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The ground states of Klein-type spin models on the pyrochlore and checkerboard lattice are spanned by the
set of singlet dimer coverings and thus possess an extensive ground-state degeneracy. Among the many exotic
consequences is the presence of deconfined fractional excitations �spinons�, which propagate through the entire
system. While a realistic electronic model on the pyrochlore lattice is close to the Klein point, this point is, in
fact, inherently unstable because any perturbation � restores spinon confinement at T=0. We demonstrate that
deconfinement is recovered in the finite-temperature region ��T�J, where the deconfined phase can be
characterized as a dilute Coulomb gas of thermally excited spinons. We investigate the zero-temperature phase
diagram away from the Klein point by means of a variational approach based on the singlet dimer coverings of
the pyrochlore lattices and by taking into account their nonorthogonality. We find that in these systems,
nearest-neighbor exchange interactions do not lead to Rokhsar-Kivelson-type processes.
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I. INTRODUCTION

Discovering new phases of matter is a primary objective
of physics. The fractionalized spin liquid in two spatial di-
mensions �d=2� has provided a popular candidate frame-
work for models describing the exotic properties observed in
many strongly correlated electronic materials, including frus-
trated quantum magnets and high-Tc superconductors.1 The
spin-liquid state is characterized by spinon excitations carry-
ing a unit charge under a compact U�1� gauge field. How-
ever, Polyakov has argued2 that a pure compact U�1� gauge
theory is always confining at zero temperature for d=2, with
confinement between test particles with opposite charges be-
ing produced by the proliferation of instanton tunneling
events.

By contrast, the case for confinement by instanton prolif-
eration in spin systems is rather more involved,3,4 and the
situation at a critical point offers additional possibilities.
These considerations underlie a recent discussion of the de-
confined quantum critical point5 as the foundation for the
emergence of spin-liquid phases with fractional excitations.
However, while this set of elegant ideas appears most plau-
sible, it is not yet clear from any analytical or numerical
calculations that there exists a microscopic Hamiltonian, and
particularly one with only simple electronic interactions, ex-
emplifying this class of physical phenomena. Quasiparticle
fractionalization has been demonstrated rigorously in one di-
mension �1D� and in the quantum Hall effect. For frustrated
quantum spin systems, recent progress was made in the con-
text of a two-dimensional model with high degeneracy in the
ground-state manifold, which exhibits �partial� dimensional
reduction6 and consequent spinon deconfinement.7 We will
expand upon and systematize these ideas to provide a further
demonstration of a class of physical systems displaying frac-
tional excitations.

To this end, we begin with the natural question of whether
a dilute gas of deconfined spinons can be stabilized in di-
mensions d�1 in a finite region of the phase diagram. This

latter requirement is crucial for observing deconfined spinon
excitations in real systems. We will provide an affirmative
answer by considering a highly frustrated S=1/2 model on
the d=2 �checkerboard� and d=3 pyrochlore lattices. We
demonstrate that for T=0, the spinon excitations are decon-
fined at the Klein critical point, whose nature we will explain
in detail. As expected from above, this zero-temperature de-
confined phase is unstable under any realistic perturbation
characterized by an energy scale �. We argue that in the
regime ��J, where J is the characteristic energy scale of the
model, a dilute Coulomb gas of spinons is stabilized in the
temperature range ��T�J. This result raises the possibility
of observing spinons in real higher-dimensional systems.

The checkerboard and pyrochlore lattices �Fig. 1�, which
form the focus of our analysis, have long been known to
possess a geometry which is amenable to very large ground-
state degeneracies. The pyrochlore lattice is composed of
corner-sharing tetrahedra, arranged in a cubic �fcc� structure,
such that each vertex is common to two four-site units �see
panel �b� of Fig. 1�. This geometry is rather common in
transition-metal and rare-earth oxide systems, specifically in
the pyrochlore �the origin of the name� and spinel structures.
The pyrochlore systems8 have chemical formula A2B2O7,
where both A and B may be taken from a wide range of

FIG. 1. �Color online� �a� Checkerboard and �b� pyrochlore
lattices.
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metal ions, particularly rare earths, and both occur on a
pyrochlore lattice. Spinel systems9 have chemical formula
AB2O4, where it is more typical for the A and B ions to be
transition metals and only the B sites form a pyrochlore
structure. Individual compounds in these classes are usually
strongly insulating and of fixed ionic valences, and the pres-
ence of nonmagnetic ions on one of the sublattices �the A
sites for the spinel� leads to a pyrochlore lattice of interacting
spins on the other. It was noted at a very early stage10,11 that
the connectivity of such a structure is not dissimilar to the
arrangement found in water ice, a point that we will both
explain and exploit extensively below.

The checkerboard lattice can be considered as a two-
dimensional �2D� version of the pyrochlore structure, in the
sense that it also is composed of corner-sharing tetrahedral
units, these being represented by the crossed plaquettes �the
terminology we adopt henceforth� in panel �a� of Fig. 1. It is
the relatively low coordination number and tetrahedral con-
nectivity of the checkerboard and pyrochlore lattices, which
permit a proliferation of ground states. Some of the essential
considerations are presented for classical pyrochlore antifer-
romagnets in Ref. 12 and for quantum pyrochlore antiferro-
magnets in Ref. 13. While a significant body of recent work
has led to a better understanding of icelike phases in pyro-
chlore ferromagnets,14 the situation for both classical and
quantum antiferromagnets remains far from satisfactory, to
the extent that certain results conflict.15 Here, we provide a
further contribution to the body of knowledge concerning
quantum pyrochlore antiferromagnets.

We will demonstrate further that the highly unconven-
tional properties listed above arise within simple, nearest-
neighbor, bilinear and biquadratic spin models on the 2D and
three-dimensional �3D� pyrochlore lattices. These models are
derived directly from half-filled, nearest-neighbor Hubbard
models, i.e., from models with Coulomb interactions of the
shortest range, and are thus fully realistic for electronic sys-
tems. The key features giving rise to exotic behavior are �i�
an exponential number of degenerate ground states; �ii� exact
critical behavior with an emergent divergent correlation
length, accompanied by the absence of a long-ranged order;
�iii� fractionalization of excited spin states into spinons,
which freely propagate in space, implying a separation of
spin and charge upon doping these systems �we will show
that the emergent fractionalized excitations have well-
defined quantum numbers, which may be described as resid-
ing at the ends of strings obeying simple rules�; �iv� an ef-
fective dimensional reduction occurring precisely at the
critical point; and �v� topological order in a sense, which we
will define explicitly below. All of these features lead in
combination with a distinct type of critical point whose static
and dynamic properties we will characterize in detail, illus-
trating, in addition, their connection to a multitude of ideas
and concepts emerging in the recent literature in the context
of deconfinement and criticality.

In Sec. II, we introduce the type of spin model displaying
a Klein point, and discuss its foundation in the electronic
Hamiltonian of real, correlated insulating materials. In Sec.
III, we begin our analysis of the model at the Klein critical
point and at zero temperature, focusing on the characteristic
properties here and illustrating their origin in the extensive

ground-state degeneracy. In Sec. IV, we remain at the Klein
point but consider finite temperatures to derive the effective
entropic interaction of spinon excitations and thus demon-
strate their thermally driven deconfinement. In Secs. V and
VI, we restore some of the perturbing effects present in the
realistic Hamiltonian of Sec. II. Working at zero temperature,
in Sec. V, we introduce and apply a specifically constructed
variational procedure based on the �nonorthogonal� dimer
coverings of the ground-state manifold to demonstrate the
selection of specific valence-bond orderings as the ground
states of the perturbed system. In Sec. VI, we extend our
considerations to finite temperatures and present one ex-
ample of an exactly critical regime. These calculations indi-
cate explicitly both the confinement of spinons at low tem-
peratures and their liberation at higher temperatures, thus
reinforcing the results of Secs. III and IV. Section VII con-
tains a discussion and conclusion.

II. MODEL

The spin model upon which we focus is a S=1/2 Hamil-
tonian on the checkerboard and pyrochlore lattices,

H = J �
�ij�,�

Hij
� + K�

�

�Hij
�Hkl

� + Hil
�Hjk

� + Hik
�Hjl

�� , �1�

where �ij� denotes all pairs of sites in the tetrahedron, �

� ijkl, and Hij
� =S� i

� ·S� j
� is a scalar product of the two spins.

On the checkerboard lattice, � denotes each crossed
plaquette, by which is meant those in Fig. 1�a� with cross-
coupling interactions, and the first term is equivalent to both
nearest- and next-neighbor Heisenberg interactions of
strength J. This model was considered on the square lattice
�all plaquettes crossed� by two of the present authors,7 and
we will contrast the two d=2 systems below. The Heisenberg
interaction on the tetrahedral units �we will also refer to the
crossed plaquettes of the checkerboard lattice as tetrahedra�
of the d=2 and d=3 pyrochlore lattices is strongly frustrated,
and the symmetric four-spin interaction pushes the model to
maximal frustration at Kc=4J /5.30

A straightforward but important observation is that H may
be recast in the form

H =
J1

2 �
�

S��
2 +

J2

4 �
�

S��
4 , �2�

with S�� the net spin of the tetrahedral unit �,

S�� � �
i��

S� i, �3�

J1=J−7K /4, and J2=K /2.31 This Hamiltonian �1� can be
obtained from the Hubbard model on the pyrochlore or
checkerboard lattice,

HHubb = − t �
�ij�,�

ci�
† cj� + U�

i

ni↑ni↓, �4�

where ni�=ci�
† ci� is the number operator for electrons of spin

�. This is perhaps the simplest possible description of inter-
acting electrons with only nearest-neighbor hopping t and a
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local Coulomb repulsion U. Systems, which are half-filled
and have strong on-site interactions are localized insulators
where, with the exception of virtual processes, the kinetic
energy gain from hopping is sacrificed to avoid the Coulomb
cost of double occupancy. The effective Hamiltonian ob-
tained from the virtual hopping processes at the lowest �sec-
ond� order in the small parameter t /U is a nearest-neighbor
Heisenberg model of the type contained in the first term of

Eq. �2�, with J1=4t2 /U and electronic spin S� i
a=ci�

† ���
a ci� �a

=x ,y ,z�.
A fourth-order strong-coupling expansion of Eq. �4� re-

turns interaction terms bilinear in spins on the same and on
different tetrahedra and those biquadratic in spins on the
same tetrahedron.32 As shown in detailed studies performed
for plaquettes of the square lattice in the context of planar
cuprates,33 and verified by fits to magnon dispersion relations
for the same systems,34 the latter interactions are stronger
than the former by approximately one order of magnitude.
Specifically, a far larger number of intratetrahedron pro-
cesses, whose sum has the symmetric form contained in the
second term of Eq. �1�, contribute to the effective fourth-
order Hamiltonian than processes of the next-neighbor
Heisenberg type do. Thus, by retaining only the intratetrahe-
dron processes to fourth order in t, one obtains the spin
Hamiltonian of Eq. �2� with35

J1 =
4t2

U
−

160t4

U3 + O	 t6

U5
 ,

J2 =
40t4

U3 + O	 t6

U5
 . �5�

The general, SU�2�-invariant spin Hamiltonian arising from
a realistic electronic model may thus be considered as an
intraplaquette interacting system of exactly the form given in
Eq. �2�, with only very weak perturbations from intertetrahe-
dron terms. To quantify this statement, in the half-filled sys-
tem, Eqs. �2� and �4� are related by

H̃Hubb = H + J3 �
��ij��

S� i · S� j , �6�

where H̃Hubb is the effective spin Hamiltonian obtained from
a fourth-order strong-coupling expansion of HHubb. The sum
is over pairs of sites ��i , j�� separated by two bonds and
which do not belong to the same tetrahedron. The exchange
coupling J3 is given by

J3 =
4t4

U3 + O	 t6

U5
 . �7�

It is evident from Eqs. �5� and �7� that for small t /U, the
interplaquette corrections �J3� originating from the Hubbard
Hamiltonian are indeed one order of magnitude smaller than
the intraplaquette terms of H �Eq. �2��.

In Sec. III, we will analyze the properties of Eq. �2� at the
Klein point, J1=−J2 �Ref. 36� or K=Kc=4J /5, where the
semipositive definite Hamiltonian of Eq. �2� attains its mini-
mal value �when S�=0 or 1 on every tetrahedron�. The Klein
point is quasiexactly solvable. �Its ground states may be de-

termined exactly.� Following the observations in the preced-
ing paragraph, in Secs. V and VI, we will expand our treat-
ment to include perturbations around the Klein point, which
are of two types: the stronger, represented by nearest-
neighbor Heisenberg terms, corresponds to deviations of Eq.
�1� from the point K=Kc and the weaker, represented by
next-neighbor Heisenberg terms �and, for the checkerboard,
cyclic terms on the uncrossed plaquettes�, corresponds to
fourth-order interplaquette interactions. Specific S=1/2 ma-
terials can be expected at least in the 3D pyrochlore struc-
ture, such as that formed by the magnetic ions at both Am+

and Bn+ �m+n=7� sites in the stereotypical pyrochlore sys-
tems A2B2O7 and on the B sites in Am+B2

n+O4 �m+2n=8�
spinels. However, despite the considerable choice of mag-
netic and nonmagnetic ionic species afforded by these two
structural classes, to date we are not aware of the successful
synthesis of any such compounds, which maintain the full
cubic lattice symmetry.

III. EXACT GROUND STATES FOR THE S=1/2 SYSTEM
AT THE KLEIN POINT

Equation �2� suggests an even simpler way of expressing
the Hamiltonian,

H = �
�

h�, �8�

with h� a quartic polynomial in the total spin of the four sites
forming a given tetrahedral unit of the pyrochlore lattice,
h�= 1

2J1S�
2 + 1

4J2S�
4 . For clarity, we provide a brief review of

the possible two- and four-particle states of S=1/2 spins. For
a system of four coupled spins, the total spin S� of any
tetrahedron obeys 0	S�	2. The 16-state spin space is de-
composed into two singlet states �S�=0�, three triplets
�S�=1�, and one quintet �S�=2� as follows:

1

2
�

1

2
�

1

2
�

1

2
= 0 � 0 � 1 � 1 � 1 � 2. �9�

In this explicit decomposition, the right-hand side labels the
disjoint net spin �S�� sectors while the left-hand side encodes
the 16-dimensional space spanned by the direct product of
the four S=1/2 particles. The sum of any two nearest-

neighbor spins on the lattice, �S� i+S� j�2=Spair�Spair+1�, takes
only the two values Spair=0 ,1. If any two spins within a
given tetrahedron are in a singlet state �Spair=0�, then the
total spin of this tetrahedron cannot exceed unity, S�	1. For
the parameter choice K=Kc �J2=−J1�, H �Eq. �2�� can
be rewritten, up to irrelevant constants, as a Klein
Hamiltonian37

HK =
12

5
J �

�
P�, �10�

where P is the projection operator onto the subspace of net
spin S�=2.

Next, we note, following Ref. 39, that because the number
of lattice sites is double the number of tetrahedra, Ns=2Nt,
the set of ground states with one singlet per tetrahedron can
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be mapped onto the set of hard-core dimer coverings of the
lattice. Thus, any dimer covering of the lattice with precisely
one dimer per tetrahedron is a ground state of HK. Further,
any state �
�, which is a superposition of dimer coverings,
each of which has one dimer per tetrahedron,

�
� = �
P

�P �
ij�P

�Sij� with �Sij� =
1

2

��↑↓� − �↓↑�� �11�

�the dimer coverings are labeled by P�, is also a ground state
of HK. One of the simplest ground states is afforded by the
dimer coverings depicted in Fig. 2. While it is clear that any
state of the form of Eq. �11� is a ground state, a proof that all
ground states are of this form is far less obvious. It may,
nevertheless, be shown rigorously38 that for Klein models on
the pyrochlore lattices, all ground states are indeed of the
type specified in Eq. �11�.

As a first qualitative consequence of this result, it was
noted in Ref. 7 for the analogous point in the square-lattice
Hamiltonian that satisfying this constraint leads to a signifi-
cant degeneracy because dimer singlets may be rearranged
along diagonal lines of the lattice with no energy cost. The
ground-state entropy scales with the perimeter of the system,
and pairs of single-spin �spinon� excitations on the diagonal
lines have no binding energy for any separation. Thus, the
effective dimensional reduction from 2D to 1D leads to the
presence of deconfined spinons whose propagation is essen-
tially unidimensional. On the pyrochlore lattice, the open
structure of crossed plaquettes creates a less constrained sys-
tem, and the number of dimer configurations in the ground-
state manifold is strongly enhanced, with the still more mas-
sive degeneracy implying similarly exotic physics in this
case. We proceed quantitatively by computing the ground-
state entropy in Sec. III A.

In addition to the simple coverings shown in Fig. 2, a far
richer variety of states exists. The mapping onto the spin-ice
problem mentioned briefly above provides a useful classifi-
cation of these ground states. We stress that the states with
one dimer per tetrahedral unit defined by Eq. �11� map ex-
actly to the ice problem,14,16 where, motivated by the struc-
ture of H atoms in solid water,10,11 two of the sites of any
elementary unit �a tetrahedron� are associated with an ingo-
ing arrow pointing toward the center of the tetrahedron and
two sites lie on the arrows pointing outwards. We label the
two sites belonging to a singlet dimer �Sij� in a given tetra-
hedron � by two incoming arrows from sites i and j to the

center of the unit �� ijkl. In this fashion, it is clear that the
system is mapped to a set of continuous directed lines such
that each tetrahedral unit has exactly two incoming and two
outgoing arrows relative to its center. An example of this
mapping is illustrated in Fig. 2. A longer but ultimately
equivalent version of this mapping, enabling a study of cor-
relations and degeneracies, was reported in Ref. 39. The
mapping is one to one: any spin-ice configuration determines
a unique singlet-covering state with one dimer per tetrahe-
dral unit and vice versa. The conservation of incoming and
outgoing arrows in the spin-ice representation is the founda-
tion for the divergence-free condition we will employ below.
Throughout this work, we focus on systems with periodic
boundary conditions �PBCs�. A system with open boundary
conditions �OBCs� would possess a number of additional
ground states not captured by the six-vertex mapping, the
entropy of which scales like the system surface.

A. Ground-state degeneracy and entropy

Because the number of pyrochlore spin-ice states is
bounded from below40 by the Pauling limit,11 the number of
ground states �or, more precisely, of nonorthogonal dimer
coverings� is given by

Ng � �3/2�N/2, �12�

with N the number of vertices of the pyrochlore lattice and
Ng the number of ground-state singlet dimer coverings. We
emphasize that this degeneracy is exponential in the system
volume, yielding an extensive entropy with a simple, analyti-
cal expression for the lower bound, the Pauling entropy
SP= 1

2NkB ln 3
2 . The “exact” entropy of the ice problem is

known from series expansion methods,41 which yield the nu-
merical result

Sg = �0.205 01 ¯ �NkB � SP = �0.202 73 ¯ �NkB. �13�

Similarly, for the checkerboard lattice, the system is re-
duced to the exact spin-ice model42 on the square lattice
formed by the centers of the crossed plaquettes, leading to an
exact singlet-dimer-covering degeneracy42,43 of

Ng = �4/3�3N/4, �14�

with N the number of vertices of the checkerboard lattice,
whence Sg= 3

4NkB ln 4
3 . In this derivation, we have assumed

that the singlet dimer coverings, although nonorthogonal, are

FIG. 2. �Color online� Highly regular ground
states on the checkerboard and pyrochlore lat-
tices. The ovals denote singlet dimer states. The
arrows denote the representations of these dimer
states within the six-vertex model �see text�. On
each plaquette �tetrahedron�, the dimer connects
the bases of the two incoming arrows.
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linearly independent.44 There are additional “defect” states in
the ground-state manifold, in which two singlet dimers may
occupy a single tetrahedron, or unpaired spins may be
present, without altering the total energy.46 However, be-
cause the entropy of these states scales with the system sur-
face, they constitute a set of measure zero in comparison
with the extensive set of dimer coverings, and will be ne-
glected in what follows.

B. Geometry of ground states

To examine the structure of general ground states of the
model �Eq. �1�� at the Klein point, we invoke the line repre-
sentation of the six-vertex model42 depicted in Fig. 3. In this
convention, every line is composed of links whose arrows
point to the right, and there is clear one-to-one mapping be-
tween the six-vertex and the line representations. An essen-
tial property of the lines is their “chiral” nature: they always
represent a motion only to the right �Fig. 3�. We will show in
detail below �Fig. 7� that this chirality is not merely an arti-
ficial feature of the line representation, but it encodes the
physical restrictions on the possible spinon paths in the back-
ground of the allowed dimer states.

Finding the elementary process connecting a given dimer
covering with other ground states is straightforward in the
line representation. Figure 4�c� shows the line representation
of the ground state depicted in Fig. 2. The simplest process
in the dimer basis corresponds to flipping over one of the line
corners in the line representation, as depicted in Figs. 4�c�
and 4�d�. Note that there is an uncrossed plaquette �in the
original lattice� associated with each such corner flip. Re-
turning to the dimer representation, such a process corre-
sponds to a cyclic rotation of the four dimers connected to
the uncrossed plaquette �Fig. 4�b��. A similar process around
a hexagon whose edges belong to six different tetrahedra is
obtained for the pyrochlore lattice. For clarity of explanation,
we comment that in Figs. 4�c� and 4�d�, and later in this
section, the six-vertex �thin lines with arrows� and line rep-
resentations �thick� are superposed to aid in illustrating their
equivalence, but either alone is a complete representation of
the system in terms of independent sets of quantum numbers.

The mapping to the line representation shows that the
low-energy sector of a Hamiltonian at the Klein point can be
mapped into a string model. It is clear that the total number
of lines is a conserved quantity under any local physical
process, where by “local” we mean that the process changes
only a finite number of �spin� degrees of freedom. The dimer
coverings may therefore be classified according to this line
quantum number. As an example, in Fig. 5 we show that the
uniform or “ferroelectric”42 dimer covering corresponds to
the vacuum of lines. The number conservation implies that
this state cannot be connected with any other ground states
by a local process. The other ferroelectric dimer state �of
opposite polarization�, which is obtained by spatial inver-
sion, corresponds to the state, which is full of lines in the line
representation, and by the same argument is not connected
by a local process to any other states in the ground manifold.
Spatial inversion corresponds to the line-antiline transforma-
tion �line conjugation� in the line representation.

Not unexpectedly, the exact solution of the six-vertex
model42 reveals that the ground states of greatest importance
�by which is meant those becoming increasingly sharp in the
thermodynamic limit� are those containing, on a checker-
board lattice of size L�L, precisely L /2 lines. This sector
has the highest statistical �entropic� weight by virtue of the
many ground states it possesses. Analogously, we will see in
Sec. V that when the system is perturbed away from the
Klein point at T=0, the state stabilized by the perturbation is
generally one with L /2 lines.47

C. Critical correlations

To expand upon the previous statements, we stress that all
of the dimer coverings in the ground-state manifold are in-

FIG. 3. �Color online� Standard representation of six-vertex
states in terms of lines �Ref. 42�. Every line is composed of links
whose arrows point to the right in the vertex representation.

FIG. 4. �Color online� Left: representation of six-vertex states in
a highly regular dimer configuration �a� in terms of lines �c�. Join-
ing the vertex coverings according to the standard prescription �see
text� �Ref. 42� allows one to label all permitted ground states.
Right: an elementary local spin interaction process, leading to an-
other dimer configuration �b�, corresponds to flipping one of the
line corners in the line representation �d�.

FIG. 5. �Color online� Uniform dimer covering or ferroelectric
state �Ref. 42�, corresponding to vacuum of lines. The opposing
ferroelectric polarization obtained by spatial inversion corresponds
to the state which is full of lines.
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dividually eigenstates of the Hamiltonian. Thus, there are no
quantum fluctuations at the Klein point, and a zero-
temperature transition through this point, for example, as a
function of K /J, is a discontinuous, first-order quantum
phase transition.7 The Klein point is a distinct type of critical
point, which is essentially classical in nature with critical
thermal fluctuations at all temperatures T�0.

It has long been known42 that the square-lattice ice model
formed by the centers of the crossed plaquettes in the check-
erboard lattice exhibits critical power-law correlations,
which have been investigated extensively in Refs. 17. El-
ementary entropic arguments combined with the ice condi-
tion lead to a simple dipolar analogy suggesting that the
dimer correlations in d dimensions exhibit an �r�−d decay,
where r is the separation between dimers.17 Specifically, de-
noting by P= �±1,0 ,0� the first two six-vertex configurations
of Fig. 3, and similarly by P= �0, ±1,0� and P= �0,0 , ±1�
the other two pairs, the line representation applied for the
pyrochlore lattice yields17

�Pi�0�Pj�r�� =
A

r3 ��ij − 3r̂ir̂ j� �15�

for large separation �r�, with i , j=1,2 ,3 denoting the spatial
components of P, r̂ the unit vector in the direction of r, and
A a constant. The correlation function for the checkerboard
lattice has a similar �r�−2 decay. When interpreted as flux
lines, the six-vertex arrows �Fig. 3� adhere at every vertex to
a strict condition of no divergence. This correspondence,
along with the entropic arguments, underlies the dipolar cor-
relations. The zero-flux condition at every vertex leads to the
long-ranged correlations �in fact, with infinite correlation
length� of the dimers.

The ground-state manifold at K=Kc corresponds to the
high-temperature limit of the ice model, in which every six-
vertex configuration is realized with equal amplitude. As
such,42 the system is in the “disordered” critical phase de-
scribed earlier, where, in particular, the expectation value of
any local six-vertex order parameter vanishes.42 On the
checkerboard �pyrochlore� lattice, the different sets of states
in the manifold remain characterized by the net number of
vertical lines on each horizontal row �plane� of lattice sites
�or conversely�: this number is conserved and corresponds to
a topologically invariant “flux” of lines. Because lines of
arrows cannot terminate in the six-vertex representation the
flux cannot change from one plane to the next in the
pyrochlore.42 We remark for clarity that for the checkerboard
lattice the “horizontal” and “vertical” directions specified
above for the dual lattice are rotated by 45° relative to the
horizontal and vertical directions of the original lattice. Al-
though the system does not possess local order, it displays
this elementary topological order characterized by the topo-
logically invariant flux.48 The model discussed here forms a
high-dimensional realization of Wen’s string nets.48 On the
checkerboard lattice, conservation of the line quantum num-
ber means that if nY is the number of vertical lines intercept-
ing a horizontal span of fixed length at position Y on the y
axis, the nonlocal correlation function for two strings at
y=Y1 and y=Y2, which is given by

Ḡ�Y1,Y2� � �ei
�nY1
−nY2

�� , �16�

with 
 arbitrary, is maximal: Ḡ�Y1 ,Y2�=1. Because in gen-
eral �G � 	1, for unrestricted values of nY1

and nY2
, here one

simply has nY1
=nY2

. Similar results apply for the pyrochlore
lattice, where nYi

denotes the number of lines intersecting the
plane Y =Yi. Equation �16� presents a high-dimensional ana-
log of the well-known fixed value of string correlation func-
tions in S=1 spin chains at the Affleck-Kennedy-Lieb-Tasaki
point.49,50 At large separations, these uniform nonlocal corre-
lations dwarf the local dimer-dimer correlations, which retain
an algebraic decay �as r−d�. As a direct consequence �below�,
the system exhibits, in general, a long-ranged dimer order
away from the Klein critical point.

D. Low-energy excitations at the Klein point: Spinons

The energy cost of exciting one of the singlets of a given
dimer configuration is proportional to J; as depicted in Fig.
6, this energy is not altered by changes in the separation of
the two S=1/2 objects forming the triplet state, which may,
thus, be regarded as two deconfined spinon excitations.
Single-spinon propagation can be described as a constrained
random walk because the allowed paths may not increase the
number of tetrahedra without a singlet dimer, but in contrast
to the situation in Ref. 7, the paths are far less constrained.

In this context, it is instructive to consider the dimension-
ality of the allowed spinon paths for the checkerboard and
pyrochlore Klein models to examine its relation to the di-
mensionality dg of the symmetry group emerging in the
ground state sector.6 Here, dg is the spatial dimensionality of
the minimal nonempty set of spins which is influenced by
these symmetry operations. Assuming that the ground-state
sector does not transform trivially under these symmetry op-
erations, the entropy Sg scales according to Sg�Nds/d, where
ds=d−dg. The Klein model on the pyrochlore lattice exhibits
a zero-dimensional �dg=0� symmetry, meaning that there ex-
ist local operations which link different ground states �e.g.,
the operation depicted in Fig. 4�.

FIG. 6. �Color online� Example of spinon propagation. The po-
tential energy does not depend on the length of the string connect-
ing the pair of spinons, which consequently are in a deconfined
phase. In the line representation, the position of each spinon is
indicated with a small dotted circle. The shaded square corresponds
to a plaquette without singlets that we denote as a defect.
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The presence of these symmetries enables spinon excita-
tions to propagate with no energy cost in ds dimensions.
Thus, spinons on the pyrochlore and checkerboard lattices
propagate freely in regions whose size scales with the vol-
ume of the entire lattice, ds=d. For the square-lattice model
of Ref. 7, d=2 while dg=1, as a consequence of which the
spinons can propagate only in ds=d−dg=1 dimensional re-
gions �lines�. This analysis provides a more explicit defini-
tion of the terms “complete” �pyrochlore and checkerboard�
and “partial dimensional reduction” �square lattice� of their
origin in terms of system entropy �scaling, respectively, with
the volume and with the perimeter� and of their conse-
quences for spinon dynamics.

As noted earlier, perturbation-theoretic calculations, in-
cluding those illustrating the effects of spinons, are some-
what involved in the dimer basis due to the nonorthogonality
of the dimer states. In the remainder of this section, we com-
ment only briefly and qualitatively on possible spinon ex-
change paths connecting different dimer states of the low-
energy sector; a detailed discussion of one systematic
approach to quantitative calculations in the dimer basis is
deferred to Sec. V.

While we have used the words “free propagation” of
spinons to indicate that their motion occurs in all spatial
dimensions, spinon dynamics on the pyrochlore and check-
erboard lattices at the Klein point remain constrained by the
effective ice rules obeyed by the dimer configurations in the
ground-state manifold. These rules, upon which we remark
further below, become most evident by considering the line
representation of the six-vertex model �Fig. 3�. In the pres-
ence of a single dimer excitation, the allowed lines specify
the possible spinon motion. Against the background of the
uniform ferroelectric state �corresponding to the line
vacuum, Fig. 5�, where all horizontal and vertical arrows
point in the same directions, the spinon lines which may be
inserted are all chiral. The spinons are restricted to propagate
only within a cone defined by two spatial quadrants �Fig. 7�,
and no closed spinon paths are possible in such states. The
same is true for the opposing ferroelectric state, the state full
of lines, in which the string created between the two spinons
appears as an antiline.

As suggested by the simple example of the previous para-
graph, the spinon motion can be determined from the line
rules. The trace left by two spinons, which are created on a

common tetrahedron and move away from each other corre-
sponds, in the line representation, to a string, which changes
the state of the underlying link: the string creates a line seg-
ment if the link was empty and annihilates the corresponding
segment if it were already present. Following the rules of
Fig. 3, if the line segment created by the string crosses a
pre-existing line, the resulting state on the corresponding tet-
rahedron is that indicated as 2 in Fig. 3. Once again, we
show for clarity in Figs. 6�c� and 6�d� the line representations
of the dimer and/or spinon states depicted in Figs. 6�a� and
6�b� for the checkerboard lattice. In the general case of non-
uniform states with a finite density of lines, the spinon
strings are no longer constrained to be chiral �Fig. 6�. When
the string of a propagating spinon collides with a six-vertex
line representing the dimer configuration, the lines �and
hence the spinon path� are effectively reflected.

IV. THERMALLY DRIVEN DECONFINEMENT AWAY
FROM THE KLEIN POINT

As noted above, the dipolar correlations characterizing the
deconfined Klein critical point are driven by classical fluc-
tuations, from where the most appropriate designation is as a
classical T=0+ critical point. Away from T=0, the critical
thermal fluctuations of the dimer coverings produce an en-
tropic spinon-spinon interaction. This interaction may be de-
termined by replacing each spinon with a static monomer
inserted in the dimer covering, reducing the problem to the
classical statistical mechanics of close-packed dimer
coverings.51,52 This reduction makes use of the fact that the
singlet coverings are linearly independent.53 The critical di-
polar fluctuations of the underlying dimer field produce an
effective “Coulomb” interaction between the spinons,17

which, in the pyrochlore lattices under consideration, arises
from the local conservation law of zero divergence.

We will demonstrate the existence of the Coulomb phase
for the checkerboard lattice; a similar analysis may be ap-
plied for the 3D pyrochlore case. The derivation of the ef-
fective Coulomb interaction begins by assigning a charge to
each spinon, for which it is convenient to expand the six-
vertex representation in order to include states containing
two spinons. It is important to note that spinons are created
in pairs �singlet-triplet excitation�, and each pair generates a
single crossed plaquette of higher energy, because it pos-
sesses no singlets, which will be called a defect. When the
spinons propagate away from each other, they are also sepa-
rated from the defect �Fig. 6�, and the preservation of the ice
rules requires that the number of defects does not increase.
We will show below that the effective charge qd of the defect
is opposite in sign to the effective charge qs of the spinons,
with magnitude qd=−2qs. �Superficially, this overall neutral-
ity of three quasiparticles forms a geometric analog of the
quark content of the neutron, whose basic quark structure is
�udd� with the charges of the u and d quarks being, respec-
tively, �2e /3� and �−e /3�.�

To represent states with two spinons, we will include the
four additional vertex configurations depicted in Fig. 8. Note
that these configurations have nonzero divergence, in con-
trast to the six-vertex states �Fig. 3� used to represent the

FIG. 7. �Color online� Spinon propagation in the ferroelectric or
uniform state depicted in Fig. 5. Disruption of the dimer back-
ground dictates that the line or string created between the propagat-
ing spinons can move only in the direction indicated by the black
arrows. This implies that the spinons are restricted to move within a
cone defined by the horizontal and vertical directions. In the line
representation, the position of each spinon is indicated with a small
dotted circle.
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dimer coverings �which are the vacuum of charge�. Accord-
ing to the previous rules, the defect is represented by four
outgoing arrows �Fig. 8�a��. For the checkerboard geometry,
it is convenient to introduce the two Néel sublattices A and B
of the underlying square lattice; a number of equivalent defi-
nitions may be found for a two-sublattice decomposition of
the 3D pyrochlore. A one-to-one mapping between states
containing spinons and the vertex configurations may be
found by restricting the spinons to one of the sublattices �for
example, A�. A complete classification of all spinon configu-
rations may be obtained by introducing an additional Ising-
like quantum number, which specifies on which of the two
sublattices our plaquettes are located. Such an additional
tabulation is not necessary for the examination of the long-
distance interaction. We may rely instead only on the conse-
quences of the vertex representation illustrated in Fig. 8 for
plaquettes of one sublattice, which are sufficient for
determining the asymptotic �long-distance� form of the
interspinon interaction. The fact that spinons may propagate
from one sublattice to the other due to the existence of diag-
onal bonds in dimer coverings of the checkerboard lattice is,
nevertheless, crucial. This is not the case for quantum dimer
models on bipartite lattices, whose dimers always link the
two different sublattices. We remind the reader that on a
bipartite lattice, each spinon may be assigned a unique effec-
tive charge given by the sublattice parity of the spinon loca-
tion �usually +1 on one sublattice, and −1 on the other�. This
simple assignment is invalid on nonbipartite lattices such as
the pyrochlore, where the additional range of possible spinon
configurations necessitates an essential extension of the defi-
nition of the effective spinon charge.

Because the spinons occupy sites of the original lattice,
their position will be denoted by one arrow on the dual lat-
tice. Specifically, we take this as the ingoing arrow coming
from the lower left corner of a plaquette with only one out-
going arrow �Fig. 8�b��. If one considers vertex states such
that for each vertex with maximal divergence �Fig. 8�a��
there are two with only one outgoing arrow �Fig. 8�b��, the
mapping between the two representations is one to one �un-
der the condition that all the spinons occupy the same sub-
lattice�. The Coulomb interaction and the effective charge of
the spinons emerge from the standard procedure used to map
the ice problem onto a compact U�1� gauge theory.54 Here,
we follow the derivation and notation of Ref. 55 to describe
this procedure and derive the effective charges of defects and
spinons.

The local zero-divergence condition defining the dimer
coverings on the checkerboard and pyrochlore lattices im-
plies that these states can be considered as the physical Hil-
bert space of a compact U�1� gauge theory. The local U�1�
gauge invariance becomes more explicit if one defines
pseudospin-1 /2 operators Si

z on each site i of the lattice. The
dual lattice formed by the centers of the tetrahedrons �verti-
ces� can be divided into two sublattices A and B. The site
coordinate i of the original lattice denotes the links of the
dual lattice. Si

z=1/2 if the arrow on link i points from the A
to the B sublattice, and Si

z=−1/2 if the arrow points from B
to A. The zero-divergence condition can be expressed in
terms of these variables as

�
i�

Si
z = 0, �17�

and the operators

U� = ei
��i��Si
z

�18�

are the local U�1� symmetry transformations associated with
this conservation law. We note that the conservation law is a
property of the Hilbert space and is, therefore, present for
any theory defined on this space. An equivalent constrained
low-energy Hilbert space was derived for an XXZ model on a
pyrochlore lattice in Ref. 20.

We present in some detail the consequences of the zero-
divergence condition for the checkerboard lattice �d=2�, for
which the notation is slightly more compact; the results we
obtain are unchanged for the pyrochlore lattice �d=3�. The
U�1� gauge structure of the Hilbert space indicates that one
may gain further insight by identifying the variables playing
the role of the electric field and of the vector potential in
electrodynamics. For this purpose, it is convenient to
introduce quantum rotor variables and the coordinate r
=ne1+me2 to span the dual lattice �the lattice of centers of
the tetrahedrons�. The primitive vectors e1 and e2 define the
two perpendicular directions on the dual lattice. On each link
of this lattice, we define an angular-momentum variable

l̃��r�= ±1/2, where ��r� indicates the oriented link from r to

a neighboring dual-lattice site r+e�. The state l̃��r�=1/2

�l̃��r�=−1/2� corresponds to an arrow parallel �antiparallel�
to the relative vector e�. With this definition, l̃��r� changes

sign under inversion: l̃−��r�=−l̃��r� �−��r� indicates the ori-
ented link from r to r−e��. For convenience, we introduce

the variable l��r�= l̃��r�+1/2, which takes the integer values
0 or 1. We employ the discrete gradient

��l��r� = l��r� − l��r − e�� �19�

to re-express the ice rules as an explicit zero-divergence con-
dition on the vector field l��r� as follows:

�
�=1,2

��l��r� = 0. �20�

Equation �20� corresponds to Gauss’s law for electrodynam-
ics in the absence of external charges, � ·E=0. The vertex
configurations violating the ice rules, such as those depicted

FIG. 8. �Color online� �a� Vertex representation of a crossed
plaquette without any singlet �defect�. �b� Vertex representation for
spinons that are located in one sublattice of the checkerboard
lattice.
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in Fig. 8, should then carry an “effective charge”
Q=��=1,2��l��r�. Here, Q=��=1,2��l��r�=2 for the con-
figurations of Fig. 8�a� �defects� and Q=��=1,2��l��r�=−1
for the three configurations of Fig. 8�b� �spinons�: the
spinons carry a positive unit charge while the defects carry
two units of negative charge. The “electric field” is then de-
fined as the operator E��r� with eigenstates �l��r�� and ei-
genvalues l��r�. The canonically conjugate operator ���r�
satisfying

����r��,E��r�� = i�r,r���,� �21�

plays the role of the vector potential. Because in this section
we focus only on the high-temperature �T→�� fixed point
whose properties are determined solely by the gauge struc-
ture of the Hilbert space, we will not discuss any particular
quantum gauge theory. The above derivation is used only to
identify which variables play the role of the electric field and
the charge.

The Klein point at T=0+ corresponds to the infinite-
temperature fixed point. Such a point is characterized by a
deconfined two-component �spinons and defects� Coulomb
gas. The spinons exist only as gapped excitations �of gap
��J�, and the spinon-spinon interaction is then logarithmic,
V�r�=�� j�kqjqk ln�rjk /a�, for d=2 and a power law,
V�r�= �̃� j�kqjqk /rjk, for d=3. The spinon-defect interaction
has the opposite sign �attractive� and its absolute value is two
times greater. Although a spinon-defect pair is critically con-
fined in the d=2 case by the logarithmic interaction, the
prefactor � is generally sufficiently small that there is a di-
vergence in the expectation value of �r2�, which implies a
divergent “dielectric constant.”56 At finite temperatures, there
is a finite concentration ��e−�� ��= �kBT�−1� of thermally
excited spinons in equilibrium, and the effective spinon-
spinon or spinon-defect interaction is screened, decaying ex-
ponentially for distances r�1/�1/d. However, the critical be-
havior remains observable for r�1/�1/d.

For general K�Kc and �K−Kc � �J, the energy difference
between the singlet and triplet states on each tetrahedron is
much smaller than the gap to the quintet state �S=2�.57 It is
clear that for �= �K−Kc � �J, the degeneracy between the sin-
glet and triplet states is effectively restored at temperatures T
such that

� � kBT � J . �22�

In this case, only the manifold of singlet dimer coverings
found as the ground states at K=Kc is accessible. Thus, the
effect of a finite temperature on a system in the proximity of
a Klein point is the effective restoration of extensive con-
figurational entropy, critical dipolar correlations, topological
order, and spinon deconfinement.

We comment that the appearance of deconfinement at
high temperatures, also in systems far more general than
those considered here, is hardly surprising. We repeat the
well-known facts as follows: various ordered phases gener-
ally melt via the appearance of topological defects; these
defects become deconfined at the melting temperature; the
origin of deconfinement is an energy-entropy balance; and
entropic effects modify the effective interactions between the

defects, leading to a vanishing interaction at the onset of
deconfinement. A careful treatment of entropic effects often
involves detailed contour-counting arguments.58 The effec-
tive force between topological defects in a wide range of
systems, including vortices in superconductors and disloca-
tions and disclinations in elastic media, is universally ex-
pected to be algebraic, as may be seen directly from duality
arguments.59–61 In the current context, the topological defects
correspond to monomers or spinons in the dimer coverings
and the Coulomb field lines to the many possible trajectories
for the motion of a defect. Pure Coulomb interactions vanish
at large separations in dimensions d�2, suggesting the pos-
sibility of a high-dimensional fractionalization. The peculiar
aspect of the pyrochlore systems under consideration is that
the critical point separating the low-temperature confined
state from the high-temperature deconfined phase may be
driven to T=0+ by optimizing the frustration in H. This is the
singular characteristic of the Klein point: the exponentially
large ground-state sector is defined solely by the local zero-
divergence constraint. The system is then driven only by en-
tropic fluctuations, which in combination with the local con-
straint give rise to the classical critical behavior.

V. ZERO-TEMPERATURE STATES AWAY
FROM THE KLEIN POINT

A. Local perturbations in the nonorthogonal dimer basis

In this section, we explicitly examine the possible ground
states away from the Klein point. To this end, we begin by
developing a systematic procedure for evaluating “matrix el-

ements” �
a�Ô�
b� within the nonorthogonal basis of singlet
dimer coverings, which constitute the low-energy sector in
the vicinity of the Klein point. We note that because of the
nonorthogonality, a standard �bra-operator-ket� expectation
value computed between two states in the manifold is not a
true matrix element, and is referred to henceforth as a
“bracket.” We will illustrate the calculational procedure and
the results for the checkerboard lattice, and state only that
their generalization to the pyrochlore is straightforward �if
lengthy�.

The evaluation procedure consists of elementary rules,
which are applied to the graph associated with the bracket to
be evaluated, and it is a generalization of the standard
method used to compute the overlap between two singlet
dimer coverings on bipartite lattices.62–65 We first extend this
method to compute the overlap between nonbipartite singlet
coverings, because on the pyrochlore system the dimers are
not necessarily formed from sites on different sublattices.
Second and more importantly, we provide straightforward
rules for computing brackets of spin-product operators of

Heisenberg type, S� i ·S� j. Brackets of products of Heisenberg
spin operators, as in the second term of Eq. �1�, can be evalu-
ated by a simple extension of these rules.

In this section, we will consider a perturbation, which is
proportional to the first term of Eq. �1�, a Heisenberg inter-
action between any pair of sites in the same crossed
plaquette,
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H1 = �J �
�ij�,�

S� i
� · S� j

�, �23�

such that after the perturbation K�4J /5. For the Klein
model on the square lattice, it is transparent that all states
within the ground-state basis remain degenerate to first order
in the perturbation H1. This statement follows from two ob-
servations: the diagonal brackets, �
a�H1�
a�, are the same
for any dimer state �
a� and the off-diagonal terms,

�
a�Ô�
b�, with a�b, are zero for any local operator Ô, in

particular, for Ô=H1. Thus, the degeneracy is lifted only to
the second order in H1 on the square lattice. The situation is
completely different for the same model on the pyrochlore
and checkerboard lattices: because in these cases the ground-
state degeneracy is extensive at the Klein point, two different
ground states can be connected by local operators. As a con-
sequence, the off-diagonal brackets do not, in general, van-
ish, and the degeneracy is lifted to the first order in the per-
turbation.

The usual approach to this problem is to neglect the non-
orthogonality of the singlet dimer coverings and propose a
minimal quantum dimer model, which includes only pro-
cesses of the Rokhsar-Kivelson �RK� type.64 We note, how-
ever, that this procedure does not lead to the RK model in the
pyrochlore geometries under consideration because, although
the Hamiltonian is the same �a U�1� gauge magnet66�, the
zero divergence or gauge condition which defines the “physi-
cal” Hilbert spaces is different. In what follows, we depart
from this conventional treatment and show that it is indeed
incorrect for the case of interest. The nonorthogonality of the
dimer basis introduces subtleties not directly evident from
the conventional approach, as a consequence of which we
will show that the valence-bond crystal �VBC� orderings
chosen by tunneling events differ from the ones expected for
a theory which includes only processes of the RK type.67

In terms of the arrows �of the six-vertex representation of
Fig. 2� shown in Fig. 9, the antiferroelectric state becomes a
staggered flux phase in which each square plaquette of the
dual lattice has a well-defined chirality �all of its arrows cir-
culate in the same way� and the direction of circulation al-
ternates from clockwise to counterclockwise. With this start-
ing state, one may invert the sign of the current �direction of
the arrows� around any plaquette. This is the elementary pro-
cess, or corner flip in the line representation, depicted in Fig.
4�b�. The antiferroelectric state allows for the largest number

of these elementary processes, and each can be interpreted as
the creation of a localized defect on an uncrossed plaquette
of the antiferroelectric background. The tunneling between
states with defects in different positions lowers the energy of
the system. While the creation of one of these defects is
indeed the elementary RK process normally invoked as the
most relevant one in these cases,39 we will show that its
amplitude is exactly equal to zero for the perturbation H1.

To first order in the perturbation, the state of lowest en-
ergy is the linear combination of singlet dimer coverings,
which minimizes H1. Up to an irrelevant constant, the
Hamiltonian H1 can be rewritten in the more convenient
form as follows:

H1 =
1

2
�J �

�ij�,�
Pij

� , �24�

where Pij
� is the permutation operator, which interchanges the

spins on sites i and j of plaquette �. The diagonal brackets
are manifestly the same for all singlet dimer coverings. Spe-
cifically, on the checkerboard lattice and for any system with
PBCs,

Ed = �
a�H1�
a� = 3
8N�J , �25�

with N the number of lattice sites and �
a� denoting any
dimer covering satisfying the Klein constraint �all crossed
plaquettes contain one dimer�. As noted in Sec. III, the sys-
tems with OBCs possess additional ground states containing
crossed plaquettes with two dimers or �one or two� spinons,
and these would have a different diagonal energy but are not
thermodynamically relevant. We focus henceforth on ground
states satisfying PBCs. The degeneracy of dimer coverings is
lifted only by superposing different allowed coverings with
finite amplitudes, i.e., by considering states of the form

�
� = �
a

ca�
a� , �26�

with the normalization condition

�
k

�ck�2 + �
l�k

cl
*ck�
l�
k� = 1. �27�

B. Loop structure and rules

We proceed by listing a complete set of rules for the
evaluation of brackets in the dimer basis. These general,
purely topological, rules extend early and pioneering ideas
concerning resonating valence-bond states and initial results
obtained by using these concepts for square lattices.62–65 The
normalization of �
� and computation of �
�H1�
� require
evaluating the overlaps �
a �
b� and brackets of the form
�
a�Pij�
b�, with �
a� and �
b� any states in the dimer basis.
To compute the overlap, we first assign a given orientation to
each singlet dimer, indicated with arrows pointing upwards
for vertical dimers and to the right for diagonal and horizon-
tal bonds �Fig. 10�. �We remark that vertical and horizontal
refer here to the real lattice and not to the rotated lattice used
in the discussion of the six-vertex and line representations in
Sec. III.� With this convention, a superposition of dimer con-

FIG. 9. �Color online� The “antiferroelectric” state. Dots and
crosses at the centers of the plaquettes of the dual lattice indicate
the “flux” associated with the arrow circulation on the correspond-
ing plaquette. The two antiferroelectric states are the only ones for
which each plaquette of the dual lattice has a net chirality.
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figurations corresponding to �
a� and �
b�, with the differing
bonds marked as in Fig. 10�c� �bonds which do not differ
give trivial loops of length 2, introducing factors of unity�,
forms a graph Gab. In general, this graph may consist of
more than one disconnected loop � j

ab.
Let L�� j

ab� be the length of the loop � j
ab �the number of

singlet dimers forming the loop�, N��Gab� be the number of
disconnected loops in graph Gab, and nc be the number of
arrows in the graph, which circulate clockwise in their loop.
With these definitions, the overlap �
a �
b� may be expressed
as

gab = �
a�
b� = �− 1�nc+L�Gab�/22N��Gab�−L�Gab�/2, �28�

where

L�Gab� = �
j=1,N��Gab�

L�� j
ab� �29�

is the total length of the graph. The determination of the
nontrivial brackets �
a � Pij �
b� proceeds by examining how
the length and dimer orientation of the graph Gab are affected
when the permutation operator Pij is applied to the state �
b�.
The resulting graph will be denoted as Gij

ab. The application
of Pij may alter the loop geometry in only a restricted set of
simple ways, of which we next provide a systematic list.

�i� If i , j�Gab and they belong to the same loop �, there
are two possibilities.

�a� When the distance �number of dimers� on the
loop between sites i and j is an odd number, the effect of Pij
is to cut the loop into two segments and to reconnect them
while exchanging the ends of one of the segments �Figs.
11�a� and 11�b��. The length of the loop under consideration
is unaltered in this process. The only effective modification
is the reversal of an odd number of arrows, causing a sign-
change relative to �
a �
b�,

�
a�Pij�
b� = − gab. �30�

�b� When the distance between sites i and j is even,

Pij divides the loop � into two smaller loops, �1 and �2,
preserving the total length, L���=L��1�+L��2� �Figs. 11�c�
and 11�d��. The circulation of the arrows is unaltered, and
thus from Eq. �28� the net change relative to graph Gab is a
supplementary factor of 2 due to the increase in the number
of loops, N��Gij

ab�=N��Gab�+1, where

�
a�Pij�
b� = 2gab. �31�

�ii� If only one of the two sites �i or j� belongs to graph
Gab, the effect of Pij is to increase the length of the graph by
two links, L�Gij

ab�=L�Gab�+2. There is no change of sign
because the arrows of the two additional bonds circulate in
opposite directions relative to their point of contact. From
Eq. �28�, the net result relative to graph Gab is a factor of 1 /2
due to the length increase, and so

�
a�Pij�
b� = 1
2gab. �32�

�iii� If neither i nor j belongs to graph Gab, there are two
possible cases.

�a� If there is a singlet bond connecting the sites i
and j,

�
a�Pij�
b� = − gab. �33�

�b� If the sites i and j are not connected by a singlet
bond,

�
a�Pij�
b� = 1
2gab. �34�

�iv� Finally, if i , j�Gab but the sites belong to different
loops �i and � j, the effect of Pij is to fuse both loops
into a single loop �ij. Because the total length, L��ij�
=L��i�+L�� j�, and the sign are preserved under this
operation, the net result is a factor of 1 /2 which arises from
the decrease by one in the number of loops, N��Gij

ab�
=N��Gab�−1, leading to

�
a�Pij�
b� = 1
2gab. �35�

FIG. 10. �Color online� Example �c� of the graph Gab which
results from superposing two different dimer coverings ��a� and
�b��. These dimer coverings correspond to an antiferroelectric back-
ground with a single elementary process operating on different
�nearest-neighbor� uncrossed plaquettes.

FIG. 11. �Color online� Effect of the permutation operator
Pij on graph Gab �Fig. 10� when sites i and j belong to the same
loop of Gab and their separation is odd �case �a� → �b�� or even
�case �c� → �d��.

HIGH-DIMENSIONAL FRACTIONALIZATION AND SPINON… PHYSICAL REVIEW B 75, 094411 �2007�

094411-11



These rules allow a very straightforward derivation of Eq.
�25�: because Gaa is the null graph, the effect of Pij corre-
sponds to case �iii�. For any dimer covering, there are N /2
bonds of type �iii��a� and 5N /2 bonds of type �iii��b� and
adding the two contributions yields

Ed = �
a�H1�
a� =
1

2
�J	− gaa

N

2
+

gaa

2

5N

2

 . �36�

From gaa=1 �see Eq. �28��, we recover Eq. �25�.
With the same rules, one may compute the energy of the

most general state within the Klein-point ground-state mani-
fold whose expression is given by Eq. �26�,

E = Ed +
1

2
�J�

l�k

cl
*ck�glk	3L�Glk�

4
−

�Vlk�
2

 + Wlk� .

�37�

Here, Wlk�2nib
lk −nia

lk, where nia
lk �nib

lk� is the number of pairs
�i , j� which are of type �i��a� (�i��b�) relative to the graph Glk,
while Vlk=nia

lk +nib
lk is the total number of pairs �i , j� of type

�i�. The reason why only cases of type �i� need be considered
in Eq. �37� is that terms of types �ii�, �iii��b�, and �iv� all give
the same contribution, gab /2.

C. Energy calculations

Next, we apply the rules of Sec. V B to the checkerboard
lattice. Equation �37� allows one to compute the energy of
any variational state. Its second term corresponds to the en-
ergy change �E due to the linear combination of different
singlet dimer coverings. The magnitude of this change there-
fore reflects the degree of “mixing” between different dimer
coverings induced by H1. To develop an intuitive understand-
ing, we begin by considering the linear combination of two
dimer coverings, a natural choice being to superpose two
coverings whose dimer configurations differ minimally �such
as the two states depicted in Fig. 4�, i.e., by the RK or
corner-flip process discussed above. We remind the reader
that the six-vertex representation of this process entails a
reversal of the arrows on a single plaquette of the dual lattice
with a well-defined chirality �Figs. 12�a� and 12�b��. If �
o�
and �
d� are any such pair of dimer coverings which differ
minimally, their overlap is

god = �
o�
d� = 2 � 2−4 = 1
8 , �38�

because L�God�=8 and nc=4 �Fig. 12�c��. To obtain the en-
ergy of the normalized state

�
od� = ��
o� + ��
d� , �39�

one replaces the coefficients of Eq. �37� with the values dic-
tated by the above rules. The number of pairs �i , j� with both
sites on the graph is �Vod � =12, which is composed of eight
pairs of type �i��a� and four of type �i��b� as a result of which
Wod=0. Replacing these quantities in Eq. �37� gives

�
od�H1�
od� = Ed. �40�

The fact that the energy is unchanged ��E=0� by taking the
linear combination �39� indicates that the elementary RK-

type process is not generated by H1. We note that all pairs of
sites �i , j� in the only loop of the graph God �Fig. 12�c�� are
separated by a distance on the loop no greater than 2; loops
satisfying this condition will be defined as simple. As an
example, the loop depicted in Fig. 10�c� is not simple be-
cause it contains site pairs �i , j� separated by five and six
bonds. In general, �E vanishes for any pair of dimer configu-
rations, �
a� and �
b�, such that all loops in the graph Gab are
simple. This property follows immediately from Eq. �37�: if
all loops are simple, one has that nia

ab=2nib
ab=L�Gab�, imply-

ing Wab=0 and �Vab � =3L�Gab� /2.
Because H1 does not connect two minimally different

dimer configurations �L�Gab�=8�, it is necessary to seek the
minimal relevant process, which means that process with the
minimum value of L�Gab�, which is generated by H1. The
next possible value is L�Gab�=12 �no graphs exist with
L�Gab�=10�, an example of such a physical process being
that connecting the states �a� and �b� in Fig. 10. In the six-
vertex representation, this process is permitted when all the
arrows of a rectangle formed by two adjacent plaquettes of
the dual lattice have the same chirality; this rectangle is high-
lighted in Figs. 10�a� and 10�b�. The process consists of in-
verting the orientation of the six arrows, or the flux of the
rectangle. For any pair of dimer coverings �
0� and �
1�,
which differ by this process,

g01 = �
0�
1� = − 2 � 2−6 = − 1
32 , �41�

and for the normalized linear combination �
01�=c0�
0�
+c1�
1� the energy change is

�
01�H1�
01� = Ed + 3
64c0c1�J . �42�

The minimum energy is obtained for �c0 � = �c1�, which to-
gether with the normalization condition gives c0=c1
=1/
2�1+g01� for �J�0 and c0=−c1=1/
2�1−g01� for
�J�0. The overlap is �g01 � = 1

32 �1, giving �c0 � = �c1 �
�1/
2, as expected for the mixing of two orthogonal states
with the same diagonal energy. This remains true for any pair
of states connected by H1 because �g01� is an upper bound for
the absolute value of their overlap.

FIG. 12. �Color online� Graph God resulting from the superpo-
sition of two dimer coverings, which differ minimally. The physical
process connecting these is the RK-type or corner-flip process rep-
resented in Fig. 4.
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In the next process to consider, the arrow directions on the
perimeters of two next-neighbor plaquettes of the dual lattice
are inverted if both plaquettes have opposing, well-defined
chiralities, as indicated in the examples of Figs. 13�a� and
13�b�. In this case, we denote the corresponding dimer cov-
erings by �
0� and �
2�, and the length of the associated
graph is L�G02�=14. The overlap is g02=1/64 and the energy
shift due to the perturbation for the linear combination
�
02�=c0 �
0�+c2�
2� is

�
02�H1�
02� = Ed − 3
128c0c2�J , �43�

with c0= ±c2=1/
2�1±g02� for �J= ± ��J�.
The other graph Gab of length L�Gab�=14 corresponds to

a process, which is analogous to the previous case but with
next-neighbor plaquettes of the dual lattice having the same
well-defined chirality �Fig. 14�. The energy change �E asso-
ciated with this process is exactly that obtained for �
02�.
Any other process generated by H1 has an associated graph
of length L�Gab��14, and because the amplitude of these

processes falls in proportion to nns
ab2−L�Gab�/2 �nns

ab is the num-
ber of pairs �i , j� on the same loop separated by a distance
greater than 2�, these may safely be cut off beyond a certain
length Lc�Gab�.

D. Variational wave function

In order to propose a wave function �
�, which takes ad-
vantage of the three processes giving nonzero contributions
for L�Gab�	14, we introduce the bosonic operators ��̄

† and
��̄. To define these operators, we classify the uncrossed
plaquettes of the checkerboard lattice according to the sub-
lattice A or B �Sec. IV� of the dual square lattice �Fig. 15�a��.
In the six-vertex representation of the antiferroelectric state
�Fig. 9�, these two sublattices have opposite chirality, corre-
sponding to a staggered flux phase. If the uncrossed
plaquette �̄ has a well-defined chirality, the operator ��̄

†

raises the flux from negative to positive if �̄�A and lowers
it from positive to negative if �̄�B, i.e., ��̄

† changes the
direction of arrow circulation from counterclockwise to
clockwise if �̄�A and conversely if �̄�B. For states of no
well-defined chirality on plaquette �̄, and when the flux is
positive �negative� for �̄�A�B�, ��̄

† becomes the null opera-
tor, ��̄

† �
a�=0.
Minimizing the energy of a variational state is equivalent

to maximizing the number of allowed tunneling processes
with a negative sign. The appropriate dimer background for
this optimization is provided by the antiferroelectric state
�
afe� of Fig. 9; only for this state can the elementary process
of Fig. 12 be applied to every uncrossed plaquette. More-
over, the three processes, which give finite contributions to
�E for L�Gab�	14 can be applied to any pair of nearest-
neighbor �Fig. 10� and next-neighbor �Figs. 13 and 14�
plaquettes of the dual lattice when the antiferroelectric back-
ground is suitably populated with the local defects �bosons�
created by ��̄

† . For positive �J, these processes lead to a
uniform energy gain ��E�0� when the bosons are created
with opposite phases on the sublattices A and B �Fig. 15�a��.
The considerations for �J�0 mirror those for positive �J
with a change of the decomposition in two sublattices: for
negative �J, the uniform energy gain occurs when the
bosons are created with opposite phases on the sublattices C
and D �Fig. 15�b��. Employing the definitions and observa-

FIG. 13. �Color online� Graph Gab resulting from the superpo-
sition of two states connected by inverting the arrows of two next-
neighbor plaquettes of the dual lattice, which have opposing, well-
defined chiralities. The two plaquettes are highlighted in panels �a�
and �b�.

FIG. 14. �Color online� Graph Gab resulting from the superpo-
sition of two states connected by inverting the arrows of two next-
neighbor plaquettes of the dual lattice which have the same well-
defined chirality. The two plaquettes are highlighted in panels �a�
and �b�.

FIG. 15. �Color online� �a� Néel and �b� colinear alternations of
uncrossed plaquettes on two sublattices. �a� Decomposition of un-
crossed plaquettes of the checkerboard system into two sublattices
A �crosses� and B �circles�, which dictates the form of the varia-
tional wave function �44� for �J�0; �b� decomposition into sub-
lattices C �crosses� and D �circles�, which yields the form of the
low-energy wave function for �J�0.
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tions introduced earlier in this section, the simplest wave
functions for approximating the ground state in the presence
of H1 are

�
+� = uN �
�̄�A

�1 + ��̄
†� �

�̄�B

�1 − ��̄
†��
afe� ,

�
−� = vN �
�̄�C

�1 + ��̄
†� �

�̄�D

�1 − ��̄
†��
afe� , �44�

where �
±� correspond to �J= ± ��J�. The coefficients u and
v are determined from the normalization of the correspond-
ing wave functions �Eq. �27��. Figure 15 illustrates the sub-
lattice decompositions of the checkerboard geometry for the
two cases: �A ,B� for �J�0 ��
+�� and �C ,D� for �J�0
��
−��. A similar decomposition into plaquettes C� and D� is
obtained by a � /2 rotation of Fig. 15�b�.

The wave functions �
+� and �
−� represent linear combi-
nations including all possible two-plaquette resonance pro-
cesses, the phase relations of which are specified by Fig. 15.
Although these are superpositions of many states from the
manifold of dimer coverings, the number of participating
coverings remains a very small fraction of the total, and the
selected linear combinations are VBC states. In the pseu-
dospin �=1/2 space generated by the two possible states of
each uncrossed plaquette of �
afe�, �
+� and �
−� are analo-
gous to the classical, magnetically ordered Néel �q� = �� ,���
and colinear �q� = �0,�� or q� = �� ,0�� states polarized in the x̂
direction. In this space, �
afe� corresponds to one of the fully
polarized ferromagnetic states �such as ��̄

z =−1/2 for all �̄�.
However, �
+� and �
−� are not exactly the classical Néel and
colinear states because two nearest-neighbor uncrossed
plaquettes cannot be “flipped” independently of each other,
i.e.,

��̄
†��̄

† �
afe� = 0 �45�

if �̄ and �̄� are nearest-neighbor uncrossed plaquettes. In the
pseudospin representation the two plaquettes cannot be si-
multaneously in the �z=1/2 state, as a result of which these
states are projected out of the superpositions corresponding
to the classical Néel and colinear states to obtain �
+� and
�
−�. We stress that the symmetries of �
+� and �
−� for �J
= ± ��J� are quite different.

The energies of the wave functions �
+� and �
−� obtained
from Eq. �37� are

E+ = �
+�H1�
+� = Ed − 3
16u2N�J ,

E− = �
−�H1�
−� = Ed + 3
16v2N�J . �46�

The three processes represented in Figs. 10, 13, and 14 give
an extensive negative contribution to E±. The lack of frustra-
tion among these different processes indicates that �
+� and
�
−� are representative of the VBC orderings, which are sta-
bilized, respectively, for �J�0 and �J�0. We draw par-
ticular attention to the fact that in these valence-bond order-
ings, the four dimers around each uncrossed plaquette
resonate between the two configurations shown in Fig. 12.
The relative phase is positive on one sublattice �A for
�J�0 and C for �J�0� and negative for the other �B for

�J�0 and D for �J�0�. Note that the RK process would
lead to a different ground state in which this relative phase is
the same for all the plaquettes of the dual lattice. In the
pseudospin basis, this corresponds to the ferromagnetic state
�q� = �0,0�� with polarization in the x̂ direction for �J�0 and
the −x̂ direction for �J�0.

With regard to possible four-spin perturbation interac-
tions, we remark that the dominant type of such a perturba-
tion would be that contained in the second term of Eq. �1�.
However, the effect of altering K is trivially identical to the
perturbation of Eq. �23�, and the results derived throughout
this section may be applied directly to Eq. �1� with a sign
inversion of �K��K−Kc� relative to �J.

We now summarize the extension of our results to the
pyrochlore lattice. Here, any given dimer covering leads to
precisely the same, uniform energy shift �25� when a supple-
mentary nearest-neighbor Heisenberg interaction is inserted.
When superpositions of dimer coverings are considered, the
elementary graph �or analog of the RK process� circum-
scribes a hexagon formed by six neighboring tetrahedra. This
elementary hexagonal loop replaces the sides of the un-
crossed plaquettes on the checkerboard lattice. As for the
checkerboard, the graph corresponding to the elementary
process is simple, implying that this process is not generated
by the perturbation H1. Once again, it is necessary to con-
sider larger loops to find the valence-bond ordering stabilized
by the perturbation.

As stated above, the local zero-divergence constraint de-
fining the low-energy subspace around the Klein point im-
plies that the low-energy theory induced by a general pertur-
bation is always a compact U�1� gauge theory. Following the
argument of Polyakov, the phase stabilized by a general per-
turbation is always confining at T=0. For the spin models we
consider, this confining phase consists of a VBC configura-
tion. The perturbation H1 treated in this section is a particular
example of this general observation, and also perhaps the
most physically relevant. The effect of a general perturbation
in the space of interaction parameters is illustrated in the
schematic phase diagram of Fig. 16.

We conclude this section with a summary: we have intro-
duced a loop-based approach to account for the physical pro-
cesses in short-ranged quantum dimer systems with only lo-
cal interactions, which is powerful and general. We have
used this procedure to compute energies and variational
wave functions in the nonorthogonal basis of dimer cover-
ings on the checkerboard lattice. These considerations in-

FIG. 16. Low-temperature phase diagram around the Klein point
for checkerboard and pyrochlore spin systems.

NUSSINOV et al. PHYSICAL REVIEW B 75, 094411 �2007�

094411-14



clude all of the physically relevant perturbations of the Klein
Hamiltonian, as discussed in Sec. II, either explicitly or by
direct analogy. We conclude that the general case is the one
in which VBC phases, which are gapped and confined, are
stable away from the Klein point.

VI. EXACT CRITICALITY IN A FINITE-TEMPERATURE
REGION

An issue for the physical properties of a system is rather
less the behavior at T=0 than that at finite temperature. In
the preceding section, we devised a systematic, purely topo-
logical, diagrammatic method to compute the energies of all
variational wave functions in the dimer basis. This procedure
is exact for the degenerate manifold of �nonorthogonal� basis
states and presents a tractable problem at zero temperature as
shown in Sec. V. At finite temperatures, the need to evaluate
brackets between all possible states in the Hilbert space pre-
sents a more serious problem. In this section, we discuss the
extent to which progress is possible in this regime by first
illustrating how to establish the existence of a finite-
temperature region of critical behavior for general pertuba-
tions and then consider a simple, anisotropic perturbation to
�a� demonstrate explicitly the existence of this critical region
and �b� derive its approximate phase boundaries. In the re-
mainder of this section, we set kB=1 and for rigor assume
implicitly that J /T→�. J is the gap scale separating the
ground state energies from the lowest excited states. The
presence of a spectral gap in a Klein model was shown in
Ref. 39.

A. Finite-temperature criticality

We will consider a general perturbation H� which aug-
ments the Klein-point Hamiltonian to give

Htot = H + H�. �47�

Equation �23� provides one specific example. We employ the
notation � �Sec. IV� to denote the small energy scale of H�.
In what follows, we prove that unless the ground states of
Htot are ordered, in the sense that the different ground states
are distinguishable by local order parameters, then a region
of finite-temperature criticality must occur if the perturbation
is not linear in an order parameter.

We begin by stating that the system displays critical cor-
relations �i� when �=0 at any finite temperature and �ii� at
T /�→�. We also note that �iii� any local order parameter
vanishes for any fixed � at sufficiently high temperatures
T�Tc���. Finally, we assume �iv� that at sufficiently high
temperature, the two-point correlator of an order parameter
decreases monotonically in temperature at long enough dis-
tances. While �i�, from Sec. IV, and �iii� are self-evident, the
demonstration of statement �ii� represents the core of the
proof: because critical correlations appear in the high-
temperature limit, �iii� and �iv� imply that correlations at any
finite but high enough temperature cannot be weaker than
algebraic. Thus, the system exhibits critical correlations at
sufficiently high but finite temperature.

The derivation of statement �ii� proceeds from the defini-
tion of the relevant order parameter. By analogy with the
classical dimer polarization operators presented in Sec. III C,
we define the corresponding quantum operators. For a given
plaquette A which is formed by the four sites �a, b, c, and d�
appearing in counterclockwise order, the polarization is
given by

P� A � PA;xêx + PA;yêy + PA;zêz

= ��S�a · S�d − S�b · S�c�êx + �S�a · S�b − S�c · S�d�êy

+ �S�a · S�c − S�b · S�d�êz� . �48�

The dimer-dimer correlation function between two crossed
plaquettes A and B is then given, under the assumption that
all states in the Klein manifold are linearly independent45

and at finite temperatures T��, by the expectation value

�AB = �P� A · P� B��,T�0 =
Tr�e−�HP� A · P� B�

Tr�e−�H�
,

lim
T/�→�

�AB =
1

Ng
�
�
�

�
�P� A · P� B�
� � �rAB�−d, �49�

with �rAB� the separation between the centers of the
plaquettes A and B, d the spatial dimensionality, Ng the num-
ber of states in the ground-state manifold �Sec. III A�, and
the sum taken over a complete set of orthonormal states
��
��. At the Klein point, the correlation function �AB is al-
gebraic, as shown in Sec. IV.

The essential property underlying the physics of the
finite-temperature derivation is that the value of �AB is the
same for all temperatures when the magnitude � of the ex-
ternal perturbation vanishes. This is a consequence of the
fact that all states within the Klein-point manifold carry
equal weight, wherein �AB is given by the last two lines of
Eq. �49� and the system is manifestly critical. As the Klein-
point limit is approached for T /�→�, this average becomes
equivalent to a sum over all states spanning the Klein-point
Hilbert space and its value is precisely the same as for the
T=0+ case when � is taken to zero. Here, the probability of
any state �
� as given by the finite-temperature density ma-
trix is exp�−�E
� /Z=1/Ng. For T /�→�, the correlation
function �AB then takes the form specified by Eq. �49�, de-
caying algebraically to 0 as stated in �ii� above.

Although it is not relevant to the above derivation, we
remark briefly that topological rules similar to those of Sec.
V may be devised for the computation of the dimer-dimer
correlation function. As a consequence of the two scalar
products appearing in each term of �AB, two permutation
operations can be performed on the loop formed by two
states �as opposed to the single operation discussed in Sec.
V�. A similar set of topological rules for the computation of
�AB will be provided elsewhere.

The use of statements �ii� and �iii� for arbitrary pertuba-
tions is assisted by considering the form of general order

parameters. Let ��g��� denote the ground states of Htot and Ô
the order parameter by which they are distinguished. In a
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system, which displays local order, Ôr is an operator, which
depends on a finite number of fields in a sphere �or disk� of
finite radius R, which surrounds a given point r. A general
algorithm for the construction of the order parameter by ex-
amining reduced density matrices is given in Ref. 68.

At T=0 within any ground state, �ÔrÔr��→ ��Ôr��2�m2

�0 for separations �r−r��→�. Following Eq. �49�,

�Ôr� =

�

,�
i�

�
�
1�M12�
2�Ôr�
3�M34�
4�
�e−�E


�



e−�E


,

�50�

where ��
i�� denotes a set of pure dimer states and ��
�� a
complete set of orthonormal states spanning the Klein-point
basis. Equation �50� makes use of the overcompleteness re-
lation

�

1,
2

�
1�M12�
2� = 1Klein, �51�

with 1Klein=���1−P�� the unit operator in the Klein-point
subspace �and P� the projection operator onto the subspace
of net spin S�=2 �Sec. II��. Equation �51� expresses the fact
that the dimer states completely exhaust the Klein-point sub-
space, as proven in Ref. 38. As employed in Ref. 45, all
Klein model ground states can be expressed as a sum of
projection operators on these ground states, which decom-
pose them into �Young tableaux� sectors, which are well de-
fined under the permutation of pair sites. The presence of a
singlet dimer between two sites enforces antisymmetry
among the pertinent lattice sites. As evident in expressing the
ground states in terms of the irreducible representations of
the permutation group, the most general operations allowed
within this basis amount to permutations.69 As the most gen-
eral permutation can be written as a product of pairwise per-

mutations and as S� i ·S� j =
1
2

�Pij −
1
2

�, where Pij is the operator
permuting sites i and j, the most general permutation is a

functional of scalar spin products. For an operator Ôr, which

is a functional of spin products of the form S�a ·S�b, the corre-

lation function �ÔrÔr�� is equivalent to a correlation function
between dimer products. From the analogy to a dipolar sys-
tem �Sec. III�, we conclude that the correlation functions
containing more scalar spin products decay algebraically ac-
cording to the strength of the Coulomb interaction between
more complicated dipole configurations. Moments of higher
order than dipolar are important for those dimers, which are
close to each other but far from all other dimers. All corre-
lation functions thus decay algebraically with the dimer-
dimer separation. The analysis based on Eq. �49� may now
be extended to more general correlation functions, which in-

volve the order-parameter fields Ôr.
Returning to statement �iii�, as in our earlier consider-

ations for the polarization P� , this is based on the result that

any finite-temperature expectation value �ÔrÔr�� will de-
crease monotonically with increasing temperature, and as-

serts that when the expectation value of the order parameter

vanishes, �Ôr�=0, the corresponding energy scale sets the
transition temperature Tc ��iii��. This quite universal property
is reviewed briefly in Ref. 72. We reiterate ��ii�� the fact that
in the high-temperature limit, where correlations are weak-

est, the correlation function �ÔrÔr�� retains a decay, which is
only algebraic in the separation �r−r��. From these results, it
is clear that there is a finite-temperature region surrounding
the “Klein line” ��=0,T�0�, and explicitly specified by
T�Tc���, where critical correlations appear.

We conclude the general discussion by noting that for a
perturbation, which is linear in a general order parameter,
H�=−��AQA, it is possible that the two-point correlation
function takes a finite value, �QAQB�→m2�0 as �rAB�→�,
at any finite T. This type of perturbation may then yield
correlations, which are algebraic only in the limit T→�.73 In
the next section, we consider a particular perturbation whose
effect can be approximated by the anisotropic six-vertex
model to show that the dimer correlations may also remain
critical up to a threshold value of the perturbation.

B. Anisotropic perturbation

In this section, we use a specific anisotropic perturbation
to investigate the nature of the phase diagram. We will illus-
trate explicitly that the phase diagram contains a finite-
temperature critical region, exemplifying the general con-
cepts of the preceding section, and then derive its
approximate phase boundaries.

We consider a perturbation of the form

Hd = Jd �
��ij��

S� i · S� j , �52�

where ��ij�� denotes all diagonal pairs on the same crossed
plaquette. This type of interaction emulates the weakening
�for Jd�0� of exchange interactions between neighboring
diagonal sites on a checkerboard plaquette relative to those
of horizontal or vertical spin pairs, or a lifting �to tetragonal�
of the cubic symmetry in a pyrochlore tetrahedron. Focusing
for specificity on the checkerboard geometry, for Htot=H
+Hd it is clear that in the regime Jd ,T�J, the effect of Hd is
to favor certain dimer, or equivalently six-vertex, configura-
tions over others, and, in particular, that for Jd�0 the diag-
onal contribution �
a�Hd�
a� favors singlet formation on the
diagonal bonds of all plaquettes. Because off-diagonal brack-
ets are significantly smaller than diagonal contributions,
these may be neglected. The favored ground states in this
case are precisely the two antiferroelectric states. Similarly,
for Jd�0, the single dimer on each crossed plaquette lies
preferentially on the vertical or horizontal bonds. Because
only the diagonal contributions �
a�Hd�
a� are considered,
the ground-state degeneracy for Jd�0 remains exponentially
large: the system supports the subset of all allowed ground
states, which corresponds to the ground-state manifold of the
Klein model on the square lattice, the size of which scales
with 21+
N, where N is the number of lattice sites.7 We re-
mind the reader that the states in this restricted set of dimer
coverings, in which precisely one dimer is present on every
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square-lattice plaquette, are strictly orthogonal to each other
in the thermodynamic limit. The general case has a very
much larger manifold of ground states, the classification of
which proceeds by the line representation presented in Sec.
III.

1. Critical region

The illustration that the phase diagram in the presence of
this perturbation contains a finite-temperature critical regime
is based on the exact limits examined in Sec. VI A and con-
stitutes an explicit implementation of this discussion. We be-
gin by noting, as before, that when Jd=0, the system remains
at the Klein point for all temperatures, displaying critical
correlations, and the analysis of Sec. IV is applicable. The
susceptibilities �AB

aa = �PA;aPB;a� are a direct probe of dimer
correlations: at Jd=0, the correlation function �AB is critical
for all T�0.

With reference to the considerations below Eq. �52�, for
Jd�0, �AB

zz increases in magnitude relative to its Klein-point
value for diagonal dimers only. Thus, �i� the decay of � with
distance is no faster than algebraic. However, no VBC order
is possible at high temperatures T�Jd, and thus �ii� �→0 as
the plaquette separation �r�→�. Conditions �i� and �ii� taken
together imply that for T�Jd, the system exhibits algebraic
correlations. Similar considerations apply when Jd�0,
where ���AB

xx �+ ��AB
yy �� increases relative to its Klein-point

value, corresponding to correlations of horizontal or vertical
dimers. We thus conclude that for T� �Jd�, the system is criti-
cal. These statements are completely general, and provide
one explanation for why it is that the six-vertex model al-
ways has critical, and only critical, correlations at suffi-
ciently high temperatures.74

2. Finite-temperature criticality by approximate mapping
to an anisotropic six-vertex model

We now derive the approximate forms of the phase
boundaries of the critical region. This calculation is not exact
for the reasons stated at the start of this section, and is in-
cluded to provide a qualitative indication of the nature of the
phase diagram. We begin with an explicit statement of the
approximations employed in this derivation. �i� In contrast to
Sec. V, for this finite-temperature derivation, the nonorthogo-
nality of the different dimer states is neglected. At the Klein
point �Jd=0�, all dimer configurations carry equal weight and
their orthogonality is irrelevant, a fact exploited in Sec. V.
All of the properties of the system are a consequence of the
entropic considerations presented in Sec. IV. However, away
from the Klein point, the configurations no longer have equal
probability �in the example of Eq. �52�, states with diagonal
dimer configurations are favored when Jd�0 and suppressed
when Jd�0�. �ii� Off-diagonal contributions in the full
Hamiltonian, i.e., terms of the form �
a�H�
b� with a�b, are
neglected.

When mapped to the six-vertex representation, provided
that the conditions Jd ,T�J are satisfied, the anisotropic per-
turbation of Eq. �52� is reflected in a change in the relative
weights of the six-vertex configurations �which at low tem-
peratures are the only states with nonvanishing weights�. At

T=0, for Jd�0, these nonuniform weights are represented
by vanishing energies for four of the vertex types while the
other two contribute an equal and finite energy, and con-
versely for Jd�0.

With reference to Fig. 3, we choose the energies of the
six-vertex configurations displayed to be �i=1,2,3,4=0 and
�5=�6=− 3

4Jd in the presence of the perturbation. The
correlations and thermodynamics of this model are best
analyzed through the fugacities a=exp�−��1�=exp�−��2�,
b=exp�−��3�=exp�−��4�, and c=exp�−��5�=exp�−��6�,
where � is the inverse temperature. The fugacities determine
a parameter � whose value determines, in turn, the phase in
which the six-vertex model lies,

� =
a2 + b2 − c2

2ab
. �53�

Following Lieb’s original solution of the six-vertex
model,42,43 all models with ����1 are in the disordered
phase. Such small-��� systems, including the ice model
relevant for the isotropic checkerboard lattice where
a=b=c=1, are in the disordered phase and exhibit power-
law correlations. By contrast, for ��1, the system adopts an
ordered configuration where all arrows have a definite chiral-
ity �such as up and to the right or down and left�. In the
system with perturbation Jd, a=b=1 while c=exp� 3

4�Jd�,
and one finds that if

T �
3

8 ln 2
Jd, �54�

then ����1, indicating that the system is in its disordered
phase. In this case, we find power-law correlations among
dimer pairs and the system is trivially critical for all nonzero
temperatures when Jd�0, or critical only at sufficiently high
temperatures �whose lower bound is given by Eq. �54��
whenever Jd�0. When T=0, one finds that for all Jd�0, the
system lies precisely on the boundary between the ordered
and the critical phase ��=1�. Equation �54� defines a finite
region within the �Jd ,T� plane �Fig. 17� in which the system
is critical.

The above results are applicable under the conditions that
all relevant states lie within the Klein basis manifold, i.e.,
T�J, that the effects of nonorthogonality are neglected, and
that only the diagonal corrections induced by Hd are consid-
ered. Although these are small, off-diagonal contributions of
the type �
a�Hd�
b� analogous to those computed in Sec. V
are relevant in removing the “marginally critical” T=0 cor-
relations obtained for Jd�0, and stabilize once again a par-
ticular valence-bond ordering pattern of the types considered
in detail in Sec. V. In this situation, the marginally critical
line may be moved to finite temperatures, separating the low-
T ordered phase from a finite-T critical regime. In summary,
it is possible to demonstrate rigorously that specific types of
perturbation around the Klein point lead to an exotic, exactly
critical regime. Quantitative calculations of the properties of
this regime are not exact, but approximations of the kind
applied here may be used for the qualitative determination of
quantities such as the boundaries of this phase.
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VII. DISCUSSION AND CONCLUSIONS

The pyrochlore �A2B2O7� and spinel �AB2O4� structures
are very common among magnetic oxides, occurring for a
wide variety of transition and rare-earth metals such as both
the A and B ions and thereby offering a range of valence
states and magnetic moments S in a pyrochlore lattice of
interacting spins. Because the orbital contribution to the
magnetic moment of transition-metal ions in the 3d series is
quenched by the crystal-field splitting, the spin-orbit cou-
pling has only a perturbative effect and the relevant physical
spin models are effectively SU�2� invariant. While the link to
a physical pyrochlore or spinel system satisfying all the nec-
essary criteria remains to be found �Sec. II�, we have shown
here that for these structures, a class of SU�2�-invariant
S=1/2 models of this type, whose local interactions emerge
directly from the simplest Hubbard Hamiltonian, gives rise
to spinon excitations, which propagate in the full lattice.

At the root of the exotic behavior exhibited by this type of
system is the massive �extensive� degeneracy of the ground-
state manifold in the vicinity of the Klein critical point. We
have gained physical insight into the multiple essential as-
pects of this problem by exploiting exact mappings between
the spin system under consideration and other physical
systems.75 In particular, because the ground-state sector of
the S=1/2 Klein models on the pyrochlore lattice obeys ice
rules of the type discussed in Sec. III, it is possible to exploit
analogies with six-vertex models,42 string gases, and U�1�
gauge magnets to make a number of powerful qualitative and
quantitative statements. The local constraint of zero diver-
gence imposed by the ice rules implies that the low-energy
sector is described by an effective U�1� gauge theory in the
neighborhood of the Klein point. This theory is, however, not
necessarily the minimal U�1� gauge magnet, whose terms
involve only the smallest loops, which is usually invoked in
these cases.20 The variational approach, which we introduce

and employ in Sec. V indicates that in some cases, as a result
of the nonorthogonality of the singlet dimer coverings, pro-
cesses involving larger loops are relevant for realistic physi-
cal perturbations.

Although the spinons are deconfined excitations only at a
single point �the Klein point� of the quantum phase diagram
�T=0�, this deconfinement exists over a finite region of the
phase diagram due to thermal fluctuations, which give rise to
a dilute plasma phase of spinons. The spinon-spinon correla-
tions in this region are dominated by the T→0+ Klein critical
point, whose critical fluctuations are of entropic origin. The
primary characteristic of the Klein point is the stabilization
of a low-energy manifold of states satisfying a local con-
straint of zero divergence, or equivalently the ice rules,10,11

and the removal of any low energy scale. As a consequence
of both conditions, the system becomes critical due to en-
tropic fluctuations induced even at infinitesimal tempera-
tures.

These features are directly relevant for the potential ob-
servation of spinons in two- or three-dimensional systems. In
the case of the pyrochlore lattice models considered here, the
deconfined phase is expected to appear near a transition be-
tween two valence-bond crystals. Similar considerations
were applied to the S=1/2 model studied in Ref. 7, the dif-
ference in that case being that the spinons propagate along
one-dimensional paths because the dimensional reduction at
the corresponding Klein point is incomplete.

It is also interesting to note that an exact deconfined quan-
tum critical point5 �QCP� can be induced by adding a Zee-
man term to the Klein Hamiltonian of Eq. �8�. The QCP is
induced at the critical magnetic field Bc, which closes the
singlet-triplet spin gap. The excited two-spinon deconfined
state becomes the ground state at Bc. For higher values of the
field �B�Bc�, the concentration of spinons becomes finite
and the degeneracy between the underlying singlet dimer
coverings is lifted. Consequently, spinon-spinon confinement
is restored and the resulting triplet pairs are expected to con-
dense, giving rise to an XY-type antiferromagnet �XY-AF� in
the plane perpendicular to the applied field.

In the presence of a magnetic field, the system at the
Klein point displays a true deconfined QCP between a line of
classical critical points in the region B�Bc and a magneti-
cally ordered region at B�Bc with two coexisting order pa-
rameters. A schematic phase diagram illustrating the finite
extent of the deconfined regime is shown in Fig. 18. Very
different and much more conventional behavior is obtained

FIG. 17. Approximate phase diagram for the Klein-point Hamil-
tonian with diagonal exchange perturbation Jd. Neglecting both
nonorthogonality and off-diagonal contributions, an antiferroelec-
tric valence bond crystal �AFE-VBC� ordering is stabilized below
T=3Jd / �8 ln 2� for Jd�0. The system is critical at all points within
the region shaded in light gray. In the absence of off-diagonal pro-
cesses, it remains critical to zero temperature for Jd�0; the quali-
tative effect of these processes is to remove the low-temperature
critical behavior by stabilizing a VBC ordering in the region shaded
dark gray. While the phase boundaries shown above are approxi-
mate, the existence of a finite-temperature critical region is not
�Sec. VI A�.

FIG. 18. �Color online� Low-temperature phase diagram for the
Klein Hamiltonian in the presence of a Zeeman term �applied mag-
netic field B� for the checkerboard and pyrochlore spin systems.
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away from the Klein point, where the ground-state degen-
eracy is lifted. Here, the region B�Bc has a VBC ground
state with gapped magnon excitations separated by a conven-
tional QCP from an ordered phase with spin-wave excita-
tions.

The ideas and concepts connected with deconfinement at
quantum critical points have formed an extensive recent lit-
erature best summarized in Ref. 5. As noted in Sec. I, many
of these studies depart from effective U�1� gauge-theoretical
treatments rather than microscopic models, and it is not yet
clear that specific systems exist, which realize the desired
deconfinement properties. The Klein point in certain pyro-
chlore lattice models was considered briefly in Ref. 39, al-
though these authors did not dwell on either the detailed
physical properties of such a point or on their origin. We
have found that the mapping used in this study to a quantum
dimer model with only RK interactions is not, in fact, justi-
fied for a Heisenberg antiferromagnet in a pyrochlore geom-
etry. The scenario of the “constrained entropic critical point”
introduced recently in Ref. 76 contains certain parallels to
the physics of the Klein point with regard to high-
temperature constraints. However, this is said to be a “top-
down” construction based on different energy scales, some of
which are present in a number of the effective models con-
sidered, and does not contain specific properties emerging
from a microscopic Hamiltonian for all temperature regimes.

We conclude this discussion with a speculation. The ex-
ponential ground-state degeneracy �Eqs. �12� and �14�� and
the resulting extensive configurational entropy, which we
have found suggest, but certainly do not mandate, that glassy
spin dynamics may occur naturally in pyrochlores. We stress
that these systems are uniform and disorder-free but frus-
trated, wherein this suggestion would reinforce the widely
held belief that frustration rather than disorder is the funda-
mental requirement for the dynamical properties of structural
glasses. The basic premise of the Vogel-Fulcher �VF� form of
glassy dynamics is that the relaxation times appear to diverge
at a temperature which correlates well with the intercept �T0�
of the extrapolated entropy of the supercooled liquid to that
of the solid. According to a prevalent line of reasoning,77 as
the system is cooled, the configurational entropy first be-
comes extensive at TA, the onset temperature of multiple lo-
cal free-energy minima; at a lower temperature, T0, these
minima become stable and the configurational entropy van-
ishes. If an exponentially large number of metastable states
are found for TA�T�T0, one may invoke the analysis of
entropic droplets77 to obtain the characteristic free-energy
barrier height

�E � �TSc�−1. �55�

Linearizing the extensive configurational entropy,

Sc�T → T0
+� � V�T/T0 − 1� , �56�

leads to VF dynamics77 with relaxation times

� � exp�DT0/�T − T0�� . �57�

Here, T0 is a temperature scale close to the Kauzmann
temperature78 at which an “ideal glass transition” would oc-
cur, and where the extrapolated entropy of the assumed liq-

uid undergoes a crisis. We stress that this very general deri-
vation of a systematic definition for glassy behavior, by
consideration of free-energy barriers,77 does not require that
the different ground states be linked only by infinite-length
processes. �However, if only the spatially longest processes
were operational, this would indeed lead to very robust, ex-
ponentially slow quantum dynamics, as first noted by Cha-
mon and co-workers.79� For the pyrochlore system we have
shown that there exist finite-length tunneling processes link-
ing different ground states within the highly degenerate low-
energy sector, thus suggesting an obvious candidate system
for this type of glass. We comment that the physical pro-
cesses indicated here, namely, of glassy spin dynamics aris-
ing from frustration in a periodic lattice, are similar to early
ideas of the “topological spin glass” of Ref. 80. Empirically,
glassy dynamics is strongly indicated in a number of
frustrated magnetic systems, of which we quote only a
selective list: evidence of phases with certain glassy charac-
teristics has been reported in some pyrochlores, including
Y2Mo2O7,81,82 in the stacked kagome layer system
SrCr8.6Ga3.4O19 �Ref. 82� and in the kagome bilayer com-
pound Ba2Sn2ZnCr6.8Ga3.2O22.

83 Further indications for
glassy behavior are found in some quasitriangular antiferro-
magnets, including NiGa2S4.84

In conclusion, we have performed a detailed analysis of a
physically motivated quantum spin model with only near-
neighbor interactions on the two- and three-dimensional py-
rochlore lattices. This reveals a wealth of exotic behavior,
which can be traced to the extensive degeneracy of the sys-
tem at the Klein point and thus to a complete dimensional
reduction. The complete absence of quantum fluctuations in
the ground-state manifold at the Klein point leads to another
type of classical critical point, with exactly known critical
behavior, which we stress emerges from a highly frustrated,
microscopic quantum spin model.

The critical correlations at the Klein point are driven by
entropic �thermal� fluctuations, leading to an effective
plasma phase with Coulombic interactions. These are not
confining, when the elementary excitations are deconfined
spinons which propagate freely in all directions �a further
manifestation of complete dimensional reduction�. This high-
dimensional fractionalization would also be manifested as a
spin-charge separation in the dilute limit of added holes if the
carrier hopping were much smaller than the magnetic energy
scale J. Physically relevant perturbations away from the
Klein point lead, in general, to confined phases of static
valence-bond order with spin gaps to S=1 excitations. How-
ever, at finite temperatures in the vicinity of the Klein point,
the classical criticality is dominant and deconfinement per-
sists over a finite region of the phase diagram. This type of
deconfined behavior goes well beyond the simple, thermal
decoupling of a system �to obtain quasi-one-dimensional be-
havior� in that the classical critical point is driven to T=0+:
the microscopic origin of deconfinement lies in the proximity
of the system to a Klein point, and spinon propagation re-
mains d dimensional.

We have obtained our conclusions and, as a result, a
rather complete picture of a distinctive paradigm for classical
and quantum criticalities, from a number of rigorous tech-
niques. The dimer coverings of the checkerboard and pyro-
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chlore lattices may be treated, through their connection with
the ice rules, by both the six-vertex mapping and a line rep-
resentation, which exploit the underlying topological order
of the physical system to classify the states of the manifold.
We have developed a loop representation of the physical pro-
cesses in the dimer basis, which has very general applicabil-
ity to calculations involving the nonorthogonal dimer states;
this gives a clear and intuitive picture of all contributing
local processes, as reflected in the sizes of corresponding
loops, and a straightforward but rigorous set of rules system-
atizing their computation.

Recently, Pollmann et al. reported, in a series of
preprints,85 on a spinless Fermi model, which possesses sev-

eral of the qualitative features, which we found here for spin
systems on the pyrochlore and checkerboard lattices.
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