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We construct a two-dimensional microscopic model of interacting quantum dimers that displays an infinite
number of periodic striped phases in its T=0 phase diagram. The phases form an incomplete devil’s staircase
and the period becomes arbitrarily large as the staircase is traversed. The Hamiltonian has purely short-range
interactions, does not break any symmetries of the underlying square lattice, and is generic in that it does not
involve the fine-tuning of a large number of parameters. Our model, a quantum mechanical analog of the
Pokrovsky-Talapov model of fluctuating domain walls in two-dimensional classical statistical mechanics, pro-
vides a mechanism by which striped phases with large periods compared to the lattice spacing can, in principle,
form in frustrated quantum magnetic systems with only short-ranged interactions and no explicitly broken
symmetries.
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I. INTRODUCTION

The past two decades have seen the discovery of a num-
ber of strongly correlated materials with unconventional
physical properties. Due to the competing effects of essen-
tially electronic processes and interactions these doped Mott
insulators typically exhibit complex phase diagrams which
include antiferromagnetic phases, generally incommensurate
charge-ordered phases, and high temperature superconduct-
ing phases. When conducting, these systems do not have
well-defined electronlike quasiparticles and their metallic
states thus cannot be explained by the conventional theory of
metals, the Landau theory of the Fermi liquid, and the asso-
ciated superconducting states cannot be described in terms of
the BCS mechanism for superconductivity.

The startling properties of these materials have led to a
number of proposals of nontrivial ground states of strongly
correlated systems which share the common feature that they
cannot be adiabatically obtained from the physics of nonin-
teracting electrons. A class of proposed ground states is the
resonating valence bond �RVB� spin liquid phases, quantum
liquid ground states in which there is no long range spin
order of any kind, and the related valence bond crystal
phases, of frustrated quantum antiferromagnets1,2 and their
descendants.3–6 On the other hand, the presence of compet-
ing spatially inhomogeneous charge-ordered phases in close
proximity to both antiferromagnetism and high Tc supercon-
ductivity, and the existence of incommensurate low energy
fluctuations in the latter phase, strongly suggest that these
phases may have a common origin. It has long been sug-
gested that some form of frustration of the charge degrees of
freedom may be at work in these systems.7–9 The explanation
of both the existence of a large pairing scale in the supercon-
ducting phase and their close proximity to inhomogeneous
charge-ordered phases is one of the central conceptual chal-
lenges in the physics of these doped Mott insulators.10

The most studied class of these strongly correlated mate-
rials are the cuprate high temperature superconductors �for a
recent review on their behavior and open questions see Ref.
11�. Unconventional behaviors have also been seen in other

strongly correlated complex oxides.12 More recently, strong
evidence for nonmagnetic phases has been discovered in new
frustrated quantum magnetic materials, including the quasi-
two-dimensional �2D� triangular antiferromagnetic insulators
such as13 Cs2CuCl4, the quasi-2D triangular organic com-
pounds such as14 �-�BEDT-TTF�2Cu2�CN�3, and the three-
dimensional �3D� pyrochlore antiferromagnets such as the
spin-ice compound15,16 Dy2Ti2O7 �although quantum effects
do not appear to be prominent in spin-ice systems�.

It is thus of interest to develop a theoretical framework to
describe quantum frustrated systems in the regime of strong
correlation, and to understand their role in the mechanism for
inhomogeneous phases in strongly correlated systems. This
is the main purpose of this paper. It has long been known that
generally incommensurate inhomogeneous phases arise in
classical systems with competing short range attractive inter-
actions and long range repulsive interactions. In such sys-
tems, the short range attractive interactions �whose physical
origin depend on the system in question� favor spatially in-
homogeneous phases, i.e., phase separation, which is frus-
trated by long range �typically Coulomb� repulsive interac-
tions. Coulomb-frustrated phase separation has been
proposed as a mechanism for stripe phases in doped Mott
insulators7,17,18 and in low density electron gases.19 Similar
ideas were also proposed to explain the structure of the crust
of neutron stars, lightly doped with protons,20,21 and in soft
condensed matter �e.g., block copolymers�.22

In this work we will pursue a different approach and con-
sider mechanisms of quantum stabilization �i.e., quantum or-
der by disorder� of stripelike phases in frustrated quantum
systems. We will specifically consider frustrated versions of
two-dimensional quantum dimer models,23 which provide a
qualitative description of the physics of quantum frustrated
magnets in their spin-disordered phases. The phases that we
will discuss here are essentially valence bond crystals with
varying degrees of commensurability and become asymptoti-
cally incommensurate. Since these systems are charge-
neutral, there are no long range interactions. As we will see
below, quantum fluctuations resolve the high degeneracies of
their naive classical limit leading to a nontrivial phase dia-
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gram with phases with different degree of commensurability
or tilt. The resulting phase diagram has the structure of an
incomplete devil’s staircase similar to that found in classical
order-by-disorder systems such as the anisotropic next-
nearest-neighbor Ising �ANNNI� models.24,25 In the regime
in which quantum fluctuations are weak, which is where our
calculations are systematically controlled, only a small frac-
tion of the phase diagram exhibits phases with nontrivial
modulations. In this “classical” regime the observation of
nontrivial phases requires fine-tuning of the coupling con-
stants. �In contrast, in systems with long range interactions
no such fine-tuning is needed at the classical level.17� How-
ever, as the quantum fluctuations grow, the fraction of the
phase diagram occupied by these nontrivial phases becomes
larger. Thus at finite values of the coupling constants, where
our estimates are not accurate, no fine-tuning is needed.

Considerable progress has been made towards under-
standing theoretically the liquid phases, including the proper
field theoretic description26,27 which also allows for an analy-
sis of the related valence bond solid phases with varying
degrees of commensurability.28,29 Complementary to this ef-
fort is the dynamical question of how, or even if, a phase
with exotic nonlocal properties can arise in a system where
the interactions are purely local. We emphasize the require-
ment of locality because many of these exotic structures have
been proposed for experimental systems believed to be de-
scribed by a local Hamiltonian �i.e., of the Hubbard or
Heisenberg type�. An additional question is whether the ex-
otic physics can be realized in an isotropic model or if it is
necessary for the Hamiltonian to explicitly break symme-
tries. For some of these structures, the dynamical questions
have been partially settled by the discovery of model
Hamiltonians27,30,31 which stabilize the exotic phase over a
portion of their quantum phase diagrams. While many of
these models do not �currently� have experimental realiza-
tions, their value, in addition to providing proofs of prin-
ciple, lies in the identification of physical mechanisms,
which often have validity beyond the specific case consid-
ered. For example, the existence of short-range RVB phases
was first demonstrated analytically in quantum dimer
models,23,30 the essential ingredients being geometric frustra-
tion and ring interactions. The possibility of such phases be-
ing realized in spin systems was subsequently demonstrated
by the construction of a number of spin Hamiltonians,32–38

including SU�2� invariant models,34,35 all of which reduce to
dimerlike models at low energies. The existence of commen-
surate valence bond solid phases, with low order commensu-
rability, in doped quantum dimer models39 has been studied
recently,40,41 as well as modulated phases in doped quantum
dimer models within mean field theory.42

It is in this context that we ask the following question: is
it possible to realize high order striped phases in a strongly
correlated quantum system with only local interactions and
no explicitly broken symmetries? While the term stripe has
been used in reference to a number of spatially inhomogeous
states, here we use the term to denote a domain wall between
two uniform regions. The presence of domain walls means
that rotational symmetry has been broken. Figure 1 gives
examples of striped phases. Theories based on the formation
of striped phases have been proposed in a number of experi-

mental contexts, notably the high Tc cuprates,9,42–44 where
the “stripes” are lines of doped holes separating antiferro-
magnetic domains �see Fig. 1�a��. In the simplest striped
states, the domain walls are periodically spaced �Fig. 1�b�� or
are part of a repeating unit cell �Fig. 1�c��. We use the term
“high order striped phase” in the case where the periodicity
is large compared to the other characteristic lengths in the
model.

Our central result is a positive answer to the question
posed in the preceding paragraph. We do this by constructing
a two-dimensional quantum dimer model, with only short
range interactions and no explicitly broken symmetries, that
shows an infinite number of periodic striped phases in its T
=0 phase diagram. The collection of states forms an incom-
plete devil’s staircase. The phases are separated by first order
transitions and the spacing between stripes becomes arbi-
trarily large as the staircase is traversed.

Before giving details of the construction, we reiterate that
we are searching for �high-order� striped phases in a Hamil-
tonian with only local interactions and without explicitly
breaking any symmetries. As alluded to earlier, a number of
experimental systems where stripe-based theories have been
proposed are widely believed to be described by Hamilto-
nians that meet these restrictions. A notable example is the
Emery model45,46 of the high-Tc cuprates, which is a gener-
alization of the Hubbard model that includes both Cu and O
sites. Since it is not a priori obvious that a nontrivial global
ordering such as a high order striped phase will/can unam-
biguously arise from such local, symmetric strongly corre-
lated models, we include these phases in the list of “exotic”

FIG. 1. Examples of striped phases. �a� Stripes of holes separat-
ing antiferromagnetic domains. This structure appears in some theo-
ries of the high Tc cuprates. �b� Periodically spaced domain walls
separating regions where the order parameter takes the uniform
value �1 or �2. �c� Another example where the periodicity is asso-
ciated with a repeating unit cell. If the repeat distance becomes
infinite, then the state is said to be incommensurate with the lattice.
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structures. However, in the absence of these restrictions, the
occurrence of stripelike phases is relatively common. Relax-
ing the requirement of high periodicity, we note that low
order striped quantum phases can occur in the Bose-Hubbard
model at fractional fillings if appropriate next-nearest-
neighbor interactions are added.47 Relaxing the requirement
of locality, we note that stripe phases arise naturally in sys-
tems with long range Coulomb interactions.19,42 More gener-
ally, if the Hamiltonian includes a term that is effectively a
chemical potential for domain walls, and if there is a long-
range repulsive interaction between domain walls, then we
may generically expect striped phases where the spacing be-
tween domain walls is large �compared with the lattice spac-
ing�.

A guiding principle in constructing models with exotic
phases is frustration, or the inability of a system to simulta-
neously optimize all of its local interactions. Quantum dimer
models are relatively simple models that contain the basic
physics of quantum frustration and have proven to be a use-
ful place to look in the search for exotic phases.30 This is one
reason why we choose to work in the dimer Hilbert space. A
second reason is related to the observation that each dimer
covering may be assigned a winding number and this divides
the Hilbert space into topological sectors that are not coupled
by local dynamics. The ground state wave function of a
dimer Hamiltonian will typically live in one of these sectors
�ignoring the complications of degeneracy for the moment�.
As parameters in the Hamiltonian are varied, it is possible
that at some critical value, the sector containing the ground
state will change. Such a scenario, which occurs even in the
simplest dimer model formed by Rokhsar and Kivelson, is an
example of a quantum tilting transition between a “flat” and
“tilted” state. In Refs. 28 and 29, it was shown, by field
theoretic arguments, that when such a transition is perturbed,
states of “intermediate tilt” �this will be made more precise
below� may be stabilized. As we will show, these intermedi-
ate tilt states may be viewed as stripelike states, of the form
we are interested in. Taking inspiration from these ideas, our
construction involves perturbing about a tilting transition in a
specially constructed dimer model.

In classical Ising systems, the competition between
nearest-neighbor and next-nearest-neighbor interactions is a
well-known mechanism for generating incommensurate
phases.24 Classical models of striped phases are based on two
complementary principles: soliton formation and competing
interactions.25 Our quantum construction is based on analo-
gies with two classical models that are representatives of
these two aspects: the Pokrovsky-Talapov model of fluctuat-
ing domain walls48 and the ANNNI model.24 In Sec. II, we
review the relevant features of these models. In Sec. III, we
review the salient features about dimer models and tilting
transitions. In Sec. IV, we give an overview of the construc-
tion and technical details are presented in Sec. V and the
appendixes. In Sec. VI, we discuss how these ideas connect
to spin models, thus extending our “proof of principle” to
systems with physical degrees of freedom. We discuss impli-
cations of these results in Sec. VII. In two appendixes we
give technical details of our calculations.

II. CLASSICAL MODELS

Our approach builds on principles underlying stripe for-
mation in classical models, where the problem is also re-
ferred to as a commensurate-incommensurate transition.25

The classical models are based on two complementary prin-
ciples: the insertion of domain walls and competing local
interactions.

A toy model relevant to the present work is the picture of
fluctuating domain walls in two dimensions, introduced by
Pokrovsky and Talapov.48 The walls are allowed to fluctuate
though the ends are fixed �Fig. 2�, which precludes bubbles.
The free energy minimization is a competition between the
creation energy of having walls, the elastic energy of deviat-
ing from the flat state, and the entropic benefit of allowing
the walls to fluctuate. This theory predicts a transition from a
uniform phase to a striped phase. The spacing between walls
depends on the parameters of the theory �including tempera-
ture� and can be large compared with other length scales.

A second model relevant to the present work is the clas-
sical anisotropic next-nearest-neighbor Ising �ANNNI�
model in three �and higher� dimensions.24,49 This model �Fig.
3� describes Ising spins on a cubic lattice with ferromagnetic
nearest-neighbor interactions J1�0 and antiferromagnetic
next-nearest-neighbor interactions J2�0 along one of the
lattice directions. A key feature of the ANNNI Hamiltonian
is a special point J1 /J2=2 where a large number of stripelike
states are degenerate at zero temperature. As the temperature
is raised, the competition between J1 and J2 causes an infi-
nite number of modulated phases to emerge from this degen-
erate point. The phase diagram in the low T limit was studied
analytically in Ref. 24 using a novel perturbative scheme
where the existence of higher order phases was established at
successively high orders in the perturbation theory. Numeri-
cal studies at higher temperatures49 indicated that incommen-
surate phases occur near the phase boundaries. Therefore the

FIG. 2. �a� Ground and �b� excited states of the Pokrovsky-
Talapov model of fluctuating classical domain walls. This is a two-
dimensional anisotropic model where domain walls form along the
y direction and separate regions where the order parameter is uni-
form. While the domain walls cost energy, they are allowed to fluc-
tuate, which carries entropy. For a range of parameters, the domain
walls are actually favored by the free energy minimization.
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collection of phases form an incomplete devil’s staircase.25,50

A quantum version of the ANNNI model was studied in
Refs. 51 and 52.

The phase diagram of our model is similar to that of the
ANNNI model and our analytical methods are similar in
spirit to Ref. 24. However, the basic physics of our model
corresponds more clearly to a quantum version of the
energy-entropy balance occuring in the fluctuating domain
wall picture. We now discuss one more ingredient of the
construction before putting the pieces together in Sec. IV.

III. QUANTUM DIMER MODELS AND TILTING
TRANSITIONS

A hard-core dimer covering of a lattice is a mapping
where each site of the lattice forms a bond with exactly one
of its nearest neighbors. Each dimer covering is a basis vec-
tor in a dimer Hilbert space and the inner product is such that
different dimer coverings are orthogonal. Quantum dimer
models are defined on this dimer Hilbert space through op-
erators that manipulate these dimers in ways that preserve
the hard-core condition. These models were first proposed as
effective descriptions of the strong coupling regime of quan-
tum spin systems23 and Refs. 33–35 discuss ways in which
this correspondence can be made precise.

The space of dimer coverings can be subdivided into dif-
ferent topological sectors labeled by the pair of winding
numbers �Wx ,Wy� defined in Fig. 4. The winding number is a
global property in that it is not affected by any local rear-
rangement of dimers. In particular, for any local Hamil-
tonian, the matrix element between dimer coverings in dif-
ferent sectors will be zero.

For a given local Hamiltonian, the ground state of the
system will typically lie in one of the topological sectors. A
common occurrence in dimer models is a quantum phase
transition in which the topological sector containing the
ground state changes. Such an occurrence is called a tilting
transition because a dimer covering of a 2D bipartite lattice
may be viewed as the surface of a three-dimensional crystal

through the height representation.53 In this language, the dif-
ferent topological sectors correspond to different values for
the �global� average tilt of the surface. The correspondence
between dimers and heights is reviewed in Fig. 5 but for the
present purpose, it is sufficient to define the “tilt” of a dimer
covering as its “winding number per unit length.” The sim-
plest dimer model introduced in Ref. 23 has a tilting transi-
tion between a flat state �zero tilt� and the staggered state,
which is maximally tilted �Fig. 5�b��. At the critical point,

FIG. 3. The anisotropic next-nearest-neighbor Ising �ANNNI�
model. Ising spins lie on the points of a d-dimensional cube.
Nearest-neighbor interactions are ferromagnetic �J1�0�. Along one
of the directions, we also have antiferromagnetic next-nearest-
neighbor interactions J2�0.

FIG. 4. Winding numbers: draw a reference line that extends
through and around �due to the periodic boundary condition� the
system and label the vertical lines of the lattice alternately as A and
B lines. For any dimer configuration, we may define, with regard to
this reference line, the winding number Wx=NA−NB, where NA is
the number of A dimers intersecting the line and similarly for NB.
We can similarly draw a vertical line and define a similar quantity
Wy. Note that this particular construction works for a 2D bipartite
lattice. For 2D nonbipartite lattices, the construction is simpler:
count the total number of dimers intersecting the horizontal and
vertical reference lines and there are four sectors corresponding to
whether Wx,y is even or odd.

FIG. 5. Sample dimer configurations with corresponding height
mappings. The height mapping involves assigning integers to the
squares of the lattice in the following manner. Divide the bipartite
lattice into A and B sublattices. Assign zero height to a reference
square and then moving clockwise around an A site, the height
increases by one if a dimer is not crossed and decreases by three if
a dimer is crossed. The same rule applies moving counterclockwise
about a B site. The integers correspond to local heights of a crystal
whose base lies on the page. In these examples, the lower square in
the second column is taken as the reference square. �a� Dimers are
arranged in columns corresponding to a surface that is flat on aver-
age �though there are fluctuations at the lattice scale�. �b� Dimers
are staggered and the corresponding surface is maximally tilted. �c�
Average tilt is nonzero due to the staggered strip in between the flat
columnar regions. �d� Going from left to right, the surface initially
falls and then rises giving an average tilt of zero. This is because the
two staggered regions have opposite orientation.
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called the Rokhsar-Kivelson �RK� point, the Hamiltonian has
a ground state degeneracy where all tilts are equally favored.

The recognition of the Rokhsar-Kivelson dimer model as
a tilting transition led to a field theoretic description26,54 of
the RK point based on a coarse-grained55 version of the
height field �Fig. 5�. The stability of this field theory was
studied in Refs. 28 and 29. These studies showed that by
tuning a small perturbation and nonperturbatively adding ir-
relevant operators, it is possible to make the tilt vary con-
tinuously from a flat state to the maximally tilted state. In
addition, it was observed that the system has a tendency to
“lock-in” at values of the tilt commensurate with the under-
lying microscopic lattice, the specific values depending on
details of the perturbation. It was also noted that while a
generic perturbation would make the transition first order,28

for a sufficiently small perturbation, the correlation length
was extremely large29 which, it was argued, justified the field
theory approach nonetheless. Therefore the generic effect of
perturbations would be to smoothen the Rokhsar-Kivelson
tilting transition by making the system pass through an in-
complete devil’s staircase of intermediately tilted states. One
may suspect that the structure of the field theory, including
the predictions of Refs. 28 and 29, would hold for a broader
class of tilting transitions. In particular, one may consider the
case where the critical point is merely a point of large de-
generacy where all tilts are favored,56,57 which is analogous
to the classic ANNNI model.

The relevance of all of this to the present work is most
easily seen in Fig. 9, which shows the simplest examples of
states that have intermediate tilt �i.e., winding number�.
These are stripelike states having a finite density of staggered
domain walls and more general tilted states may be obtained
by locally rearranging the dimers. The preceding discussion
suggests that these kinds of structures arise naturally when
quantum dimer models are perturbed around a tilting transi-
tion. This observation will guide the construction outlined in
the next section.

IV. OVERVIEW OF STRATEGY

We now combine various ideas presented in Secs. II and
III to construct the promised quantum model. In the present
section, we present an overview of the construction with de-
tails and subtleties relegated to Sec. V. The basic idea is to
construct a quantum dimer model with a tilting transition and
then to appropriately perturb this model to realize a staircase
of striped states. We design the unperturbed system to have a
large degeneracy at the critical point, with each of the degen-
erate states having a domain-wall structure. The perturbation
will effectively make these domain walls fluctuate and the
degeneracy will be lifted in a quantum analog of the energy-
entropy competition that drives the classical Pokrovsky-
Talapov transition. Using standard quantum mechanical per-
turbation theory, we will obtain a phase diagram similar to
the classical 3D ANNNI model and will find that phases with
increasingly long periodicities will be stabilized at higher
orders in the perturbation theory. This mathematical ap-
proach is similar in spirit to the analysis of the classical
ANNNI model in Ref. 24.

A simple, rotationally invariant Hamiltonian with a tilting
transition is given by

�4.1�
This model displays a first-order transition between a colum-
nar and fully staggered state at a very degenerate point,
where 2a=b. In principle, we may perturb this model with an
off-diagonal resonance term and expect phases with interme-
diate tilt �and possibly other exotic phases� on the general
grounds discussed in the previous section. However, it is
difficult to make precise statements about the phase diagram
even for such fairly simple models. We will study a slightly
constrained version of this model that is convenient for mak-
ing analytical progress.

We construct the quantum dimer model in two steps. First,
we construct a diagonal parent Hamiltonian H0 �Eq. �5.1��
where the ground states are separated from excited states by
a tunably large gap. H0 will not break any lattice symmetries,
but the preferred ground states will spontaneously break
translational and rotational symmetry. In particular, we de-
sign H0 to select ground states having the domain wall struc-
ture shown in Fig. 6. In these states, the dimers arrange
themselves into staggered domains of unit width separating

FIG. 7. Ground state phase diagram of the parent Hamiltonian
H0 as a function of the parameter a−b �see Eq. �5.1��. In these
states, the dimers may only have two attractive bonds. When a−b
=0, the states of Fig. 6 are degenerate ground states. Away from this
point, the system enters a state where dimers either maximize or
minimize the number of staggered interactions. The maximally
staggered configuration is commonly called the “herringbone” state.

FIG. 6. A typical domain wall state selected by H0. These states
break translational and rotational symmetry. The staggered strips,
which are one column wide and may have one of two orientations,
are like domain walls separating columnar regions, which may have
arbitrary width. When a=b in Eq. �5.2�, the set of these states spans
the degenerate ground state manifold of H0.
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columnar regions of arbitrary width. The columnar dimers
are horizontal if the staggered dimers are vertical �and vice
versa� and the staggered strips come in two orientations. No-
tice that the fully columnar state �a columnar region of infi-
nite width� is included in this collection but the fully stag-
gered state �Fig. 5�b��, which appears in the Rokhsar-
Kivelson phase diagram, is not. In the following, we will
typically draw the staggered strips as vertical domain walls
but the horizontal configurations are equally possible.

In analogy with the ANNNI model, H0 is designed so that
all of these domain wall states are degenerate when the cou-
plings are tuned to a special point. Away from this point, the
system will enter either a flat or a tilted phase. The unper-
turbed phase diagram is sketched in Fig. 7.

The second step of the construction is to perturbatively
add a small, nondiagonal, resonance term tV:

�4.2�

The sum is over all plaquettes in the lattice. Depending on
the local dimer configuration of the wave function, the indi-
vidual terms in this sum will either annihilate the state or flip

the local cluster of dimers as shown in Fig. 8. The action of
this operator on the domain wall states �Fig. 6� is confined to
the boundaries between staggered and columnar regions and
effectively makes the domain walls fluctuate. Notice that Eq.
�4.2� is equivalent to two actions of the familiar Rokhsar-
Kivelson two-dimer resonance term. We expect the basic
conceptual argument to apply for a more general class of
perturbations, including the two-dimer resonance, but we
consider the specific form of Eq. �4.2� to simplify certain
technical aspects of the calculation. We will elaborate on this
more in the next section.

The degenerate point of Fig. 7 may be viewed as the
degeneracy of an individual vertical column having a stag-
gered or columnar dimer arrangement. The perturbation �4.2�
lifts this degeneracy by lowering the energy of configurations
with domain walls by an amount of order �Lt2 per domain
wall, where L is the linear size of the system. Therefore the
system favors one of the states with a maximal number of
domain walls and for technical reasons discussed below, will
choose the one having maximal tilt: the �11� state in Fig.
9�a�. However, the degeneracy between columnar and stag-
gered strips will be restored by detuning H0 from the t=0
degenerate point. This implies the second order phase dia-
gram sketched in Fig. 10.

Figure 10 is correct up to error terms of order t4. To this
approximation, states having tilt in between the �11� state
and the �flat� columnar state are degenerate on the phase
boundary. Physically, this boundary occurs when the energy
from second order processes which stabilize the staggered
domains is precisely balanced by the energy of a columnar
strip. This degeneracy will be partially lifted by going to
higher orders in perturbation theory. We find that at fourth

FIG. 8. �Color online� One of the terms in the operator of Eq.
�4.2� will flip the circled cluster as shown.

FIG. 9. Examples of ideal
tilted states. In these states, the
domain walls have the same ori-
entations and are uniformly
spaced. The notation �1n� denotes
the state where one staggered strip
is followed by n columnar strips
and so on. It is understood that
�1n� collectively refers to the
above states and those related by
translational, rotational, and re-
flection �i.e., switching the orien-
tation of the staggering� symme-
tries. The examples drawn here,
where it is understood that what
we are seeing is part of a larger
lattice, are �a� �11�, �b� �12�, �c�
�13�, �d� �14�, �e� �15�, and �f�
�16�.
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order, a new phase is stabilized in a region of width �t4

between the columnar and �11� phases. This new phase is the
one which maximizes the number of fourth order resonances
shown in Fig. 11 and is the �12� state �Fig. 9�b��. The cor-
rected phase diagram is given in Fig. 12.

Figure 12 is accurate up to corrections of order t6. To this
approximation, on the boundaries, states with tilts in between
the bordering phases are degenerate. These degeneracies will
be partially lifted at higher orders in the perturbation. At
higher orders, there will be resonances corresponding to in-
creasingly complicated fluctuations of the staggered lines but
at nth order, the competition between the �1,n−1� and co-
lumnar phases will always be decided by the nth order gen-
eralization of the long resonance in Fig. 11. The competition
will stabilize a new �1n� phase in a tiny region of width �t2n

between the �1,n−1� and columnar phases resulting in the
phase diagram of Fig. 13.

We will also find that at higher orders, the individual
boundaries of the �1n� sequence will themselves open reveal-
ing finer phase boundaries, which themselves can open. This
leads to the generic phase diagram sketched in Fig. 14. The
steps in the �1n� sequence that are stabilized depend on the
values of parameters in the Hamiltonian. However, the con-
clusion of arbitrarily long periods being realized is robust.
The fine structure of how the �1,n−1�-�1n� boundaries open
is less certain because the dependence on parameters is more
intricate and increasingly complicated resonances need to be
accounted for. However, general arguments indicate that the
boundaries will open and even periods incommensurate with
the lattice58 are likely to occur in the model, though such
states will not be seen at any finite order of our perturbation
theory.

In the terminology of commensurate-incommensurate
phase transitions, the �1n� sequence forms a �harmless� stair-
case with a “devil’s top-step.”24,25 With the openings of these

boundaries, beginning in the �11� state and moving left in
Fig. 14 for t�0, the system traverses an incomplete devil’s
staircase of periodic states. The subsequent steps in the stair-
case have progressively smaller tilts culminating in the flat
columnar state. The phase boundaries are first order transi-
tions. This phase diagram is similar to what is seen in the
classical ANNNI model, where the transitions are driven by
thermal fluctuations.

We make two remarks before launching into the calcula-
tion. First, when we refer to the “�11� phase” �for example�
what we precisely mean is that in this region, the ground
state wave function is a superposition of dimer coverings that
has relatively large overlap with the state in Fig. 9�a� and
much smaller overlaps �of order t2, t4, etc.� with excited
states obtained by acting on Fig. 9�a� with Eq. �4.2�. The
coefficients follow from perturbation theory. Second, since
Fig. 14 is obtained using perturbation theory, we can be con-
fident that this describes our system only in the limit where t
is small. In the classical ANNNI model, numerical evidence
indicates that as the small parameter �the temperature in that
case� is increased, the phase boundaries close into Arnold
tongue structures. We do not currently know if this will occur
in our model as t increases.

V. DETAILS

In this section, we construct a Hamiltonian using the strat-
egy outlined in the previous sections. The Hamiltonian H

FIG. 11. �Color online� The excited state on the right is obtained
from the initial state by acting twice with the perturbation in Eq.
�4.2�.

FIG. 12. �Color online� Ground state phase diagram of H=H0

+ tV from fourth order perturbation theory. The width of the �12�
phase is order t4.

FIG. 13. �Color online� Ground state phase diagram of H=H0

+ tV from nth order perturbation theory. The width of the �1n� phase
is of order t2n.

FIG. 10. �Color online� Ground state phase diagram of H=H0

+ tV from second order perturbation theory.
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=H0+ tV consists of a diagonal term H0 and an off-diagonal
term tV, which we treat perturbatively in the small parameter
t.

A. Parent Hamiltonian

Our parent Hamiltonian H0 is the following operator:

�5.1�
The coefficients a, b, c, d, p, and q are positive numbers. The
symbols used in Eq. �5.1� are projection operators referring
to configurations of dimers on clusters of plaquettes and the
sums are over all such clusters. The notation “3 more,” etc.
refers to the given term as well as terms related to it by
rotational and/or reflection symmetry; in terms a and b these
other terms are explicitly written. Notice that this Hamil-
tonian is a sum of local operators and does not break any
symmetries of the underlying square lattice.

Terms a and b are attractive interactions favoring stag-
gered and columnar dimer arrangements, respectively, and
we study Eq. �5.1� near a=b. Terms c and d are repulsive
interactions and if c ,d�a ,b, the dimers prefer domain wall
patterns �Fig. 6�. Terms p and q are repulsive interactions
which determine the phases on the staircase. If these terms
are sufficiently large59 compared to a, b, c, and d, the stair-
case will include phases with arbitrarily long periods.

We begin by showing that when a=b, the ground states of
H0 are the domain wall states of Fig. 6. We do this by show-

ing that competitive states must have higher energy. In the
domain wall states, every dimer participates in exactly two
attractive interactions and no repulsive interactions. The only
way to achieve a lower energy is for some dimers to partici-
pate in three or four attractive interactions. This involves
local dimer patterns of the form shown in Figs. 15�a�–15�c�.
In Fig. 15�a�, the central dimer participates in one columnar
and two staggered interactions but also two repulsive inter-
actions from term d in Eq. �5.1�. Similarly, Figs. 15�b� and
15�c� show that if a dimer participates in more than two
staggered interactions, the extra bonds are penalized by term
c. If we require c ,d�a ,b, these patterns will result in higher
energy states as the repulsive terms nullify the advantage of
having extra attractive bonds. This also explains why in Fig.
6, the staggered strips have unit width and the staggered and
columnar dimers have opposite orientation.

Of the states where every dimer has two attractive bonds,
the states where some dimers have two bonds of different
type will also have higher energy as shown in Fig. 15�d�. Of
the remaining states, it is readily seen that states where every
dimer participates in either two a bonds or two b bonds, and
where there are some b bonds, must be of the domain wall
form. The only other possibility is the “herringbone state”
where every dimer has two a bonds �see Fig. 7�. The latter
states are part of the degenerate manifold at a=b but are
dynamically inert because in this state it is not possible to
locally manipulate the dimers �without violating the hard-
core constraint�. This establishes that when a=b, the ground
states have the domain wall form. It is also clear that when
a�b, the system will maximize the number of b bonds and
when a�b, the number of a bonds. Therefore we obtain the
zero temperature phase diagram in Fig. 7.

It is useful to see this formally by calculating the energy
of each domain wall state. For concreteness, we assume the

FIG. 14. �Color online� The boundaries of the �1n� sequence
will typically open into finer phases and subsequently the fine
boundaries can themselves open. While the detailed structure de-
pends on parameters in the model, generically we expect an incom-
plete devil’s staircase to be realized. In the figure, we have explic-
itly drawn the opening of the �11�-�12� boundary but the other
boundaries will behave similarly.

FIG. 15. �Color online� �a� and �b� The two ways in which a
dimer can participate in three attractive bonds. �c� The one way in
which a dimer can participate in four attractive bonds. The attrac-
tive bonds are shown by the blue �dark gray� arrows. However,
these configurations also involve repulsive interactions, which are
shown in red �light gray�, from terms c and d in the Hamiltonian.
�d� An example of a state where every dimer has only two attractive
bonds but with some dimers the two bonds are of different types.
These “kinks” in the staggered domain walls involve an energy cost
from term d as indicated by the red �light gray� arrows.
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translational symmetry is broken in the x direction. A con-
figuration with Ns staggered strips and Nc columnar strips
has energy

E�Ns,Nc� = − aNyNs − bNyNc = − b
NyNx

2
+ �b − a�NyNs,

�5.2�

where Nx and Ny are the dimensions of the lattice �the lattice
spacing is set to unity�. We have used the relation Ns+Nc

=
Nx

2 . When a=b, the domain wall states are degenerate and
the energy scales with the total number of plaquettes NxNy. If
a�b, the system prefers the minimal number of staggered
strips, which is the columnar state. If a�b, the herringbone
configuration has lower energy than any domain wall state.
Notice that all of these states are separated by a gap of order
a or b from the nearest excited states obtainable by local
manipulations of dimers. Since we will be interested mainly
in the difference a−b, the individual size of a �or b�, which
sets the scale of this gap, can be made arbitrarily large.

B. Perturbation

We now consider the effect of perturbing the parent
Hamiltonian �5.1� with the nondiagonal resonance term
given in Eq. �4.2�:

�5.3�
We assume t�1,a ,b and consider t as a small parameter in
perturbation theory. We examine how the degeneracies in the
t=0 phase diagram �Fig. 7� get lifted when t�0. The tech-
nical complications of degenerate perturbation theory do not
arise because different domain wall states are not connected
by a finite number of applications of this operator. Equation
�5.3� is equivalent to two applications of the familiar two-
dimer resonance of Rokhsar-Kivelson. The mechanism we
now discuss can, in principle, be made to work for even this
two-dimer term, but there are additional subtleties which will
be mentioned.

1. Second order

An even number of applications of operator �5.3� are re-
quired to connect a domain wall state back to itself. There-
fore, to linear order in t, the energies of these states are
unchanged. To second order in t, the energy shift of state �n�
is given by

En = �n − t2�
m

�
VnmVmn

�m − �n
+ O�t4� , �5.4�

�n is the unperturbed energy of state �n� as given by Eq.
�5.2�. The primed summation is over all dimer coverings
except the original state �n�. The terms in the sum which give
nonzero contribution correspond to states connected to the
initial state by a single flipped cluster. These terms may be
interpreted as virtual processes taking the initial state to and
from higher energy intermediate states, which may be

viewed as quantum fluctuations of the staggered lines.
The resonance energy of a particular staggered line de-

pends on how the dimers next to the line are arranged. Figure
16 shows the three possibilities that give denominators that
may enter Eq. �5.4�: The staggered line may be of type �1�
next to a columnar region of greater than unit width �Fig.
16�1��, or separated by one columnar strip from another stag-
gered line of type �2�, having the same orientation �Fig.
16�2��, or type �3�, having opposite �Fig. 16�3�� orientation.
From the figure, we see that cases �2� and �3� involve higher
energy intermediate states than case �1� but allow for a
denser packing of lines.

If p is sufficiently large, states with type �3� lines will be
disfavored as ground states. Ignoring such states, we update
Eq. �5.2� to include second order corrections. For conve-
nience, we set c=a which removes the distinction between
cases �1� and �2�,

E�Ns� = − b
NyNx

2
+ 	b − a −

t2

4d + 2b

NyNs. �5.5�

We may use this to update the ground state phase diagram. If
b�a+ t2

4d+2b , the system is optimized when Ns=0, which is

FIG. 16. �Color online� The three types of intermediate states
obtained by acting once with the perturbation �5.3� on the domain
wall states. The blue/dark gray �red/light gray� arrows denote attrac-
tive �repulsive� interactions that are present in the initial �left� or
excited �right� state but not both. The circled cluster of the excited
state of �3� is another such interaction. �1� is a staggered line next to
a columnar region of greater than unit width. �2� and �3� are stag-
gered lines separated by one columnar strip from another staggered
line of the same and opposite orientation, respectively. Notice that
relative to the excited state of �1�, the excited state of �2� has two
additional attractive a bonds and two additional repulsive c bonds.
Similarly, excited state �3� has one additional attractive b bond, two
additional repulsive d bonds, and a repulsive p interaction. Since
c ,d�a ,b, cases �2� and �3� involve higher energy intermediate
states than �1�.
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the columnar phase. If b�a+ t2

4d+2b , the best domain wall
state is the one with maximal staggering but without case �3�
lines. This corresponds to the �11� state �Fig. 9�a�� in which
every staggered strip has the same orientation. As a−b is
further increased, the herringbone state will eventually be
favored. The boundary between the �11� and herringbone
state may be determined by comparing energies. The energy
of the �11� state is

E�11� = 	− b − a −
t2

4d + 2b

NxNy

4
+ O�t4� , �5.6�

while the herringbone state has energy Eh=−a
NxNy

2 . From
this, it follows that the �11� state will be favored when

a −
t2

4d + 2b
� b � a +

t2

4d + 2b
, �5.7�

while the herringbone state will occur when b�a− t2

4d+2b .
Therefore, up to corrections of order t4, the system has the

phase diagram shown in Fig. 10. Because the coefficient of
Ns in Eq. �5.5� is zero on the �11�-columnar boundary, we
have that the �11� state, columnar state, and any domain wall
state with intermediate tilt �that contains only lines of type
�1� and �2�� are degenerate on the boundary. In contrast, on
the �11�-herringbone boundary, only the two states are de-
generate.

In Appendix A the more general case, where c�a, is
discussed and the resulting phase diagram is shown in Fig.
17. An additional phase is stabilized in a region of width
��c−a�t2 �assuming �c−a� is finite� between the �11� and
columnar states. In this new phase, labeled A2, any state
where adjacent staggered lines are separated by two col-
umns, including the �12� state �Fig. 9�b��, is a ground state.
These are the states which maximize the number of type �1�
staggered lines �Fig. 16�1��. On the �11�-A2 boundary, inter-
mediate states where adjacent staggered lines are separated
by one or two columns �and where there are no type �3�
lines� are degenerate. On the A2-columnar boundary, states
where adjacent staggered lines are separated by at least two
columns are degenerate.

Figure 17 may be understood intuitively by noting that at
a=b and t=0, a staggered strip has the same energy as a
columnar strip. The resonance terms lower the effective en-
ergy of a staggered strip and since the �11� state involves the
most staggered strips, its energy will be lowered the most. As
b increases to the point where the degeneracy between co-
lumnar strips and type �2� lines is restored, the system will
prefer to maximize the number of type �1� lines, which are
individually more stable but loosely packed. This is the tran-
sition to the A2 phase. As b is increased further, the degen-
eracy between columnar strips and type �1� lines is restored
and there is a transition to the columnar state. Note that if
�c−a� is very large, �11�-A2 boundary can occur in the a
�b region.

Before proceeding with the calculation, we clarify two
points of potential confusion. First, when we say the “�11�
state is stabilized” over part of the phase diagram, what we
precisely mean is that the ground state wave function is a
superposition of dimer coverings that has relatively large
overlap with the literal �11� state of Fig. 9�a� and much
smaller overlaps �of order t2� with the excited states obtained
by acting on the �11� state once with the perturbation �5.3�
�Fig. 8�. We use the notation �11� to denote both the per-
turbed wave function, which is an eigenstate of the perturbed
Hamiltonian and the literal �11� state, which is an eigenstate
of the unperturbed Hamiltonian. Second, the phase bound-
aries are based on a competition between a resonance term,
which is a quantum version of “entropy,” and part of the
zeroth order piece which, continuing the classical analogy, is
like an internal energy. This does not contradict the spirit of
perturbation theory because the full zeroth order term,
−b

NyNx

2 + �b−a�NyNs, is always larger than the second order
correction.

A similar phase diagram will occur �though at fourth or-
der in perturbation theory� if we use the two-dimer move of
Rokhsar-Kivelson. However, the bookkeeping will be more
complicated because resonances will be able to originate in
the interior of the columnar regions instead of just at that the
columnar-staggered boundaries. This may be compensated
by tuning b, which will merely move the boundaries, or by
adding appropriate �local� repulsive terms to the parent
Hamiltonian.

2. Fourth order

We concentrate on Fig. 17 as it is more generic than the
fine-tuned c=a case of Fig. 10. In either case, we expect the
degeneracies on the phase boundaries to be partially lifted by
considering higher orders in perturbation theory. In this sec-
tion, we focus on the A2-columnar boundary, where adjacent
lines are separated by at least two columnar strips.

We return to the perturbation series for the energy �Eq.
�5.4��, this time keeping terms up to fourth order in the small
parameter.

En = �n − t2�
m

�
VnmVmn

�m − �n
− t4��

ml

�
VnmVmlVlkVkn

��m − �n���l − �n���k − �n��
− ��

ml

�
VnmVmnVnlVln

��m − �n�2��l − �n�� + O�t6� . �5.8�

As usual, the primes denote that the sum is over all states

FIG. 17. �Color online� Second order phase diagram when c
�a. The �11� phase has width �t2 and the A2 phase has width
��c−a�t2. On the �11�-A2 and the A2-columnar boundaries, inter-
mediate domain wall states are degenerate as described in the text.
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except �n�. The two fourth order terms correspond, in con-
ventional Rayleigh-Schrodinger perturbation theory, to the
corrections to the energy expectation value 
	 �H �	� and
wave-function normalization 
	 �	�. We will refer to the cor-
responding terms as “energy” and “wave function” terms. As
in the second order case, we may view the terms in the fourth
order sums as virtual resonances connecting the initial state
to itself via a series of high energy intermediate states. For
this reason, we will refer to the summands as �fourth-order�
“resonances.”

Most terms in the double sum in Eq. �5.8� correspond to
resonances between disconnected clusters �Fig. 18�. Refer-
ring to the figure, we use the term “disconnected” to indicate
that there are no interaction terms connecting the dimers of
clusters 1 and 2. While the number of such resonances scales
as the square of the system size, the contributions from the
energy and wave-function terms in Eq. �5.8� precisely cancel
for these disconnected clusters. The details of this cancella-
tion are discussed in Appendix B.

The remaining fourth order resonances are extensive in
number and may be grouped into three categories. In the first
category, shown in Fig. 19, are resonances associated with a

single staggered line and the number of such resonances in
the system is proportional to the number of lines. We refer to
these resonances as “self-energy corrections.”

In the second category, shown in Fig. 20, there are reso-
nances that contribute to the effective interactions between
adjacent lines. These resonances occur only in states where
lines are separated by two or fewer columnar strips. Because
we are interested in the A2-columnar boundary, the only pro-
cesses to consider are the ones shown in the figure. The
purpose of terms p and q in Eq. �5.1� is to control the pro-
cesses in Figs. 20�a� and 20�b�, respectively. The net contri-
bution of these resonances involve both energy and wave-
function terms. For example, the contribution of Fig. 20�b� to
the energy is

e =
2t4

2�4d + 2b�3�1 −
1

1 +
2q − a

2�4d + 2b�
� �5.9�

and likewise for Fig. 20�a� �replace 2q−a with 2p−b�. If q
�a /2, the net contribution of this resonance is repulsive.

FIG. 18. �Color online� Most of the fourth order terms in Eq.
�5.8� involve “disconnected” clusters of dimers. In this figure, the
perturbation connects the initial state �0� to excited states, labeled
�1� and �2�, depending on whether cluster 1 or 2 has been flipped.
Acting again with the perturbation connects to an excited state,
labeled �12�, where both of these clusters are flipped. Acting two
more times with the perturbation brings us back to the initial state
�0� via either of excited states �1� or �2�. Such terms are called
disconnected because there are no interactions �in Eq. �5.1�� be-
tween the dimers of clusters 1 and 2. The figure depicts a particular
resonance from the energy term in Eq. �5.8�. There is an analogous
contribution from the wave-function term which is a product of the
second order processes �0�→ �1�→ �0� and �0�→ �2�→ �0�. While
the number of such disconnected terms scales as N2, where N
=LxLy is the system size, these resonances do not contribute to the
energy because the contributions from the energy and wave-
function terms exactly cancel.

FIG. 19. �Color online� These are examples of fourth order self-
energy resonances. Each resonance is confined to a single line and
the number of resonances in the system is proportional to the num-
ber of lines. In resonances such as �a�, there are interactions con-
necting dimers of two flipped clusters on the same line. Terms such
as �b� arise from the wave-function term in Eq. �5.8� but have no
analogous processes in the energy term to cancel against.
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The third type of resonance is the long resonance, shown
in Fig. 21. These resonances occur in the energy term of Eq.
�5.8� but do not have corresponding pieces in the wave-
function term. Therefore these resonances will always lower
the energy though, as the figure indicates, the precise amount
depends on the way the lines are spaced.

An immediate implication of these resonances is the lift-
ing of the degeneracy of the A2 phase. All of these states

have the same number of lines so will receive the same self-
energy contribution �Fig. 19�. If we choose p ,q large com-
pared to a , b , c, and d, then the repulsive contribution from
the interaction resonances �Fig. 20� is essentially determined
by the wave-function term, which is the same for all of the
A2 states. The degeneracy is broken by the long resonances
because in the �12� state, only Fig. 21�b� processes occur
while in the other A2 states, some of the resonances are the
suppressed Fig. 21�c� variety. Therefore what was seen as
merely an A2 phase at second order is revealed, on closer
inspection, as a �12� phase.

To investigate the degeneracy of what we now recognize
as the �12�-columnar boundary, it is useful to update Eq.
�5.5� to include fourth order corrections:

E = − b
NyNx

2
+ 	b − a −

t2

4d + 2b
+ 
t4
NyNs − �t4NyNsa

− �t4Nsb + O�t6� , �5.10�

where Ns is the total number of staggered lines and Nsa�b� is
the number of staggered lines having the environment of Fig.
21�a� and 21�b�. We ignore states with arrangements like Fig.
21�c� since they are disfavored as ground states. 
 is a con-
stant, which may be calculated but whose value is unimpor-
tant, containing the contribution of fourth order self-energy
terms. �= 1

�4d+2b�2�2�4d+2b�+4�d−a�� �0 is the contribution of the

most favorable long fourth order resonances �Fig. 21�a��
whose number is proportional to Nsa. �
= 1

�4d+2b�2�2�4d+2b�+4�d−a�+2�c−a�� −2e �e given by Eq. �5.9�� is

proportional to Nsb and includes the contributions of Figs.
20�b� and 21�b�. Note that ��� and the sign of � is deter-
mined by the size of q. For convenience, we assume q large
enough that ��0.

We may use Eq. �5.10� to correct the phase diagram.
Similar to the second order case, as b is increased, the extra
stability of the staggered strips in the �12� state becomes
eventually balanced by the zeroth order energy of the colum-
nar strips. When this occurs, the system will prefer a state
with fewer lines that are individually more stable. In particu-
lar, the states we may label A3, where adjacent lines are
separated by three columns, maximize the number of favor-
able long resonances �Fig. 21�a�� without incurring any of
the repulsive fourth order penalties �i.e., the analog of Fig.
20 would be a disconnected resonance�. In the next section,
higher order perturbation theory will show that this A3 phase
is actually a �13� phase �Fig. 9�c�� so we begin using the �13�
label immediately. As b is increased further, the system will
enter the columnar state.

The result is the phase diagram in Fig. 22. The phase
boundaries are determined by comparing energies. Ignoring
corrections of order t6, we have the following:

E�12� = − b
NyNx

2
+ 	b − a −

t2

4d + 2b
+ 
t4 − �t4
NyNx

6
,

�5.11�

FIG. 20. �Color online� These are examples of fourth order reso-
nances which are effective interactions between lines. At fourth
order, such interactions are possible only when lines are separated
by two or fewer columns. On the A2-columnar boundary, reso-
nances �a� and �b� are the only processes to consider. These involve
terms p and q in the Hamiltonian, as indicated by the circles.

FIG. 21. �Color online� These are the long fourth order reso-
nances which occur in states where lines are separated by two or
more columnar strips. These processes are always stabilizing
though the amount depends on the environment of the line as in the
second order �see Fig. 16�. The resonance in �a� is strongest because
it involves the lowest energy intermediate state but �b� and �c� allow
for a denser packing of lines. Resonance �c� is especially sup-
pressed due to term p in Eq. �5.1�.
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E�13� = − b
NyNx

2
+ 	b − a −

t2

4d + 2b
+ 
t4 − �t4
NyNx

8
,

�5.12�

Ecol = − b
NyNx

2
. �5.13�

Comparing these expressions, we obtain the updated
phase diagram shown in Fig. 22. The �12� state is favored
when

b � a +
t2

4d + 2b
− 
t4 − �4��� + 3��t4. �5.14�

The �13� is favored when

a +
t2

4d + 2b
− 
t4 − �4��� + 3��t4 � b � a +

t2

4d + 2b
− 
t4

+ �t4. �5.15�

The columnar state is favored when

b � a +
t2

4d + 2b
− 
t4 + �t4. �5.16�

On the �12�-�13� boundary, there is a degeneracy between
intermediate states where adjacent lines are separated by ei-
ther two or three columnar strips. On the �13�-columnar
boundary, there is a degeneracy between states where adja-
cent staggered lines are separated by at least two columns.

3. Higher orders and fine structure

The picture of Fig. 22 will be further refined by consid-
ering sixth order resonances and new phases will appear near
the phase boundaries, in regions of width �t6, which is why
they were missed at fourth order. The most immediate con-
sequence will be the lifting of the degeneracy of the A3 states
in favor of the state �13�. The latter state, in comparison with
the other A3 states, is both stabilized maximally by the sixth
order analog of Fig. 21 and, if we choose p�q, destabilized
minimally by the sixth order analog of Fig. 20. The �13�-
columnar phase boundary will open to reveal the �14� phase
�Fig. 9�d��,60 in which the number of favorable long reso-
nances, the sixth order analogs of Fig. 21�a�, is maximized

and there are no repulsive contributions �i.e., the sixth order
analogs of Fig. 20 will be disconnected terms if the lines are
more than three columnar strips apart�.

The argument may be applied iteratively at higher orders
in perturbation theory. At 2nth order, we may ask whether
the �1n�-columnar boundary will open to reveal a new phase.
The transition to less tilted states will be again driven by
processes that connect adjacent lines �Fig. 23�. In the com-
petitive states, adjacent lines are separated by at least n co-
lumnar strips so 2nth order resonances connecting the lines
must be “straight.” This means that the complicated high
order processes, including “snakelike” fluctuations that break
the staggered lines, will simply change the self-energy of a
staggered line and do not have any effect on the transition.
The �1n� phase will be destabilized by the process in Fig.
23�b� which will overwhelm the stabilizing effect of Fig.
23�a� due to combinatorics. However, these repulsive pro-
cesses will not contribute when the lines are separated by
more than n columnar strips. Therefore the �1,n+1� phase,
which maximizes the number of the long 2nth order reso-
nances �Fig. 23�c��, will be stabilized in a region of width
�t2n between the �1n� and columnar phases. Therefore we
obtain the phase diagram of Fig. 13.

This shows that states with arbitrarily long periods are
stabilized without long range interactions or fine-tuning
�other than the requirements of perturbation theory�. The
situation will be similar if we were to use the two-dimer
Rokhsar-Kivelson resonance. In this case, there will be con-
tributions from resonances occurring only in the columnar
regions, which were “inert” in our calculation. These pro-
cesses will amount to self-energy corrections that just renor-
malize columnar energy scale b. Also, additional local terms
�i.e., other than p and q� may be required to realize the very
high-order states because adjacent lines will be able to inter-

FIG. 22. �Color online� Fourth order phase diagram. The new
�13� state has width �t4.

FIG. 23. �Color online� These are the 12th order resonances
which drive the transition between the �16� and �17� states. Process
�a� selects the �16� state from the others in the A6 manifold, which
were stabilized equally at tenth order. Process �b� destabilizes the
�16� state near its columnar boundary in favor of the �17� state,
which maximizes the number of most favorable resonances �c�.
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act via intermediate states other than the ones shown in Fig.
20. While we have not worked out the exact details of this
case, we note that there are a finite number of such interme-
diate states so only a finite number of local terms will be
required. In particular, we will not have to add longer terms
at each order in perturbation theory.

So far, we have concentrated on the boundary with the
columnar phase but we may also ask whether a similar lifting
may occur on the other phase boundaries. We consider the
�11�-�12� boundary. Both of these phases are stabilized at
second order and occupy regions of width �t2 in the phase
diagram �assuming �c−a � 
 t2�. On their boundary, all states
where staggered lines are separated by either one or two
columnar strips are degenerate to second order. We investi-
gate the effect of fourth order resonances on this boundary.

We need to consider not only the resonances presented in
Sec. V B 2 but also new fourth order processes which be-
come available once we consider staggered lines that are one
column apart. These are shown in Figs. 24 and 25. The reso-
nances in Sec. V B 2 will stabilize �or destabilize—the sign
is not important� each boundary state by an amount propor-
tional to the number of its “�12� regions,” i.e., columnar
regions that are two columns wide and have staggered lines
on their boundary, while the resonances in Fig. 24 will con-
tribute an amount proportional to the number of “�11� re-
gions,” i.e., columnar regions that are one column wide. If
these were the only available processes, the �11�-�12� bound-
ary would be shifted by �t4 but the degeneracy on the
boundary would remain.

The possibility of a new phase is determined by the reso-
nances in Fig. 25. Both of these resonances have an overall
stabilizing effect �the contributions to the energy are nega-
tive� and depend on whether an �11� region is adjacent to
another �11� region �Fig. 25�a�� or a �12� region �Fig. 25�b��.
Because c�a, resonance �b� is stronger than �a�, since its
intermediate state has lower energy, but requires a lower den-
sity of staggered lines. If the net contribution of resonance
�a� wins, then the degeneracy would be lifted in favor of the
�11� state and the �11�-�12� boundary would be shifted again,
but the degeneracy will only be between the two states.
However, if c is made sufficiently large,61 the contribution of
resonance �a� tends to zero while �b� approaches a constant

because the intermediate state can occur without involving c
bonds �i.e., the fourth order process where the left cluster is
flipped first and last�. Therefore there will be a new phase
where resonance �b� is maximized. This state is the �11-12�
state where the label refers to the repeating unit “one stag-
gered strip followed by one columnar strip followed by one
staggered strip followed by two columnar strips.”

Continuing the line of thought, we may ask whether the
�11-12�-�12� boundary will open at higher orders. Sixth order
resonances will shift the boundary but there are no processes
which break the degeneracy. However, at eighth order, there
is a resonance which will favor an �11-�12�2� phase �Fig. 26�.

We can, in principle, investigate whether the �11-�12�n�
phases continue to appear when n is large and also whether
the new boundaries themselves open to reveal even finer de-
tails. The same arguments will hold for all of the other
boundaries in the �1n� sequence. While the structure of our
Hamiltonian allowed us to be definite regarding the �1n� se-
quence, it is more difficult to draw conclusions about the fine
structure at high orders in perturbation theory because in-
creasingly complicated resonances need to be accounted for.
Most of these resonances will stabilize the unit cells of the
states on either side of the boundary so the net effect will be
to move the boundary. The more important terms, with re-
spect to whether boundaries will open, are resonances asso-
ciated with interfaces between regions with one or another
unit cell. Even these terms can become complicated at very
high orders in perturbation theory. However, our arguments
suggest that arbitrarily complicated phases can, in principle,
be stabilized by going to an appropriate range in parameter
space and/or adding additional local interactions. Therefore
the most generic situation is an incomplete devil’s staircase,
as sketched in Fig. 14.

C. Order of the transitions between the †1n‡ phases

The boundaries between different modulated states are ge-
nerically first order. Intuitively, this is not surprising because

FIG. 24. �Color online� These are fourth order processes avail-
able between two staggered lines separated by a single columnar
strip.

FIG. 25. �Color online� These are fourth order processes which
can occur if an �11� region is next to �a� another �11� region or �b�
a �12� region. Both of these resonances contribute to the energy
with a negative sign because the intermediate state involves two
fewer repulsive c bonds than if the flipped clusters were farther
apart.
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of the topological property that “protects” the states, namely
that even with an infinite number of local dimer moves, it is
impossible to go from one state to the other since the states
are in different topological sectors. Therefore we would not
expect a transition to be driven by a growing correlation
length.

Formally, the way we use to determine the order of the
transitions that emerge in the system is by calculating the
first derivative of the ground-state energy on either side of
the phase boundaries that we found.62 For example, we will
treat explicitly the case of the transition between �12�
→ �13�, even though the same line of argument applies to the
other boundaries as well. The energies of the two states near
the phase boundary are given by Eqs. �5.11� and �5.12� and
the phase boundary is given by the following condition �as
can be seen in Eq. �5.14��:

b = a +
t2

4d + 2b
− 
t4 − �4��� + 3��t4. �5.17�

Let us consider the case where we approach the boundary
from the �12� side varying the variable t but keeping a ,b
constant. In the phase diagram Fig. 13, we “move” vertically
down. The reason for choosing this direction is just clarity.
Let us call the point of the phase boundary where our path
crosses, A, and the critical value of t, tc �coming from the
solution of Eq. �5.17� for fixed values of a ,b ,d�.

The energies of the two states at the phase boundary are
exactly equal. Their derivatives are

� �E�12�

�t
�

A+,tc

= − 	 2tc

4d + 2b
− 4
tc

3 − 4���tc
3
NyNx

6
+ O�tc

5� ,

�5.18�

� �E�13�

�t
�

A−,tc

= − 	 2tc

4d + 2b
− 4
tc

3 + 4�tc
3
NyNx

8
+ O�tc

5� .

�5.19�

By Eqs. �5.17�–�5.19�, we have

�5.20�
The derivatives are not equal along the phase boundary so
the transition is discontinuous �first order�. It is clear that all
the phase transitions we found will also be discontinuous
because the above discontinuity comes exactly from the con-
tributions leading to the phase boundary’s presence.

VI. CONNECTIONS WITH FRUSTRATED ISING MODELS

A natural question to ask is whether the staircase pre-
sented above has any connection to the staircase of the 3D
ANNNI model or the quantum analogs discussed in Ref. 51.
One of the main differences of the present work is the non-
perturbative inclusion of frustration by considering hard-core
dimers as the fundamental degrees of freedom. In this sense,
the present staircase differs from previous work similarly to
how the fully frustrated Ising model differs from the conven-
tional Ising model. It is instructive to consider the mapping
between dimer coverings and configurations of the fully frus-
trated Ising model on the square lattice �FFSI� in more detail.

The FFSI model can be described in terms of Ising de-
grees of freedom living on the square lattice. The main dif-
ference with the usual ferromagnetic Ising model is the fol-
lowing: Even though in the x-direction, all the bonds are
ferromagnetic, in the y-direction there are alternating ferro-
magnetic �antiferromagnetic� lines where ferromagnetic �an-
tiferromagnetic� vertical bonds live �we consider that the ab-
solute values of the couplings of all bonds are equal�. In this
way, the product of bonds on a single plaquette is always −1
�three ferromagnetic bonds per plaquette� and therefore the
ground state of the system cannot be just the ferromagnetic
one. In fact, by mapping each “unsatisfied” bond to a dimer
living on the dual sublattice, we find that each of the degen-
erate ground-state configurations maps to a hard-core dimer
configurations on the square lattice �see Fig. 27�.63

A typical �1n� configuration in the dimer language we
used, as clearly depicted in Fig. 27 for one of the four
equivalent dimer structures, under � /2 rotations and sublat-
tice shifts, can be seen in the FFSI picture as ferromagnetic
stripes of length 4n in the one direction and infinite in the
other, separated by antiferromagnetic domain walls. In this
way, these ordered states clearly resemble the modulated
phases of the ANNNI model in two dimensions. The other
three equivalent dimer structures map again to periodic do-
mains in the Ising model, but with more complicated meta-
magnetic structure. The reason for this seemingly large com-

FIG. 26. �Color online� These are eighth order processes which
can lead to a new phase between the �11-12� and �12� phases. Reso-
nance �a� stabilizes the �11-12� phase while �b� stabilizes the
�11-�12�2� phase. In the limit where c is large, resonance �b� is
preferable. The easiest way to see this is by setting c=�. Then the
energy term of resonance �a� and all of the wave-function terms in
resonances �a� and �b� will give zero because the intermediate states
cannot form without creating c bonds. However, the intermediate
state in resonance �b� does not involve c bonds and can be obtained
without creating c bonds �i.e., in an eighth order process where the
first and last two actions involve flipping the cluster on the right and
the first cluster in the middle�. Therefore the energy term of reso-
nance �b� will give a stabilizing contribution.

DEVIL’S STAIRCASES, QUANTUM DIMER MODELS, AND… PHYSICAL REVIEW B 75, 094406 �2007�

094406-15



plexity has to do with the fact that the possible equilibrium
configurations have to satisfy the FFSI constraint.

As far as the interactions are concerned, we have the fol-
lowing correspondences: The three-dimer resonance term we
used in our construction corresponds to a two neighboring-
spins flip process which should, however, respect the FFSI
constraint. We should note that the usual single-plaquette
resonance move maps to the single-spin flip which is the
same as the Ising transverse field usually considered. The a
and b terms correspond to domain-wall energies in the FFSI.
Both of them have a one-to-one mapping to three-spin inter-
actions but these interactions are also anisotropic �they de-
pend on the distribution of the Ising bonds which we de-
scribed�. The additional interactions that we added to the
system, so that to extensively study it, correspond clearly to
complicated multispin interactions.

VII. DISCUSSION

There are reasons to be optimistic that these ideas apply
more generally. For example, as mentioned earlier, we expect
that with suitable modification of Eq. �5.1�, a similar phase
diagram may be obtained for a wide variety of off-diagonal
resonance terms, including the familiar two-dimer resonance
of Rokhsar-Kivelson. This is because the perturbation theory
is structured so that at any order, most of the nontrivial reso-
nances amount to self-energy corrections and the resonances
driving the transitions are comparatively simpler. The three-
dimer resonance of Eq. �4.2� is analytically convenient as its
action is confined to the domain wall boundaries. The two-
dimer resonance would involve more complicated bookkeep-
ing since we also need to account for internal fluctuations of
the columnar regions.

Another reason to expect these ideas to hold more gener-
ally is the qualitative similarity of this approach to the field
theoretic arguments in Refs. 28 and 29. In those studies, the
following action, in the notation of Ref. 29, was used to
describe the tilting transition in the Rokhsar-Kivelson quan-
tum dimer model on the honeycomb lattice �the square lattice
is similar but with some added subtleties—see Ref. 29�:

S =
1

2
���h�2 +

1

2
�2��h�2 +

1

2
�4��2h�2

+ g3��xh�	1

2
�xh −

�3

2
�yh
	1

2
�xh +

�3

2
�yh


+ g4��h � h�2 + ¯ , �7.1�

where “¯” includes terms that are irrelevant to the present
discussion �though maybe not strictly “irrelevant” in the RG
sense�. In this expression, h is a coarse grained version of the
height field �Fig. 5� and the first line of Eq. �7.1� describes
the tilting transition at the RK point,55 which corresponds to
�2=g3=g4=0. If g3�0, the system favors tilted states and is
similar to our parameter a−b. However, g4 prevents the tilt
from taking its maximal value and in this sense, is similar to
our terms c and d. The existence of the devil’s staircase in
Ref. 29 was established by tuning g3 and g4 so as to stabilize
an intermediate tilt and then to study the fluctuations about
this state. The staircase arose from a competition between
these quantum fluctuations, analogous to our term t, and lat-
tice interactions, �roughly� analogous to our terms c, d, p,
and q.

Another sense in which our calculation is similar to Ref.
29 may be seen by heuristically considering the effect of
doping the model. In particular, consider replacing one of the
dimers in a staggered strip with two monomers. If we then
separate the monomers in the direction parallel to the stripe,
a string of columnar bonds will be created. If the staggered
and columnar bonds were degenerate, then this would cost
no energy in addition to the cost of creating the monomers in
the first place so the monomers would be deconfined. How-
ever, in the �1n� phase, the staggered bonds are slightly fa-
vored so the energy cost E of separating the monomers by a
distance R would be E�Rt2n. Hence the commensurate
phases seen in our model are confining with a confinement
length that becomes arbitrarily large for the high-order struc-
tures that appear very close to the columnar phase boundary.
This is qualitatively similar to the “Cantor deconfinement”
scenario proposed in Ref. 29.

However, there are ways in which our calculation is quali-
tatively different from the above. Our calculation takes place
in the limit of “strong-coupling” where t is small compared
with other terms but influences the phase diagram nonethe-
less because the stronger terms are competing. In contrast,
the RK point of a quantum dimer model, by definition, oc-
curs in a regime of parameter space where quantum fluctua-
tions are comparable in strength to the interactions. The field
theoretic prediction requires g3 and g4 to be nonzero and so
does not literally apply at the RK point either but, by self-
consistency, should apply somewhat “near” it. We may
speculate that the tilted states being predicted by the field

FIG. 27. �Color online� One of the four possible �11� configu-
rations in terms of Ising spins on the fully frustrated square lattice.
The hard-core dimer constraint corresponds to the requirement that
the FFSI ground state has one “unsatisfied” bond per plaquette. The
columnar-dimer regions correspond to ferromagnetic-Ising do-
mains. The staggered-dimer strips correspond to the Ising domain
walls, depicted by the red-colored �dashed� curved lines, which
separate ferromagnetic domains of different orientation. Clearly, in
the other equivalent configurations, even though they share the
same principle of domain-wall competition, the separated regions
are not ferromagnetic but one of several metamagnetic choices
�Ref. 63�.
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theory are large t continuations of states that emerge in the
strong coupling limit far from the RK point. However, we
reemphasize that our calculation is reliable only in the limit
of small t and we cannot be certain which �if any� of our
striped phases survive at larger t. Another issue is that the
phase diagram near the RK point depends strongly on the
lattice geometry and the prediction of a devil’s staircase in
Ref. 29 is for bipartite lattices. In contrast, lattice symmetry
does not play an obvious role in the present work and it is
likely that these ideas can be made to apply on more general
lattices.

It is also likely that this calculation can be made to work
in the strong-coupling limits of other frustrated models, for
example, vertex models27 and even in higher dimensions. For
example, mappings similar to those discussed in Ref. 35 may
be used to construct an SU�2�-invariant spin model on a
decorated lattice that displays the same phases. A more inter-
esting direction would be to study the strong-coupling limits
of more physical models, for example, the Emery model of
high Tc superconductivity45 which also shows an affinity for
nematic ground states.46 It would also be interesting to see
whether nematicity is essential, i.e., whether other types of
phase separation can occur in a purely local model through
effective long range interactions that arise, as in the present
calculation, from the interplay of kinetic energy and frustra-
tion.
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APPENDIX A: DETAILS OF THE SECOND ORDER
CALCULATION

In this section, we explicitly work out the details of the
second order calculation, including the effect of having c
�a. We show that the second order phase diagram is quali-
tatively similar to the c=a case presented in the main text,
provided that c is not too large �the precise condition is ob-
tained below�. Therefore fine-tuning to c=a is purely a mat-
ter of convenience.

With reference to Fig. 16, we may calculate the difference
in energy between the excited and initial states for each case.
The unperturbed energies �i

in, i� �1,2 ,3�, of the initial states
in Figs. 16�1�, 16�2�, and 16�3� are given by Eq. �5.2� and are
degenerate when a=b. To calculate the unperturbed energies,
�i

ex of the excited states, we need to examine the interaction
energies present in the excited states which are absent in the

initial states and vice versa. These are shown in Fig. 16 by
the red and blue arrows. Using the figure, we obtain:

�1
ex − �1

in = �4d − 2a� − �− 2a − 2b�

= 4d + 2b , �A1�

�2
ex − �2

in = �4d + 2c − 2a − 2a� − �− 2a − 2b�

= 4d + 2b + 2c − 2a , �A2�

�3
ex − �3

in = �6d + p − 2a − b� − �− 2a − 2b�

= 6d + p + b . �A3�

These are the three possible energy denominators which may
enter Eq. �5.4�. We may classify a staggered line based on
the dimer arrangement to its immediate right, corresponding
to cases �1�–�3� in Fig. 16. Each staggered line contributes
−Ny

t2

�i
ex−�i

in . The factor Ny is because there are
Ny

2 possible

rightward resonances of each line and also
Ny

2 leftward reso-
nances of the line to its right, which enter with the same
weight. Putting everything together, we can update Eq. �5.2�:

E�Ns1,Ns2,Ns3,Nc� = − b
NyNx

2
+ �b − a�NyNs − NyNs1

t2

4d + 2b

− NyNs2
t2

4d + 2b + 2c − 2a

− NyNs3
t2

6d + p + b
+ O�t4� , �A4�

where Nsi is the number of staggered lines of type �i� and
Ns=Ns1+Ns2+Ns3 is the total number of staggered lines.
While the zeroth order term depends only on the number of
staggered lines, the O�t2� piece depends on their distribution
and relative orientations.

Equation �A4� shows that type �1� staggered lines will be
stabilized more by the perturbation than type �2� lines. How-
ever, the zeroth order term depends only on the total number
of lines and type �2� lines permit a denser packing of lines.
We temporarily ignore type �3� lines. Depending on b−a, the
system will favor either the �11� state, the columnar state, or
the states which maximize the number of type �1� lines,
which �at second order� are analogous to the maximally stag-
gered configurations in Fig. 7 except staggered lines are now
separated by two columns. We denote the latter collection of
states with the label A2 �i.e., alternating states where stag-
gered strips alternate with two columns of columnar dimers�.
To determine these boundaries, we first write down the en-
ergies of these three states to second order in t using Eq.
�A4�:

E�11� = − b
NyNx

2
−

NyNx

2
	b − a −

t2

4d + 2b + 2�c − a�
 ,

�A5�

EA2
= − b

NyNx

2
−

NyNx

4
	b − a −

t2

4d + 2b

 , �A6�
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Ecol = − b
NyNx

2
, �A7�

where we have used Ns=
Nx

4 for the �11� state, Ns=
Nx

6 for the
A2 states, and Ns=0 for the columnar state. Comparing these
expressions, we obtain the following boundaries. The �11�
state is favored when

b � a +
t2

4d + 2b
−

3t2

2�4d + 2b�	1 −
4d + 2b

4d + 2b + 2�c − a�
 .

�A8�

The A2 states are favored when

a +
t2

4d + 2b
−

3t2

2�4d + 2b�	1 −
4d + 2b

4d + 2b + 2�c − a�

� b � a +

t2

4d + 2b
�A9�

and the columnar state is favored when

b � a +
t2

4d + 2b
. �A10�

If we require that �c−a� is small compared to 2d+b �recall
that d�a by assumption�, then we see that the region where
the A2 state is preferred is a small region within the phase
boundary of Fig. 10. The width of this region tends to zero as
c→a. A diagram of this case is given in Fig. 17. On the
A2-columnar boundary, the A2 states are degenerate with the
columnar state and any intermediate state where consecutive
staggered lines are separated by at least two columns. Simi-
larly, on the �11�-A2 boundary, the �11� states are degenerate
with the A2 states and any intermediate states where stag-
gered lines of different �same� orientation are separated by
two �either one or two� columns.

The collection of A2 states are degenerate to order t2. As
the degeneracy of the A2 states will be partially lifted at
fourth order in the perturbation theory, the c�a case adds
complexity without changing the phase diagram qualita-
tively. Therefore, purely for convenience, we assume c=a
throughout the main text.

As c is made larger, the width of the A2 region increases
but when c�d+a+ p−b

2 , then according to Eq. �A4�, we need
to consider type �3� lines. In this case, the tilted state will no
longer be favored and, in fact, all of the steps of the staircase
will lie in the zero winding number sector.

APPENDIX B: CANCELLATION OF DISCONNECTED
RESONANCES

We now demonstrate the cancellation of disconnected
terms that appear at fourth order in the perturbation theory

�Eq. �5.8��. Because our Hamiltonian is local, there are
linked cluster theorems which ensure that this cancellation
occurs at any order in the perturbation theory so the contri-
bution to the energy is always extensive as it should be.

Regarding the situation of Fig. 18, we may write down all
fourth order terms involving the excited states which we
have labeled 1 and 2. The energy numerator will contribute a
number of terms, each having energy:

E = − t4 VnmVmlVlkVkn

��m − �n���l − �n���k − �n�
=

− t4

�4d + 2b�2�2�4d + 2b��
,

�B1�

which follows because the energy of the excited states �rela-
tive to the initial state� are �1−�0=�2−�0=4d+2b and �12
−�0=2�4d+2b�. That �12−�0=2��1−�0� is precisely because
clusters 1 and 2 are disconnected. This would not be the case
if we had a long range interaction. From Fig. 18, we readily
see that there will be four such terms since there are four
ways to connect the initial state �0� to the excited state �12�
and then back to itself. Therefore the full potentially patho-
logical contribution of the energy numerator is

Enum = − 4
t4

�4d + 2b�2�2�4d + 2b��
= − 2

t4

�4d + 2b�3 .

�B2�

It is evident that there are of order N2 of these terms because
the choice of clusters 1 and 2 was arbitrary. The energy de-
nominator �wave-function normalization� will contribute
terms, each having energy:

E = t4 VnmVmnVnlVln

��m − �n�2��l − �n�
=

t4

�4d + 2b�3 �B3�

and only resonances from the initial state to excited states 1
and 2 are involved. Because the case where m= l gives an
extensive contribution to the energy, we will be concerned
with the case where m and l in the above equation are dif-
ferent. There are two such terms because either m or l can
correspond to excited state 1 and the other to state 2. There-
fore the full potentially pathological contribution of the en-
ergy denominator is

Eden = 2
t4

�4d + 2b�3 . �B4�

We see explicitly that the nonextensive contributions of Enum
and Eden precisely cancel. Clearly this will be case for any
choice of disconnected clusters 1 and 2 so we have shown
that, to fourth order in the perturbation theory, the energy
correction is extensive, as it physically should be.
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