to neglect interactions beyond
third NN? The strength of dipolar interactions falls off with
distance only as 1

r3 , and because the volume integral

� � � dV
1

r3 = 4��
0

�

dr
1

r
�31�

is logarithmically divergent, interaction with distant nuclei
could significantly modify the above picture. We discuss this
question in the next section, in which we take into account
coupling between every pair of spins within the mean-field
approximation.

VI. MEAN FIELD THEORY OF ORDERING

In Sec. III we presented an estimate of the initial nuclear
spin polarization needed in order to observe a phase transi-

tion from a paramagnetic to an antiferromagnetic phase. Our
discussion involved thermodynamic arguments. A more ex-
act estimate could not be obtained with this method, as our
calculation includes only a few diagrams, and is not valid
near the phase transition. Additionally, it does not converge
to an answer when the spin temperature is small, and the
calculation of TC is not accurate, as already explained in the
beginning of Sec. III. We now use the local Weiss field ap-
proximation to study the problem of ordering of nuclear
spins under the effective interaction of our model. Our dis-
cussion closely follows Refs. 17 and 22.

During the application of the decoupling pulse sequence,
the spin Hamiltonian in the rotating frame is

H = c�I�S�
i,k

AikÎi · Ŝk, �32�

where c= 1
3

�0

4��2, Aik=
1−3 cos2��ik�

�ri−rk�3
. Neglecting short-range cor-

relations between spins, we can consider every spin as being
subject to a local field

��i = c�I�S�
k

Aik�Ŝk� , �33�

��k = c�I�S�
i

Aik�Îi� . �34�

We then assume thermodynamic equilibrium, so that the ex-

pectation values �Îi� and �Ŝk� equal their thermal averages.
Near a phase transition, the magnetization is small, so that

FIG. 2. �Color online� The configuration of the nuclear spins
under the experimental conditions described in Sec. V. Spheres of
the same color represent nuclei of the same species. Solid lines are
antiferromagnetic bonds, while broken lines are ferromagnetic ones.
Only nearest-neighbor bonds are plotted. The perpendicular direc-
tion in this figure is the �111� crystalline direction. We can see the
postulated antiferromagnetic planes, which are coupled ferromag-
netically. Within each plane, spins of one species tend to form a
ferromagnetic lattice, which is aligned antiferromagnetically to the
lattice formed by the spins of the other species. On the other hand,
spins of the same species belonging to successive planes tend to
align antiferromagnetically.
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we can neglect all terms except the linear term

�Îi� = −
1

3
I�I + 1�	��i, �Ŝk� = −

1

3
S�S + 1�	��k.

�35�

I and S are the spin quantum numbers for spins I and S. We
then write a self-consistent set of equations, using the lattice

Fourier transforms of �Îi�, �Ŝk�, and �Aik�:

��II
��k� + c�I�SA*�k�S��k� = 0,

c�I�SA�k�I��k� + �SS��k� = 0,
� �36�

where �I
−1=	I�I+1� /3, �S

−1=	S�S+1� /3, �� �x ,y ,z�, and
I��k�, S��k�, and A�k� are the lattice Fourier transforms of

�Îi
��, �Ŝk

��, and �Aik�, respectively.
We now calculate the transition temperature and ordered

structure. The above equations are satisfied for all k at the
phase transition. Thermodynamic stability17 implies that we
should set all I��k� and S��k� equal to zero, except the one
which gives the maximum �Tc�. We have to keep in mind that
this can occur for small �k�, in which case the predicted or-
dered structure is ferromagnetic with domains.

For a zincblende lattice, with coupling only between dif-
ferent species and the dc magnetic field parallel to the �111�
crystalline direction, this maximum occurs for k0

=a−1� �
2 , �

2 , �
2

�; �A�k0��=7.00a−3, with 2a the edge of the con-
ventional cubic cell. The predicted ordered structure is the
same as the one described in Sec. V, which followed from
nearest neighbor interactions alone. Because of the Heisen-
berg form of the interaction, there is complete rotational de-
generacy for classical spins. The transition temperature is
calculated to be

kBTc =
�I�I + 1�S�S + 1�

3
c�I�S�A�k0�� . �37�

The spin temperature of the system is modified by the ADRF
process, and the subsequent application of the pulse se-
quence. So, the relevant quantity is the critical entropy, or the
critical polarization in high field. To calculate it, we follow
the formalism described in Sec. III. To avoid complications,
we use the high temperature approximation. For a lattice
with N spins I and N spins S, the entropy before ADRF is

S
NkB

= ln�2I + 1� −
1

2
	I

2�I
2�2 I�I + 1�

3
�B0�2 + ln�2S + 1�

−
1

2
	S

2�S
2�2S�S + 1�

3
�B0�2 �38�

while the polarization of spin − 1
2 nuclei �31P for InP� is

p = tanh�	��B0

2
� . �39�

We first assume that both spin species always have the same
spin temperature. This is not true for the optical pumping

mechanism for species with different spins and/or different
gyromagnetic ratios, and we study this effect later. During
the application of the pulse sequence on resonance to both
species, the entropy is

S
NkB

= ln�2I + 1� + ln�2S + 1�

−
1

2
	2 I�I + 1�

3

S�S + 1�
3

�3c2�I
2�S

2��
k

�Aik�2. �40�

The above equation is valid only in the paramagnetic phase.
For the zincblende structure with the applied Zeeman mag-
netic field B0 � �111�, �k�Aik�2=13.238a−6. At 	=	c, this ex-
pression for the entropy is equal to the value in Eq. �38�. If
both species are spin − 1

2 , and have identical gyromagnetic
ratios, the critical polarization is pc=56%.

The general case does not include any further complica-
tions. Just after ideal optical pumping of the sample,33,34 the
spin temperatures of the two species satisfy

	I�I = 	S�S. �41�

Equilibration between the two spin species occurs for BI

��B0−
�I

�I
�, BS��B0−

�S

�S
�, and �I�B0−

�I

�I
�
�S�B0−

�S

�S
�,

where BI, BS are the rf fields acting on the I and S spins. The
first condition arises as we need the interaction term to not
commute with the rest of the Hamiltonian for I and S spins
�see Eq. �1��, so that the two spin species can exchange en-
ergy. The second condition maintains that simultaneous spin-
flips conserve energy, so that they have a nonnegligible prob-
ability. We assume that these fields are much larger than the
local fields of Eq. �7�, so that we can ignore the latter. We
also assume that equilibration happens at some particular
point of ADRF, when the I and S spins have temperatures 	I�
and 	S�, respectively. From Eq. �6�

�	I��B0 −
�I

�I
��2 = 	IB0

	S��B0 −
�S

�S
��2 = 	SB0

� ⇒
	I�

	S�



	I�I

	S�S
= 1. �42�

That is, the two species are already in equilibrium, and there
is no entropy loss.

It is now straightforward to calculate the critical polariza-
tion for both species, with the assumption of ideal optical
pumping and no entropy loss during the transformation of
the Hamiltonian. The result is

pc
P = 15 % , pc

In = 49 % . �43�

VII. CONCLUSION

We have proposed an experiment of quantum simulation
of spin Hamiltonians by the manipulation of nuclear spins in
a solid. Bulk InP seems to be a suitable material for this
experiment. A particular orientation of the crystal produces a
convenient model Hamiltonian. We have presented an NMR
pulse sequence, which transforms the natural dipolar spin
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Hamiltonian to a Heisenberg model with long range interac-
tions. We have also performed a calculation to estimate the
experimental feasibility of our proposal. Our results suggest
that initial polarization of phosphorous nuclei of about 15%,
and of indium nuclei of about 50% is needed in InP, in order
for a phase transition to be observed. The difference in these
values is because of different nuclear spin quantum numbers,
and these values should be consistent under ideal optical
pumping conditions. This critical polarization seems reason-
able for optical pumping of bulk InP in low temperature and
high magnetic field.

This scheme provides an alternative for quantum simula-
tion experiments which is predicted to be technically simpler
than the cold atom approach, and involves a macroscopic
number of quantum particles. It is true that its flexibility in
implementing a specific spin-lattice Hamiltonian is limited,
and the method of detection described in the Introduction
cannot give any information about the specific orientation of
the spin dipoles. To extract this information, one needs more
complicated techniques, such as neutron scattering.15 More
sophisticated NMR measurement strategies might also be
possible. Nevertheless, this scheme enables the study of sev-
eral interesting spin-lattice models. Similar experiments have
already been performed,19–21 and they constitute a proof of
principle for the validity of the spin-temperature concept,
and for this method of manipulating the dipolar interaction.
However, in these experiments only one spin species was
used, which limits the freedom to manipulate the internal
Hamiltonian. In particular, �

2 pulses could not be used, as the
interaction Hamiltonian is averaged out, and the equilibra-
tion time becomes infinite. In our case, the interaction be-
tween different spin species remains nonnegligible, and the
adiabatic criterion can be satisfied near resonance, when the
two spin species can exchange energy.

Our proposal is known to have several uncertainties and
approximations, discussed below. To our knowledge, nuclear
ordering has not been observed until now using optical
pumping as the cooling technique. This renders the experi-
ment both interesting and technically challenging. We also
have to point out that this experiment, as with most NMR
experiments, involves subtleties because of various relevant
timescales, and the inequalities that they have to satisfy. A
detailed discussion is quite technical, but plenty of informa-
tion can be found in the literature, in particular about when
AHT is valid16 and when ADRF �Ref. 14� is adiabatic. What
is not adequately studied, however, and requires further re-
search, is the rate of establishment of thermal equilibrium in
low spin temperature while a multipulse sequence is applied.
This scheme also suffers from several nonidealities, namely,
indirect nuclear magnetic interactions,35,36 nonidealities of
the multipulse sequence, or not perfectly adiabatic transfor-
mation of the Hamiltonian. Nonetheless, nonideal ADRF is
found in Ref. 37 not to pose a serious problem for high initial
polarization and typical NMR applied magnetic fields. Fur-
ther, the method described for the calculation of the transi-
tion temperature is valid only for classical spins within the
mean-field approach, so a more sophisticated calculation
would be interesting.
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APPENDIX A: THE SEMI-INVARIANTS FOR THE
GENERAL DISPOLAR INTERACTION CASE

In Sec. III A, we calculate the semi-invariants in the case
that the spin interaction is longitudinal. We now restore the
transverse term of the Hamiltonian

Ĥ = 
�
i

Îi
z +

1

2�
i,j

�uijÎi
zÎ j

z + vijÎ i
+Î j

−� � ĤZ + ĤD� . �A1�

For the dipolar interaction, vij =− 1
2uij. We take into account

that the operators Îi
z , Îi

± do not commute and introduce time
ordering. Details can be found in Refs. 22 and 24. The semi-
invariants are defined in a similar way as in Eq. �12�, but the
partition sets of the right part must follow the ordering of the
left hand side. The additional semi-invariants we need for
our calculation are

M2
0�I+I−� = j�j + 1� + tj

�1� − tj
�2�, �A2a�

M2
0�I−I+� = j�j + 1� − tj

�1� − tj
�2�, �A2b�

M3
0�IzI+I−� = M3

0�I+I−Iz� = − �tj
�1��2 + tj

�2��1 + tj
�1�� − tj

�3�,

�A2c�

M3
0�IzI−I+� = M3

0�I−I+Iz� = �tj
�1��2 − tj

�2��1 − tj
�1�� − tj

�3�,

�A2d�

M3
0�I+IzI−� + M1

0M2
0�I+I−�

= − j�j + 1� + �j2 + j − 1�tj
�1� + 2tj

�2� − tj
�3�, �A2e�

M3
0�I−IzI+� + M1

0M2
0�I−I+�

= j�j + 1� + �j2 + j − 1�tj
�1� − 2tj

�2� − tj
�3�. �A2f�

APPENDIX B: CALCULATION OF THE DIPOLAR
INTERACTION ENERGY

As is clear in Sec. III B, calculation of the dipolar inter-
action energy is the key to the calculation of other interesting
thermodynamic quantities, and in particular the entropy,
which is our ultimate goal. The dipolar energy is

2

N
�ĤD� � = �

i
	u1i�Î1

z Îi
z� +

v1i

2
��Î 1

+Î i
−� + �Î1

−Îi
+��
 , �B1�

with vij =−
uij

2 . N is the total number of spins. Because of the

symmetry of the resulting diagrams, the terms �Î1
+Îi

−� and

�Î1
−Îi

+� give the same contribution, so we keep just the former,
multiplied by v1i. The second order expansions give the dia-
grams of Fig. 3, and result in the following expressions:
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�Î1
z Îi

z� 
 �− 	��M2
0�2u1i

+ �− 	�21

2
�M3

0�2�u1i�2

+ �− 	�2M3
0�+ − z�M3

0�− + z��v1i

2
�2

+ �− 	�2�M2
0�3�

j

u1juji, �B2�

�Î 1
+Î i

−� 
 �− 	�
v1i

2
M2

0�+ − �M2
0�− + �

+ �− 	�2v1i

2
u1i

1

2
�M3

0�+ z − �M3
0�− z + �

+ M3
0�z + − �M3

0�z − + �� + �− 	�2


�
j

v1j

2

v ji

2
M2

0�+ − �M2
0�− + �



1

2
�M2

0�+ − � + M2
0�− + �� . �B3�

The final result can be expressed in terms of the following
quantities, which depend on the particular lattice and the
orientation of the magnetic field

I2 = �
i

�u1i�2, �B4a�

I3 = �
i

�u1i�3, �B4b�

K3 = �
i,j

u1iuijuj1. �B4c�

For the case of an fcc lattice, with the magnetic field parallel
to the �111� crystalline direction, we obtain the values

I2 = 1.6908� �0

4�

�2�2

a3 �2

, �B5a�

I3 = − 0.0072073� �0

4�

�2�2

a3 �3

, �B5b�

K3 = 2.1173� �0

4�

�2�2

a3 �3

, �B5c�

where 2a is the edge of the conventional cubic cell. We refer
to these values in Sec. III C.

With these definitions, we have the following expansion
for the dipolar interaction energy

1

N
�ĤD� � = 	G1�t�1����,t�2����� + 	2G2�t�1����,t�2����,t�3�����

+ ¯ ; �B6�

for vij =− 1
2uij, the functions G1, and G2 take the form

G1�t�1����,t�2����� = −
1

2
	�M2

0�2I2 +
1

8
M2

0�+ − �M2
0�− + �I2
 ,

�B7a�

G2�t�1����,t�2����,t�3�����

=
1

2
�1

2
�M3

0�2I3 +
1

16
M3

0�+ − z�M3
0�− + z�I3 + �M2

0�3K3

+
1

16
�M3

0�+ z − �M3
0�− z + � + M3

0�z + − �M3
0�z − + ��I3

−
1

64
M2

0�+ − �M2
0�− + ��M2

0�+ − � + M2
0�− + ��K3� .

�B7b�
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