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We study the effect of quantum fluctuations on the half-polarized magnetization plateau of a pyrochlore
antiferromagnet. We argue that an expansion around the easy-axis limit is appropriate for discussing the
ground-state selection among the classically degenerate manifold of collinear states with a 3:1 ratio of spins
parallel and/or antiparallel to the magnetization axis. A general approach to the necessary degenerate pertur-
bation theory is presented, and an effective quantum dimer model within this degenerate manifold is derived
for arbitrary spin s. We also generalize the existing semiclassical analysis of Hizi and Henley �Phys. Rev. B 73,
054403 �2006�� to the easy-axis limit and show that both approaches agree at large s. We show that under
rather general conditions, the first nonconstant terms in the effective Hamiltonian for s�1 occur only at sixth
order in the transverse exchange coupling. For s�5/2, the dominant terms in the effective Hamiltonian are
those of a classical dimer model, which predicts a magnetically ordered state. For s�2, more exotic possi-
bilities may be realized. The effective dimer Hamiltonian is then strongly quantum. We describe two likely
ground states in that regime.

DOI: 10.1103/PhysRevB.75.094403 PACS number�s�: 75.10.Jm, 75.25.�z

I. INTRODUCTION

Magnetism is an inherently quantum-mechanical effect
that ultimately arises from the exchange processes in an in-
teracting many-particle quantum system. Thus, magnetic sys-
tems can reveal much about the richness of quantum me-
chanics itself, especially when cooperative effects are
operational and emergent effective low-energy theories de-
scribe the relevant physics. A few notable theoretical ex-
amples are the spin-liquid phases obtained in frustrated
magnets.1–5 Quantum effects may play a central role in other
types of order as well. Recent experiments on a number of
insulating chromate compounds, namely, CdCr2O4 and
HgCr2O4, have shown peculiar features in the low-
temperature magnetization as a function of applied magnetic
field. At low temperatures, the magnetization grows linearly
with magnetic field up to some critical value at which point
there is a sharp jump in magnetization onto a rather wide
plateau with half the full saturation magnetization.6–8 With
sufficiently large fields, it is possible to observe a smooth
transition off the half-magnetization plateau and a gradual
increase in magnetization up to what may be a fully polar-
ized plateau state.6 As described in Ref. 9, it is expected that
the magnetism in these compounds is well described by the
Heisenberg antiferromagnet �AFM� of spin s= 3

2 on the py-
rochlore lattice.

Motivated by these experimental examples of a half po-
larization plateau in the pyrochlore Heisenberg AFM, we
conduct a theoretical study of the quantum pyrochlore
Heisenberg AFM for any spin value s in a strong magnetic
field focusing on a half polarization plateau. While the phys-
ics of HgCr2O4 is probably determined to a large degree by
the classical physics of spin-lattice interactions,10–14 it may
be that in other similar compounds where coupling to
phonons is weak, quantum effects could play a significant
role.

In any case, the general problem of determining the spin
state on plateaus of nonzero magnetization in frustrated mag-

nets occurs in a large number of materials.15–22 At fields large
enough to induce substantial magnetization, the ground state
is expected to be very different from the zero-field state, and
one would ideally pursue a theoretical approach that takes
advantage of the large external field. The methods developed
indeed use this explicitly, and the particular application to the
half-polarized pyrochlore magnetization plateau provides a
rather nontrivial test bed. We make use of the large field to
justify an easy-axis approximation to a nearest-neighbor XXZ
antiferromagnetic in an external field. Physically, at large
fields, the spin is oriented on average more along the field
axis than transverse to it. Furthermore, specifically on a mag-
netization plateau, general arguments imply that the static
transverse moment vanishes on every site, �Si

±�=0. Thus, we
expect that degenerate perturbation theory �DPT� about the
easy-axis �Ising� limit should be justified on the plateau, and
one may thereby derive an effective Hamiltonian. This effec-
tive Hamiltonian acts in the constrained “3:1” space of states
with three majority spins with Si

z= +s and one minority spin
with Si

z=−s on each tetrahedron. This space is macroscopi-
cally degenerate, and all its members have half the saturation
magnetization.

The reader may well wonder whether there is any need for
an approach of this sort, given the successes of the large-s
semiclassical spin-wave method in many other contexts. In-
deed, for unfrustrated antiferromagnets, it is known that the
1/s expansion gives reasonably convergent results even
down to s=1/2. However, this convergence is strongly de-
pendent upon the lattice—large corrections to the spin-wave
dispersion have recently been obtained even for the rather
weakly frustrated triangular lattice.23,24 In highly frustrated
magnets such as the pyrochlore, another approach is war-
ranted. Particularly worrisome in the 1/s expansion is the
difficulty of treating tunneling, which is nonperturbative in
this method.25–27 By contrast, in the easy-axis expansion,
tunneling and virtual exchange are treated on the same foot-
ing. Of course, for large s, both approaches must agree, and
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we will indeed check that this is the case in our specific
application.

The effective Hamiltonian describing splittings within the
degenerate manifold of Ising ground states will generally
take the form of a constrained quantum Ising model. As ex-
plained in a previous publication,9 for the case of the pyro-
chlore half-magnetization plateau in the easy-axis limit, it
can be cast in the form of a “quantum dimer model” �QDM�
on the bipartite diamond lattice. Such QDMs are known to
display both ordered and disordered �spin-liquid� ground
states in different regions of their phase diagrams.2,4,28–31 We
derive the parameters of this QDM for general s and discuss
several limits and the expectations for the plateau ground
state. For simplicity of presentation, we perform this calcu-
lation here for the simplest XXZ spin model with no addi-
tional anisotropy or other spin interaction terms. However,
the method is straightforwardly generalized to include other
on-site �e.g., uniaxial anisotropy32� or nearest-neighbor �e.g.,
biquadratic� interactions without substantial increase in com-
putational complexity. More generally, the flexibility to in-
clude such effects allows one to consider the quantum effects
upon the ground-state selection within a magnetization pla-
teau even when the dominant mechanism of plateau stabili-
zation is a classical one.

A remarkable feature of the DPT is that all diagonal terms
describing splitting of the low-energy manifold vanish below
sixth order. For s�1, off-diagonal tunneling terms also van-
ish up to this order, so that the entire effective Hamiltonian is
determined by terms of sixth order and higher. This behavior
is similar to a result of Hizi and Henley26 that in the large-s
limit, the effective Hamiltonian is expressed entirely in terms
of a “spin flux” variable involving a product of six spins
around an elementary loop of the lattice. We show here that
our result is rather general and originates from two basic
features: the absence of nontrivial loops of length less than
six links on the pyrochlore lattice and the fact that all low-
energy spin states on a single tetrahedron are permutations of
one another. From our proof of this result, it can be readily
seen that similar behavior holds for any lattice of corner
sharing simplexes with only on-site and nearest-neighbor in-
teractions and permutation-related ground states on a single
simplex. We will apply the methods of this paper to other
such problems of interest in future work.

For the pyrochlore magnetization plateau and QDM stud-
ied here, the conclusions are as follows. For s�3, we find
that diagonal terms in the QDM are much larger than off-
diagonal ones. In this case, the latter are negligible, and be-
cause the diagonal QDM is effectively classical, it is soluble
and the ground state is ordered. We discuss the preferred spin
ordered states as a function of s. For s�5/2, the off-
diagonal terms are non-negligible, and a simple solution is
no longer available. For s�3/2, the off-diagonal term in the
QDM is dominant. In this case, we expect one of two pos-
sible likely states. One is a state adiabatically connected to
�and possessing the same symmetries as� the R state dis-
cussed previously in Ref. 9, which is the state containing the
maximal number of hexagonal loops with alternating spins
�flippable plaquettes in the QDM language�. Another likely
state is the U�1� spin liquid. Indeed, as argued in Ref. 33, it
is quite possible that the simplest QDM displays a direct

quantum phase transition between these two states. For s
=2,5 /2, the diagonal and off-diagonal terms are comparable.
Various arguments lead us to still expect the same two can-
didate states as for s�3/2, perhaps with a better chance of a
U�1� spin liquid than for s�3/2. A definite conclusion for
s�5/2 must await more serious computational �e.g., quan-
tum Monte Carlo� analysis.

The ground state of the QDM just discussed is determined
only by the dimensionless ratios of coupling constants. How-
ever, the DPT calculation also gives the overall scale of the
effective interaction in terms of the microscopic exchange J.
For s=3/2 �relevant to HgCr2O4�, the largest energy scale
�extrapolated from the easy-axis perturbation theory to the
Heisenberg limit� generated by quantum fluctuations is that
of the off-diagonal term and �0.25 J. Were this the true
scale for ground-state selection in the degenerate 3:1 mani-
fold in HgCr2O4, the magnetic ordering would occur at a
temperature of this order, i.e., �2.5 K. Experimentally, mag-
netic ordering is observed at a substantial fraction of the
temperature of onset of the plateau formation, which is
around 6 K. It is therefore plausible that quantum fluctua-
tions may be driving the ordering observed in HgCr2O4.
However, it is equally plausible that the ordering is deter-
mined by other mechanisms. The closeness of the ordering
and plateau scales in experiment suggests that both are de-
termined by the same physical mechanism. Indeed, we have
recently shown10 that the same spin-lattice coupling which
leads to plateau formation can also account for the state se-
lection. Curiously, the R state is also stabilized by the lattice
mechanism. This is symptomatic of the very strong con-
straints defining the 3:1 QDM states, which lead rather dif-
ferent microscopic interactions to favor the same ground
state. For s=1 and s=1/2, the DPT gives much larger char-
acteristic scales for the QDM, the off-diagonal term being of
orders of 0.88 and 1.5 J in the two cases. Thus, such s�1
antiferromagnets, if realized experimentally, would be even
more promising systems to observe quantum fluctuation ef-
fects.

This paper is organized as follows. In Sec. II, we describe
our theoretical model, the nearest-neighbor quantum Heisen-
berg antiferromagnet on a pyrochlore lattice in an external
field. An easy-axis limit is taken under the assumption of the
suppression of transverse spin fluctuations in large magnetic
fields. After applying degenerate perturbation theory �DPT�
in the transverse spin fluctuations, an effective dimer model
that can be used to obtain an approximate ground state of the
original model emerges in Sec. III. In Sec. IV, we carry out a
large-s analysis of the XXZ model, deriving a different effec-
tive Hamiltonian splitting the 3:1 manifold of degenerate
states. This effective Hamiltonian turns out to coincide with
the s→� limit of the effective Hamiltonian from the DPT
analysis. In Sec. V, we explore the ground state of the diag-
onal part of the effective Hamiltonian from DPT. In Sec.
V B, we explore in more generality the appropriate quantum
dimer model �QDM� of which all our effective Hamiltonians
are special cases. We conclude the main text of this paper
with a discussion of our results in Sec. VI. In Appendix A,
we analyze how the half polarization plateau is modified by
quantum fluctuations. An alternative method of performing
DPT is presented in Appendix B and shows perfect agree-
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ment with the result of Sec. III. Finally, in Appendix C, we
explore the states degenerate with the �3��3 states found
for s= 3

2 .

II. MODELS

A. Hamiltonians and limits

We begin with the simple spin-s Heisenberg antiferromag-
net �AFM� residing on the sites of the pyrochlore lattice in
the presence of a magnetic field H,

H = J	
�ij�

Si · S j − H · 	
j

S j . �1�

On the pyrochlore lattice, one may recast the nearest-
neighbor exchange in terms of the total spin on tetrahedra
using the identity

2	
�ij�

Si · S j = 	
t

�St�2 − 	
t

	
j�t

�S j�2, �2�

where St=	 j�tS j is the sum of spins on a tetrahedron labeled
by t, and �S j�2 
 j�=S�S+1� 
 j�. This gives the more conve-
nient form

H =
J

2	
t

��St − h�2 − h2� , �3�

where we have introduced the dimensionless magnetic field
h=H /2J=hẑ and ignored a trivial constant term in the
Hamiltonian.

1. Classical limit

The form in Eq. �3� makes the behavior in the large-s
limit apparent. In this limit, the spins behave classically, and
one may replace Si→sn̂i, where n̂i is a unit vector. The
ground states then consist simply of all states for which St
=s	i�tn̂i=h on every tetrahedron. This set has a large con-
tinuous degeneracy. Furthermore, since the magnetization is
simply half the sum of the St �because each spin is contained
in two tetrahedra�, this implies a continuous linear behavior
of the magnetization with field. Thus, in this model, magne-
tization plateaus can emerge only from quantum corrections
to the classical limit.

2. Easy-axis limit

An alternative approach exploits the fact that, with the
application of the magnetic field, the global SU�2� symmetry
of the bare Heisenberg model is broken down to a U�1� sym-
metry �rotations about the magnetic-field direction�. More-
over, when the magnetization per spin is substantial, on av-
erage the transverse components Si

± are smaller in magnitude
than the longitudinal ones. It is therefore natural to treat
transverse and longitudinal exchange couplings on a differ-
ent footing, with the latter taking the dominant role. For-
mally, this is accomplished by replacing the isotropic
Heisenberg Hamiltonian by an XXZ model:

H = H0 + H1, �4�

where

H0 =
Jz

2 	
t

��St
z − h�2 − h2� − Jz	

i

�Si
z�2 �5�

and

H1 =
J�

2 	
�ij�

�Si
+Sj

− + H.c.� . �6�

We use the notation St
z=	i�tSi

z, and we have made use of the
identity

	
�ij�

Si
zSj

z =
1

2	
t

�St
z�2 − 	

i

�Si
z�2. �7�

In the equations above, and elsewhere in this paper, �ij� de-
notes a sum over nearest-neighbor sites on the pyrochlore
lattice and Si

± are the spin ladder operators. Note that in the
Heisenberg model J�=Jz=J, but the more general XXZ
model has all the same symmetries as the former even when
this condition is not obeyed. From the above reasoning, we
expect that the transverse terms involving J� may be treated
as “small” perturbations in the strong-field regime of interest.
We note that this is expected to be a particularly good ap-
proximation when the system exhibits a magnetization pla-
teau. This is because, as described in the Introduction, �Si

±�
must vanish in such a state. Formally, this “easy-axis” limit
consists of taking J��Jz and doing degenerate perturbation
theory in �=J� /Jz. We will assess the validity of this ap-
proximation later by considering the magnitude of the per-
turbative corrections extrapolated to �=1. Finally, we note
that several other effects can stabilize a collinear state. One
is the addition of easy-axis anisotropy,

H0� = − K	
i

�Si
z�2, �8�

with K�J�	0. A second mechanism is biquadratic ex-
change,

H0� = − bJ	
�ij�

�Si · S j�2, �9�

with b	0. A term of this form can be generated dynamically
from spin-lattice interactions, known to be strong in
HgCr2O4. The DPT treatment discussed below can readily be
generalized to include either or both of the terms in Eqs. �8�
and �9�. For simplicity of presentation, we do not do so here.
While easy-axis terms similar to Eq. �8� are allowed for s
	1/2, this particular simple form, with the same spatial di-
rection for the local easy axis of all spins, is not physically
appropriate for the cubic pyrochlore spinels, and the proper
anisotropy terms allowed by symmetry in these materials are
likely to be very small in any case.

B. Magnetization process in the Ising model

The evolution of the ground state with field in the extreme
easy-axis limit �=0 is less trivial than in the classical limit.
The system is then described by the Ising Hamiltonian, Eq.
�5�. We shall focus on the h�0 case, as the case h�0 is
equivalent. The expression Eq. �5� can be written as a sum
over tetrahedra H0=	tHt with
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Ht =
Jz

2 ��St
z − h�2 − h2 − 	

j�t

�Sj
z�2� , �10�

and therefore if one can minimize this energy on each single
tetrahedron, one will have attained the minimum energy of
the many-body system.

The magnetization St
z of any individual tetrahedron is

quantized to the values St
z=0, ±1, ±2, . . . , ±4s. The first

term in Eq. �10� favors the magnetization of the tetrahedron
to take on a value close to the integer part of the dimension-
less magnetic field. The second term in Eq. �10� favors larger
z components of the spin values Sj

z= ±s. This second term is
trivial only in the spin 1

2 case where the spin 1
2 Pauli matrices

square to the identity.
A state with the magnetization St

z=m= �h� �the integer part
of h� clearly minimizes the energy of the first term in Eq.
�10�. However, given the magnetization, there is some free-
dom for the values of the spins on each tetrahedron. The
second term in Eq. �10� reduces this freedom by adding an
energy cost for small Sz components.

Consider four spins on a tetrahedron with total magneti-
zation m and individual values of S1

z , S2
z , S3

z , and S4
z . Now,

compare the energy of this state with that of S1
z −1, S2

z +1, S3
z ,

and S4
z . The only energy difference comes from the third term

in Eq. �10�,


E = − �S1
z + 1�2 − �S2

z − 1�2 + �S1
z�2 + �S2

z�2 = − 2�1 − S1
z + S2

z� .

�11�

From this expression, one deduces that if one begins with
S2

z 	S1
z , then it is energetically favorable to increase S2

z even
more at the expense of S1

z . This increase in S2
z can only be

halted by one of S1,2
z reaching an extreme spin value of ±s.

From this reasoning, we conclude that the lowest-energy
state on a single tetrahedron with a fixed total magnetization
m has a spin configuration with the largest possible number
of extreme valued spins. This also makes intuitive sense,
since ideally all the spins should take on extreme values if
possible. In three particular choices of m, all the spins take
on extreme values: zero magnetization m=0 with s, s, −s,
and −s; half polarization of m=2s with s, −s, −s, and −s; and
full polarization m=4s with s, s, s, and s. For m�2s, we find
the lowest-energy configuration for the spins s, s, −s, and
m−s, and for m	2s, we find s, s, s, and m−3s. Finally, we
can find the minimal energy for given magnetization m by
using the spin configurations described above for every value
of m and plugging them into Eq. �10�. For m�2s, we find

Em =
Jz

2
�2m�s − h� − 4s2� , �12�

and for m	2s, we find

Em =
Jz

2
�2�m − 2s��3s − h� − 4hs� . �13�

From the above expressions, it is easy to see that at h=s, all
m�2s yield the same energy—all these states are degenerate
at this field value. Similarly, for h=3s, all m	2s yield the
same energy. For other values of the magnetic field, we find

for h�s the lowest-energy state is the m=0 zero magnetiza-
tion state; for h�s�3s, the lowest-energy state is the m
=2s half-polarized state; and for h	3s, the lowest-energy
state is the m=4s fully polarized state.

The three lowest-energy states in the various magnetic-
field ranges have all spins at extreme values ±s and can be
realized on every tetrahedron in the pyrochlore lattice. The
m=0 state induces a degenerate manifold of states with every
tetrahedron having s, s, −s, and −s on it. This 2:2 proportion-
ality is well known as the “ice rules” encountered in a par-
ticular phase of water ice,34 as well as spin ice compounds.35

The half-polarization states are also massively degenerate,
with every tetrahedron in a 3:1 proportionality of Sj

z= +s to
Sj

z=−s spins �or 3 up, 1 down�. This particular degenerate
manifold will be the focus of the remainder of our discus-
sion. To summarize, the magnetization curve for Eq. �5� ex-
hibits three plateaus at zero, half, and full polarizations for
all values of s.

III. EASY-AXIS DEGENERATE PERTURBATION THEORY

A. Structure of perturbation theory

1. Basic formulation

In the previous section, we observed that the extreme
easy-axis limit of the Heisenberg model exhibits a broad
magnetization plateau at half-polarization. However, the
ground states on this plateau are macroscopically degenerate,
consisting of all states with a 3:1 ratio of majority and mi-
nority spins on each tetrahedron. In this section, we study the
splitting of this degeneracy by perturbation theory in J�. We
employ the following formulation of degenerate perturbation
theory �DPT�. Define the projection operator P onto any de-
generate manifold of states M. Consider any exact eigenstate

��. Its projection 
�0�=P
�
 satisfies the “effective
Schrödinger equation”

�E0 + PH1	
n=0

�

GnP�
�0� = E
�0� = Heff
�0� , �14�

where the operator G= �1/ �E−H0���1−P�H1. Because the
resolvent contains the exact energy E, Eq. �14� is actually a
nonlinear eigenvalue problem. However, to any given order
of DPT, E may be expanded in a series in J� to obtain an
equation with a true Hamiltonian form within the degenerate
manifold. Each factor of G is at least of O�J�� due to the
explicit factor in H1, with higher-order corrections coming
from the expansion of E. Once 
�0� and E are known, the
full wave function can be reconstructed as 
��= �1
−G�−1
�0�=	n=0

� Gn
�0�.
Considering the lowest-order term in DPT that breaks the

degeneracy, the precise energy E=E0+O��� in the resolvent
can be replaced by E0, where O��� represents possible en-
ergy shifts from lower-order terms that do not break the de-
generacy and E0 is the zeroth-order energy of the degenerate
manifold of states.

2. Order of off-diagonal terms

Every order in DPT can, in principle, have diagonal �in
the Si

z basis� as well as off-diagonal terms in which the de-
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generacy is removed. Any off-diagonal term in the effective
Hamiltonian must flip spins in such a way as to preserve the
3:1 constraint on each tetrahedron. This can only be accom-
plished by flipping spins around a nontrivial closed loop on
the pyrochlore lattice �see, e.g., Ref. 2�. The smallest such
loop involves flipping spins around a hexagonal plaquette
from Sz= ±s to Sz= 
s. This requires H1 to act 2s times, so
off-diagonal processes occur first at order O�J�

6s�. Therefore,
below this order of DPT, one need consider only diagonal
terms. In Sec. III B, we will demonstrate that the lowest or-
der diagonal energy splitting term for any s can occur only at
sixth order. For spin s= 1

2 , an off-diagonal term appears at
third order in DPT, and no diagonal energy splitting occurs at
this order, resulting in a purely off-diagonal effective Hamil-
tonian. For spin s=1, the lowest-order diagonal and off-
diagonal terms simultaneously appear at sixth order. For any
higher value of s, the diagonal energy splitting appears at a
lower order than any off-diagonal term can occur, and there-
fore the leading-order effective Hamiltonian is purely diago-
nal in the 3:1 states. We will nevertheless compute the first
nonvanishing off-diagonal term for various values of s in
Sec. V B to use its magnitude for an assessment of the va-
lidity of the truncation of the DPT expansion.

3. Unitarily transformed formalism for diagonal terms

We next develop a scheme to compute the diagonal terms
by unitarily transforming the expression in Eq. �14� to obtain
a formula for the diagonal effective Hamiltonian with all
dependence upon the spin state explicit. The 3:1 manifold
can be described using the Ising variables to indicate which
spins are minority sites. That is, in the 3:1 states, we denote
Sj

z=� js, with � j = ±1 the Ising variable. At nth order, pre-
suming that all lower-order terms are constants, the diagonal
terms in the effective Hamiltonian constitute the function of
the set 
�i� given by

Hn�
�i�� = �− 1�n+1���
�i��
�H1RQ�n−1H1
��
�i��� ,

�15�

where the resolvent R= �H0−E0�−1, Q=1−P, and


��
�i��� = � i
Si
z = �is� . �16�

The assumption that all lower-order terms are constant al-
lows us to replace E by E0 in the denominators in Eq. �14�,
since the constant corrections to E lead to higher-order terms
in the effective Hamiltonian.

The dependence upon the �i in Eq. �15� is not explicit,
but, following Hizi and Henley,26 it can be made so by a
unitary transformation. The operator

Û = exp�+ i�	
j

�1 − � j�
2

Ŝj
x� �17�

effects a rotation about the x axis in spin space only for the
minority spins. This interchanges raising and lowering opera-
tors and reverses the orientation of Si

z for these sites. We may
therefore write


��
�i��� = U
�0� , �18�

where


�0� = � i
Si
z = s� �19�

is the fully polarized state, which is now independent of �i.
Then, we have

Hn�
�i�� = �− 1�n+1��0
�H̃1R̃Q̃�n−1H̃1
�0� , �20�

where

Õ = U†OU �21�

for any operator O. In what follows, all the operators appear-
ing in Eq. �20� above will be simplified so that their depen-
dence upon �i becomes explicit.

First consider H̃1. It consists, from Eq. �6�, of a sum of
operators transferring spin 1 between two nearest-neighbor
sites, i.e., a bond of the pyrochlore lattice. We define the
nearest-neighbor connectivity matrix of the lattice �ij =� ji
=1 when i and j are nearest neighbors, and �ij =0 otherwise.
With this terminology, we write Eq. �6� as

H1 = Jz
�

4 	
ij

�ij�Si
+Sj

− + H.c.� . �22�

After the unitary transformation, one obtains

H̃1 = U†H1U = Jz
�

4 	
ij

�ij�Si
+�iSj

−�j + H.c.�

= Jz
�

4 	
ij

�ij� �1 + �i� j�
2

�Si
+Sj

− + H.c.�

+
�1 − �i� j�

2
�Si

+Sj
+ + H.c.�� . �23�

Here, the expressions �1±�i� j� /2 denote “Ising delta func-
tions” that select the cases in which the two �i,j have the
same or opposite signs.

Assuming that the lowest-order term in DPT that splits the
3:1 configurations is a diagonal term of order n0, the only 3:1
configuration which can be reached as an intermediate state
in Eq. �15� for any n�n0 is the starting state 
��
�i���. Under
the unitary transformation, this state maps to 
�0�, and there-

fore the projection operator Q̃ may be replaced by

Q̃ → 1 − 
�0���0
 �24�

in Eq. �20�.
Finally, we consider the resolvent. Using U†Si

zU=�iSi
z,

one finds

R̃−1 =
Jz

2 	
ij

�ij�i� jSi
zSj

z − 2Jzh	
j

� jSj
z − E0. �25�

First, we note that because both H0 and H1 conserve the
total magnetization of the lattice �this is just the conserved
quantity arising from the global U�1� symmetry�, the term
	 j� jSj

z remains unchanged at every stage in a DPT process,
and we can therefore absorb this term into the constant en-
ergy E0. Clearly, the inverse resolvent should vanish when
acting upon the fully polarized state 
�0�. Hence, we may
absorb the constant energy E0 into the sum as
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R̃−1 =
Jz

2 	
ij

�ij�i� j�Si
zSj

z − s2� . �26�

We can simplify the resolvent in the restricted space of vir-
tual states, which will be accessed in evaluating Eq. �20�. In
particular, the �i configurations are restricted to the 3:1
manifold. Furthermore, we note that all intermediate states
will have only some small finite set of spins whose Si

z quan-

tum numbers are different from s due to the action of H̃1. Let
us consider then the action of the resolvent on a state for
which this set of sites is denoted by F. In this case, only
terms in Eq. �26� for which at least one of i or j is in F can
contribute. Thus,

R̃−1 =
Jz

2 	
ij�F

�ij�i� j�Si
zSj

z − s2� + Jzs	
i�F

	
j�F

�ij�i� j�Si
z − s� .

�27�

One may replace the sum over j by 	 j�F=	 j −	 j�F to obtain

R̃−1 =
Jz

2 	
ij�F

�ij�i� j�Si
z − s��Sj

z − s�

+ Jzs	
i�F

�i�	
j

�ij� j��Si
z − s� . �28�

The crucial observation is that the 3:1 constraint implies

	
j

�ij� j = 4 − 2�i. �29�

This is because once �i is specified, the set of its neighbors is
also specified �see also Fig. 3�. Equation �29� allows one to
eliminate the latter sum and obtain

R̃−1 =
Jz

2 	
ij�F

�ij�i� j�Si
z − s��Sj

z − s�

+ 2Jzs	
i�F

�2�i − 1��Si
z − s� . �30�

Using again the observation that 	 j� jSj
z remains un-

changed throughout the stages of any DPT process, it is
equal to the constant 	 j� jSj

z=	 j� js. Using this fact, we fi-
nally obtain

R̃−1 =
Jz

2 	
ij�F

�ij�i� j�Si
z − s��Sj

z − s� − 2Jzs	
i�F

�Si
z − s� .

�31�

By successive action of H̃1, Q̃, and R̃ using Eqs. �23�,
�24�, and �31�, one can obtain explicit expressions for any
intermediate state in the DPT expression of Eq. �20� with n
�n0. For example, one action of each of these operators
gives

R̃Q̃H̃1
�0� =
�s

4�4s − 1� 	
a1a2

�a1a2
�1 − �a1

�a2
�
1a1

1a2
� ,

�32�

where we have introduced the compact notation


�m1�a1
¯ �mn�an

� = 
Sa1

z = s − m1� ¯ 
San

z = s − mn�

� i�a1¯an

Si

z = s� . �33�

Acting twice with the same sequence of operators gives

�R̃Q̃H̃1�2
�0� =
�2s

16�4s − 1� 	
a1a2

�a1a2
�1 − �a1

�a2
�
2a1

2a2
� +

�2s2

4�4s − 1� 	
a1a2a3

�a1a3
�a2a3

�a1a2

4s − �a1a2

���a1
+ �a3

��a2
− �a1

�a3
− 1�
1a1

1a2
�

+
�2s3/2�2s − 1

4�4s − 1� 	
a1a2a3

�a1a2
�a1a3

�a2a3

8s − 4 + �a2a3

�1 + �a2
�a3

− �a1
��a2

+ �a3
��
2a1

1a2
1a3

�

+
�2s2

16�4s − 1� 	
a1¯a4

�a1a2
�a3a4

�a1a4
�a2a3

�a2a4

8s − 2 + �a1
�a3

��a1a3
− �a1a4

− �a2a3
+ �a2a4

�
�1 − �a1

�a2
��1 − �a3

�a4
�
1a1

1a2
1a3

1a4
� , �34�

where we have introduced the “noncoincident” symbol

�ab = 1 − �ab. �35�

The corresponding expressions for more successive actions
of these operators upon 
�0� can also be obtained but are too
unwieldy to present here.

Using such expressions, one may readily evaluate the
terms Hn�
�i�� in the diagonal effective Hamiltonian, Eq.

�20�. For n0 an even number, a convenient way to calculate
the n0th order term is to consider the state


�� = R̃1/2Q̃H̃1�R̃Q̃H̃1�n0/2−1
�0� �36�

and then find the magnitude of this wave function:

Hn0
�
�i�� = − ��
�� . �37�

Note that the square root of R̃ in Eq. �36� is easily evaluated
by just taking the square root of Eq. �31�, since it is diagonal
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in the basis of 3:1 configurations. Other terms can be ob-
tained similarly.

B. Restricting the Hilbert space to the 3:1 manifold

Calculating each such magnitude as defined in the previ-
ous section leads to an explicit expression for the corre-
sponding term in DPT. These expressions appear to be ex-
tremely complex and formidable functions of the Ising spin
variables 
�i�. In this section, we show that the projection of
these functions to the 3:1 manifold of allowed 
�i� configu-
rations affords a tremendous simplification. In fact, we will
demonstrate that all terms in DPT below sixth order can give
only constant functions—i.e., no splitting—within the 3:1
states. At sixth order, the full functional dependence can be
characterized by only three independent numbers which may
be defined on plaquettes of the pyrochlore lattice. We show
how these numbers can be extracted from the expressions
obtained by the analysis of the previous subsection.

1. Functional form of diagonal DPT terms

From the analysis of the previous section, the nth-order
effective diagonal Hamiltonian in DPT must take the form of
a multiple sum of n site indices a1 . . .an, where each site
index is summed over all lattice sites. The summand is a
function only of s and of the set of �i, �ij, �ij, and �ij, where
i and j must belong to the set of the site indices. The general
form can be somewhat simplified by noting first that the
dependence upon the �ij can be eliminated by rewriting them
in terms of �ij using Eq. �35�, and then eliminating all �ij by
collapsing the sums containing these factors. Finally, we note
that any factors of �ij in the denominators in these expres-
sions can be moved to the numerator using the identity

g��ij� = g�0� + �ij�g�1� − g�0�� , �38�

for any function g �which may also depend upon any other
set of variables�, since �ij =0,1.

By these manipulations, one may write the effective
Hamiltonian Heff�
�i��=	nHn�
�i�� as

Heff�
�i�� = 	
n

	
Gn

	
a1,. . .,an

� �
�ij��Gn

�aiaj� fGn
��a1

, . . . ,�an
� .

�39�

Here, we have divided the effective Hamiltonian into terms
involving n independent site variables a1 , . . . ,an that are
summed over the lattice sites. A given order N in DPT con-
tributes terms with n�N. For a given n, all possible products
of �aiaj

can appear. The different such products are specified
by Gn, which may be considered as a “diagram” in the fol-
lowing fashion. Each Gn can be represented by drawing n
points, corresponding to i=1, . . . ,n, and connecting some ar-
bitrary set of pairs of these points by lines. For each �unor-
dered� pair of points �ij�, which is connected in Gn, we in-
clude one factor of �aiaj

. Since there are n�n−1� /2 pairs of
points, and each pair may or may not be connected, there are
2n�n−1�/2 distinct diagrams Gn. For example, in our conven-
tions, �a1a2

�a2a3
�a3a4

and �a1a2
�a2a3

�a3a5
are represented by

different diagrams �see Fig. 1�, which means that

fGn
��a1

, . . . ,�a6
� is not necessarily symmetric with respect to

swapping �a4
and �a5

. We will refer to the number n as the
order of the given term, even though it can come from a term
of that order or higher in DPT.

2. Contractible diagrams

First, we would like to show that any such term repre-
sented by a diagram containing a point i with less than two
connections to other points can be reduced to a term of one
lower order. These diagrams are “contractible” �see Fig. 2 for
examples�. We prove this by showing that the sum over ai
can be carried out explicitly to obtain an expression of the
same form of Eq. �39� in terms of the n−1 remaining sum
variables. There are two cases. Suppose in Gn the point i in
question has no lines connected to it. Taking i=n without
loss of generality, we note that the sum on an is uncon-
strained, i.e., it runs over all lattice sites. Thus we may write

2	
an

fGn
��a1

, . . . ,�an
� = 	

t
	
a�t

fGn
��a1

, . . . ,�a�

= Nt�3fGn
��a1

, . . . ,�an−1
, + �

+ fGn
��a1

, . . . ,�an−1
,− �� . �40�

The second line applies because on every tetrahedron there is
the same set of four single-spin states. By inserting Eq. �40�
into Eq. �39�, one reduces the order of this term, as asserted
above.

Consider the second case in which there is one connection
to the point i=n. We may suppose that this connection is to
the point j�n. The sum over an is then constrained only by
the requirement that an be a nearest neighbor of aj. For fixed
aj, this includes just six sites on the pyrochlore lattice. More-

FIG. 1. Examples of contractible diagrams.

FIG. 2. Examples of contractible ��a� and �b�� and noncontract-
ible �c� diagrams.
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over, the set of spins on these six sites is entirely determined
by the spin at site aj. In particular, if �aj

= +1, the sum con-
tains four terms with �an

= +1 and two terms with �an
=−1; if

�aj
=−1, the sum contains six spins with �an

= +1. This can
easily be understood from Fig. 3. Therefore, the sum can
again be carried out explicitly as follows:

	
an

�anaj
fGn

��a1
, . . . ,�an

� =
1 + �aj

2
�4fGn

��a1
, . . . , + �

+ 2fGn
��a1

, . . . ,− ��

+
1 − �aj

2
6fGn

��a1
, . . . ,�an−1

, + � .

�41�

Once again, Eq. �41� can be inserted into Eq. �39� to reduce
the order by 1.

3. Noncontractible diagrams

Since all contractible diagrams can be reduced using the
above rules until they become either noncontractible or con-
stant, we therefore need to consider only noncontractible dia-
grams. In these diagrams, each point in Gn is connected to at

least two other points. Let us first make a few general obser-
vations about these diagrams. One can readily see that for
these diagrams at order n�5, all points must be connected,
i.e., it is possible to pass from one point to an other by a
sequence of links. It is useful to consider the notion of a
loop, or sequence of points, each connected to the next by a
link, which visits no point twice and returns to the first point
of the sequence. For n�4, there is always at least one loop
which includes all n points. For n=5, all but three noncon-
tractible diagrams contain a loop of length 5. The three re-
maining diagrams at n=5 contain smaller loops �see part �c�
of Fig. 4�. All the noncontractible single loop diagrams for
n�5 are shown in Fig. 4. For n=6, there is one possible
disconnected diagram, which contains two disjoint loops of
length 3. Apart from this last diagram, all others are fully
connected.

Let us consider the physical pyrochlore sites
which are summed over in a given term. They comprise a
set S�Gn�= 
�a1

�1� , . . . ,an
�1�� , �a1

�2� , . . . ,an
�2�� , . . . � of solutions

�a1
�i� , . . . ,an

�i��, to the conditions

�aiaj
= 1 for �ij� � Gn. �42�

We will call these solutions “clusters.” In an infinite system,
S is, of course, infinite because of translational symmetry,
but this is immaterial. A given term may then be written
simply as

	
�a1,. . .,an��S�Gn�

f��a1
, . . . ,�an

� . �43�

We note that all the clusters for n�5 are confined to one or
two adjacent tetrahedra. This can be seen by considering the
constraints imposed on clusters by the noncontractibility of
the diagram. For instance, all but three diagrams at order n
=5 contain a loop of length 5, and this allows only three
topologies of clusters, which are illustrated in Fig. 5. The
remaining three diagrams only allow clusters that are con-
fined to two or less adjacent tetrahedra. We will show more
generally that any term containing only clusters confined to
three or fewer adjacent tetrahedra is a constant.

FIG. 3. �Color online� The three possible configurations of mi-
nority sites �down-pointing red arrow� on two adjacent tetrahedra in
the 3:1 manifold of states.

FIG. 4. All n�5 noncontractible diagrams. �a� The triangle dia-
gram is the only possible such diagram for n=3. �b� The square-
framed diagrams are all the possibilities for n=4. �c� The pentagon-
framed diagrams together with the three rightmost diagrams
comprise all the possibilities for n=5.
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The set S can therefore be broken up into three compo-
nents, comprising clusters which contain 1, 2, or only 3 mul-
tiply occupied tetrahedra,

S�Gn� = S1�Gn� + S2�Gn� + S3�Gn� . �44�

The sum in Eq. �43� can be carried out separately over these
three sets. Let us consider first the sum over S1. The clusters
in S1 can be divided into subsets of those residing on a
specific tetrahedron S1

t .
An arbitrary permutation P of the four sites on tetrahe-

dron t leaves the set S1
t �Gn� invariant. This is because each

solution obeys Eq. �42�, and �aiaj
=�P�ai�P�aj�

for ai ,aj � t
�this is a set of permutations that leaves nearest-neighbor
pairs invariant�.

The contribution of all clusters on t to the term in question
can only be a function of the four Ising variables of the four
sites q=1,2 ,3 ,4� t,

	
�a1,. . .,an��S1

t

fGn
��a1

, . . . ,�an
� = F��1,�2,�3,�4� . �45�

Now, we can use the fact that the spin configurations on one
tetrahedron are always constrained to be of the 3:1 form,
i.e., they are a permutation P of the specific configuration
� � � �:

�q = �P�q�
0 , �46�

with ��1
0 ,�2

0 ,�3
0 ,�4

0�= �+, + , + ,−�. Here q→P�q� is a per-
mutation of the four sites. The specific �cyclic� permutation
P now encodes the spin state on this tetrahedron,

F��P�1�
0 ,�P�2�

0 ,�P�3�
0 ,�P�4�

0 � = 	
�a1,. . .,an��S1

t

fGn
��P�a1�

0 , . . . ,�P�an�
0 �

= 	
�a1,. . .,an��P−1�S1

t �

fGn
��a1

0 , . . . ,�an

0 � .

�47�

Since the set S1
t �Gn� is invariant under these permutations,

we find from the last expression that F��1 ,�2 ,�3 ,�4� is also
invariant under the permutations. Hence, this contribution is
identical for all spin configurations and is a constant within
the 3:1 manifold.

Let us next consider the clusters in S2. For each cluster,
there are two neighboring tetrahedra t and t�, each of which
contains two or more sites ai. These tetrahedra share one
specific site, which we call A. The pair of tetrahedra in ques-
tion are determined by A �the tetrahedra t and t� are deter-

mined by the choice of A�. For one such cluster, the sites ai
with i=1, . . . ,n may be partitioned into three groups: the site
A and those which are on t or t� but are not A:

t̄ = t − 
A� , �48�

t̄� = t� − 
A� . �49�

Similarly to S1, we can divide S2 into subsets S2
A residing on

tetrahedron pairs defined by the site A. We can then rewrite
the sum by summing A over all lattice sites and summing the
set of sites a1 , . . . ,an over S2

A,

	
�a1,. . .,an��S2

fGn
��a1

, . . . ,�an
�

= 	
A

	
�a1,. . .,an��S2

A

fGn
��a1

, . . . ,�an
� . �50�

We now observe that the set of solutions S2
A is invariant

under any permutation Pt �Pt�� of the three sites in t̄ �t̄�. This
is exactly as for S1

t because each solution in S2
A obeys Eq.

�42�, and �aiaj
=�Pt�ai�Pt�aj�

for ai ,aj �A� t̄� t̄� �and the same
holds if Pt is replaced by Pt��.

The sum

	
�a1,. . .,an��S2

A

fGn
��a1

, . . . ,�an
� �51�

can only be a function of the seven Ising variables of the
sites in A� t̄� t̄�. Due to the 3:1 constraint, if �A=+, then the
Ising variables �q for q� t̄ must be a permutation Pt of
�q

�1�= �++−�. If �A=−, then all the �q=+. Hence, we may
write

�q = �
�1 + �A�

2
�Pt�q�

�1� +
�1 − �A�

2
�+ 1� for q � t̄

�1 + �A�
2

�Pt��q�
�1� +

�1 − �A�
2

�+ 1� for q � t̄�.�
�52�

Using these expressions and the fact that S2
A is invariant

under these two permutations, the sum in Eq. �51� is found to
depend only on �A.

This finally leaves

	
�a1,. . .,an��S2

= 	
A

f̃��A� , �53�

where f̃��A� is a complicated function obtained from the
above manipulations—which, however, does not depend
upon A itself. The sum is clearly then constant, as the num-
ber of � and � spins are fixed for the lattice. Thus, all terms
in S2 are also constants.

Finally, consider S3. In these clusters, there are three ad-
joining tetrahedra, and one may identify a “central” tetrahe-
dron t which shares a site with each of the other two tetra-
hedra t� and t�. Here, one may divide the sum variables into
five groups: two corresponding to the site shared by t and t�
and the site shared by t and t� and three others corresponding
to the sites on t, t�, and t� but not shared. One can again sum

FIG. 5. �Color online� Three example topologies of closed paths
of five steps on the pyrochlore lattice. These are all the possible
topologies of clusters corresponding to diagrams at order n=5 con-
taining a loop of length 5.
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over the unshared sites on t� and t� and obtain an expression
for the cluster sum, which involves sites only on t. By ma-
nipulations of the type used to analyze S1, one finds that this
remaining single-tetrahedron sum must also be constant.

We conclude that any term for which the corresponding
clusters are confined to three or fewer adjacent tetrahedra
must be constant. Therefore, all terms up to and including
fifth order are constant. At sixth order, among the noncon-
tractible diagrams, there are a few exceptions. First, there is
one disconnected diagram containing two loops of length 3.
In this term, the sum over variables in the first and second
groups is independent, and, therefore, each can be carried out
separately as for a third-order term. This immediately gives a
constant contribution. The remaining diagrams are con-
nected. All but one of these diagrams contains a loop of
length 5 or less �possibly in addition to other larger loops�.
Such terms are confined to three or fewer tetrahedra and are
constant by the above arguments. What remains is the single
diagram consisting of only a single loop of length 6, as
shown in Fig. 6.

This “large loop” diagram is thus the sole nontrivial con-
tribution. It can be written in the form

H6
L�
�i�� = 	

a1. . .a6

��
i=1

6

�aiai+1� fL��a1
, . . . ,�a6

� , �54�

where we identify a7=a1. To analyze each term �given a
particular set a1 , . . . ,a6�, we employ a trick: multiplying it by
a carefully chosen representation of the identity

1 = �
��ij��

��aiaj
+ �aiaj

� , �55�

with �ab=1−�ab. Here, the product is over distinct pairs i , j,
which are not connected in the loop diagram. We multiply
the loop term by this expression and expand the product
fully. All but one term involves at least one Kronecker �
function. In each of these summand terms, at least one sum
can be collapsed, leading to a lower-order term, which is
necessarily a constant as we have already shown. The re-
maining nonvanishing part is the original summand term
multiplied by the product,

�
��ij��

�aiaj
. �56�

This factor is nonzero if and only if all n=6 sites ai are
distinct. Thus, the sites ai must comprise a closed walk on
the lattice in which each site on the walk is visited only once.
On the pyrochlore lattice, this is exactly the set of hexagonal

plaquettes. A specific plaquette on the lattice containing sites
i1 , . . . , i6 in sequence around the plaquette appears 12 times
in the sum in Eq. �54�, with a1 , . . . ,a6 taking the six cyclic
permutations of i1 , . . . , i6 and the six cyclic permutations of
these sites in reverse order. Hence, the nonconstant contribu-
tion to the diagonal energy at sixth order in DPT can be
written as

H6 = 	
P

EP�i1, . . . ,i6� , �57�

where i1 , . . . , i6 are the six sites moving clockwise around
plaquette P and

EP��i1
, . . . ,�i6

� = 	
k=1

6

�fL��ik
, . . . ,�ik+5

� + fL��ik+5
, . . . ,�ik

�� ,

�58�

where ik+6� ik.

C. Results

We have carried out the calculations detailed in the pre-
vious sections. Specifically, by explicitly constructing 
�� in
Eq. �36�, we obtained H6�
�i�� in Eq. �37�. From this, we
extracted the function fL in Eq. �54� and thereby determined
the plaquette energies EP using Eq. �58�. Using the 3:1 con-
straint, there are five configurations possible on any
plaquette, which we denote “type 0” to “type 4.” These are
enumerated in Table I. The DPT calculation gives a specific
energy �proportional to Jz�

6� for each type.
There is some freedom in the choice of these five ener-

gies. That is, certain changes of the plaquette energies leave
the differences of total energy among distinct 3:1 states un-
changed. One such obvious “gauge” change is a global shift
of all five energies by the same amount. Another less obvious
constraint comes directly from the 3:1 rule. If one denotes
the fraction of plaquettes in the lattice in configuration a by
xa, the total fraction of minority sites must always be 1/4.
Each plaquette configuration has a fixed fraction of minority
sites Ma, given in Table I. Thus,

1

4
= 	

a=0

4

Maxa. �59�

The energy per plaquette is then

FIG. 6. The only diagram at order n=6 giving a nonconstant
diagonal contribution in degenerate perturbation theory.

TABLE I. The different plaquette types, with the fraction of
minority sites in each one.

Type Configuration
Fraction of

minority spins

0 ↑↑↑↑↑↑ 0

1 ↓↑↓↑↓↑ 1
2

2 ↓↑↑↑↑↑ 1
6

3 ↓↑↓↑↑↑ 1
3

4 ↓↑↑↓↑↑ 1
3
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H6 = 	
a=0

4

Eaxa. �60�

Using Eq. �59�, one sees that a shift 
Ea=cMa, with arbi-
trary constant c, shifts the energy by a constant. The obvious
global energy shift remarked above derives similarly from
the normalization condition 	axa=1. Using these two con-
straints, we see that there are only three independent
plaquette fractions. We �arbitrarily� choose to keep x1,2,4 as
our independent variables. Substituting the solutions for the
other fractions �x0,3� into Eq. �60�, we find

H6 = x1V1 + x2V2 + x4V4, �61�

with the three “gauge invariant” physical energy parameters

V1 =
1

2
�E0 + 2E1 − 3E3� ,

V2 =
1

2
�− E0 + 2E2 − E3� ,

V4 = �E4 − E3� . �62�

Our DPT results are

V1 = − Jz�
63s4�98 304s5 − 139 648s4 + 79 136s3 − 22 040s2 + 3006s − 165�

32�2s − 1��4s − 1�5�8s − 3�2�12s − 5�
,

V2 = Jz�
6 s3�256s3 − 51s + 9�
32�4s − 1�3�8s − 3�2 ,

V4 = Jz�
6s4�272s2 − 136s + 15�

16�4s − 1�5�8s − 3�2 . �63�

We have made several checks on the above calculation. First,
we have carried out a more direct scheme, which sums the
terms in DPT in a completely different manner from the
methods described in this section. We leave the vast details
of this calculation to Appendix B. The results of this alterna-
tive method agree perfectly with those quoted above. Sec-
ond, in the following section, we will compare the s→�
limit of the above result with the result of a large-s calcula-
tion for the XXZ model. The large-s limit of the energies we
find in DPT becomes

lim
s→�

V1

s
= 0,

lim
s→�

V2

s
=

Jz�
6

512
,

lim
s→�

V4

s
= 0. �64�

We shall see that this result indeed agrees exactly with the
corresponding limit of the large-s expansion.

D. Off-diagonal term

In this section, we describe how the lowest-order off-
diagonal term in the DPT effective Hamiltonian is calculated.
As explained in Sec. III A 1, this term appears at order
O��6s�.

The lowest-order off-diagonal term acts only on a hexago-
nal plaquette in the flippable configuration �type 1 plaquette,

as in Table I�. It changes the plaquette configuration from
one flippable configuration to the other flippable configura-
tion. Therefore, the off-diagonal term has the following gen-
eral form:

�65�

Each of the DPT processes contributing to the off-
diagonal term at this order consists of 2s spin transfer opera-
tions along the links of a hexagonal plaquette. In every such
process, three spins go from an initial state of +s to −s, and
three start with −s and end up as +s. We can calculate K by
adding the contributions from all the DPT processes occur-
ring on a single plaquette, starting in the state 
↓↑↓↑↓↑� and
ending in the state 
↑↓↑↓↑↓�.

The spins change via ladder operators Sj
±, and, therefore,

we get the Clebsch-Gordan coefficients from the action of
these operators. The same set of operators Sj

± act in every
process, �S1

+�2s�S2
−�2s�S3

+�2s�S4
−�2s�S5

+�2s�S6
−�2s �the indices

1 , . . . ,6 denote the six sites around the hexagonal plaquette,
as in Fig. 7�, and so these factors are always the same. For
the S+ operators taking a single site from −s to +s, we find

�
m=−s

s−1

�s�s + 1� − m�m + 1� = �2s�!, �66�

and for the S− operators taking a single site from +s to −s, we
find
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�
m=−s+1

s

�s�s + 1� − m�m − 1� = �2s�!. �67�

In total from all the ladder operators, we find a common
factor (�2s�!)6. From the six spin transfer operators, we have
another common factor of 1 /26s.

All that remains to be calculated for a single DPT process
is the product of resolvents of each stage in the spin transfer
process. First let us classify the different processes on a
single plaquette. Let us denote the six links of the plaquette
by A , . . . ,F, as illustrated in Fig. 7. In order to get the right
number of ladder operators S1

+, the total number of times a
spin transfer occurs on the two adjacent links sharing site 1
must add up to NA+NF=2s �here NX is the number of spin
transfer operators acting on the link X in the DPT process�.
The same argument applies to all six sites around the
plaquette. Next, consider the two equations

NA + NB = 2s ,

NB + NC = 2s , �68�

which imply that NA=NC. Repeating this argument for all the
links around the plaquette, we find that we must have

NA = NC = NE,

NB = ND = NF, �69�

in addition to the constraint NA+NB=2s, so that there is only
one free parameter NA=0, . . . ,2s, which we will use to clas-
sify the DPT processes.

Beyond determining the number NA, the DPT processes
further differ by the order in which the spin transfer opera-
tors act on the predetermined links. Each process is described
by a string of 6s letters q1 , . . . ,q6s, which contain NA in-
stances of each one of the three letters A, C, and E, and 2s
−NA instances of each one of B, D, and F. For example, a
few possible strings for s=1 are AACCEE, ABCDEF, and all
their permutations. From this classification, it is evident that
in total there are 	NA=0

2s 
�6s�! / �NA!�3��2s−NA�!�3� different
processes.

At this point, we can write a formal expression for the
coefficient K as follows:

K =
„�2s�!…6

26s 	

qn�

�
�=1

6s−1

R̃��
qn�� , �70�

where R̃��
qn�� denotes the resolvent at step � of the DPT
process described by the string 
qn�.

Now, we turn to formulating the resolvent in a convenient
manner that will facilitate the summation over all processes.
Starting from Eq. �31�, in this case, the set F consists only of
the six sites surrounding the hexagonal plaquette 1 , . . . ,6.
Since the six sites have alternating initial states ±s, any pair
of nearest-neighbor sites has �i� j =−1. We can therefore re-
write the inverse resolvent operator as

R̃−1 = − Jz	
j=1

6

�Sj
z − s��Sj+1

z − s� − 2Jzs	
j=1

6

�Sj
z − s� , �71�

where the indices are defined as mod 6, so that S6+1
z =S1

z .
From this point on, all index arithmetic is defined as mod 6
as well for ease of presentation.

To further simplify the resolvent, we introduce nj�� , 
qn��
as the number of times the link �j , j−1� has had spin transfer
occur on it up to stage � in the process described by the
string 
qn�. Then, by definition, the total number of spin
transfer operations is 	 j=1

6 nj�� , 
qn��=�. In what follows, we
will show that the resolvent can be described only by these
six numbers. To see this, notice first that, regardless of the
order of spin transfer operations, a spin transfer operator on
the link �j , j−1� changes �Sj

z−s�→ �Sj
z−s−1� and �Sj−1

z −s�
→ �Sj−1

z −s−1�. Note also that, in the initial state, all �Sj
z−s�

=0. Thus, at every stage of any process, �Sj
z−s�

=−�nj�� , 
qn��+nj+1�� , 
qn���. Using these variables, one can
then rewrite the resolvent as

R̃�
−1�
qn�� = 4Jzs� − Jz	

j=1

6

�nj
2 + 2njnj+1 + njnj+2� , �72�

where we have suppressed the explicit dependence of the nj
numbers on � , 
qn� for clarity. It is more convenient to derive
a recursion relation for the resolvent at stage � as follow:

R̃�+1
−1 �
qn�� = R̃�

−1�
qn�� + Jz�4s − 1 − 2ni − 2ni+1 − 2ni−1

− ni+2 − ni−2� , �73�

where i is the link numbering corresponding to the link acted
on at the �+1 step, q�+1= �i , i−1�. The initial condition for

this recursive series is R̃0
−1=0. Using Eq. �73�, we can cal-

culate the product ��=1
6s−1R̃��
qn�� for a given process. For

every process, we need to keep track of only the six numbers
nj in the various steps of the process.

We have calculated the coefficient K explicitly for a num-
ber of interesting values of s. The results are summarized in
Table II.

IV. LARGE-s EXPANSION

A large-s analysis has recently been employed in Ref. 26
to explore the magnetic order for the general spin-s Heisen-

FIG. 7. �Color online� Notation for the off-diagonal processes
on a single plaquette. The �red� circles denote minority sites. The
sites are numbered �blue� 1,…,6, and the links are denoted by the
�purple� A , . . . ,F.
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berg AFM on the pyrochlore lattice. Restricting the Hilbert
space to collinear spin configurations, the authors of Ref. 26
derived an effective Hamiltonian out of the harmonic spin-
wave energy contribution to order O�s�. The effective
Hamiltonian prefers spin products around hexagonal
plaquettes to be −s6 in the zero magnetic field and +s6 in the
half-polarized plateau region. Following a terminology in-
spired by the Ising gauge theory, these are denoted by “�
flux” configurations and “zero-flux” configurations, respec-
tively. In order to compare this approach, which is justified in
the large-s limit, with the DPT analysis of Sec. III, we have
repeated the same type of effective Hamiltonian calculation
for the XXZ model. Our derivation closely follows that of
Ref. 26.

The large-s expansion consists of expressing the spin de-
grees of freedom in terms of Holstein-Primakoff bosons and
expanding in decreasing powers of s. The lowest-order term
in the large-s expansion is of order s2 and corresponds to the
classical spin version of the quantum XXZ Hamiltonian,

Hcl = Jz	
�ij�

���Si · S j� + �1 − ���Si · ẑ��S j · ẑ�� − 2Jzh	
j

Sj
z,

�74�

where �=J� /Jz as before.
In order to analyze the ground state of this anisotropic

classical model �74�, we first calculate the minimum energy
configuration for a single tetrahedron. For the single tetrahe-
dron, we obtain the magnetization curve shown in Fig. 8. We
find that for ��1, a half-polarization plateau opens up, and
the plateau becomes wider as � decreases from 1. In this

plateau, the classical spins on the single tetrahedron being
analyzed are in a collinear configuration, with three S j =sẑ
and one S j =−sẑ spins. This is just the classical analog of the
3:1 configuration on a single tetrahedron found in Sec. II. A
3:1 spin configuration can be realized on each and every
tetrahedron of the lattice simultaneously. We therefore con-
clude that in the range of magnetic fields where the single
tetrahedron is in a half-polarized state, the ground state of the
many-body system �74� is the manifold of 3:1 configurations.
This means that the plateaus in the classical XXZ model on
the complete pyrochlore lattice are at least as wide as in Fig.
8.

In the following, we will discuss only this half magneti-
zation plateau. We then assume the collinear 3:1 states,
which allows us to describe the magnetic configuration in
terms of the same Ising variables � j = ±1 as in Sec. II.

As in Ref. 26, we use the unitary transformation �17� so
that we can define the Holstein-Primakoff bosons, which
amounts to replacing the rotated spin operators as follows:

Sj
z = s − m̂j ,

Sj
+ = �2s − m̂jb̂j � �2sb̂j , �75�

where b̂j are canonical bosonic operators and m̂j = b̂j
†b̂j is the

boson number operator. We plug these into the Hamiltonian
�4� and keep only the quadratic terms in the bosonic opera-
tors.

Since the spin configurations are now restricted to the 3:1
manifold, the magnetic-field term is the same for every 3:1
configuration as the magnetization is constant on the plateau.
In terms of the unrotated spin variables Sj

z, this amounts to
	 jSj

z= �s /2�N, where N is the number of sites in the pyro-
chlore lattice. Varying the magnetic field in the plateau re-
gion causes an overall shift in the spin-wave energies of all
the 3:1 states and, thus, will not alter the energy differences
between different 3:1 states. Similarly, the Ising variables
have a sum of 	 j� j =

1
2N, and we can use these two identities

to derive 	 j� jm̂j =0, which is useful in simplifying other
terms. Therefore, we can ignore the magnetic-field term,
since we are searching for an effective Hamiltonian splitting
the energies of different 3:1 states. The effect of the magnetic
field is to determine the energy gap for spin-wave excita-
tions. The vanishing of the spin-wave gap signifies an insta-
bility of the 3:1 manifold, corresponding to the edges of the
half-polarization plateau.

From Eqs. �B3� and �23�, the resulting harmonic spin-
wave term reads

Hharm
3:1 = Jz

�

2
s	

i,j
�ij��1 + �i� j

2
��b̂j

†b̂i + H.c.� + �1 − �i� j

2
�

��b̂jb̂i + H.c.�� + Jz2s	
j

m̂j . �76�

Following the derivation Ref. 26, the zero-point energy of
this harmonic term for a given 3:1 spin configuration �de-
scribed by 
� j� j=1

N � is

TABLE II. Values K of the coefficient for the lowest order off-
diagonal term for various values of s.

s K

1
2

3
2

1 0.884025
3
2 0.250931

2 0.0563749
5
2 0.0110694

3 0.00199964

FIG. 8. �Color online� Magnetization �in units of s� of a single
tetrahedron of classical spins with an anisotropic XXZ interaction,
parametrized by �. For any ��1, a half-polarization plateau exists.
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Eharm = Jzs	
k=1

N 
�k

2

, �77�

where �k are the solutions of the eigenvalue equation

��

2
�2

v = �1 +
�

2
��̂�̂�̂ + �̂� + ��

2
�̂�̂�2� · v . �78�

In the right-hand side, �̂ denotes the same N�N connectiv-
ity matrix introduced in Sec. II, and �̂ is a diagonal N�N
matrix with � j as its diagonal elements. Without specifying
the 3:1 configuration, we can write an expression for the
harmonic energy in terms of � j as follows:

Eharm = Jzs Tr��1 +
�

2
��̂�̂�̂ + �̂� +

�2

4
��̂�̂�2� . �79�

One can calculate the spin-wave energies by assuming a
particular spin configuration and computing the trace exactly.
However, as in Ref. 26, if one does not know which candi-
date spin configurations to consider, one can derive an effec-
tive Hamiltonian to determine which spin configuration gives
the lowest harmonic energy and find a favorable spin con-
figuration.

The square root in Eq. �79� can be expanded in powers of
matrix operators. We first observe that � only appears as a
multiplier of the matrix �. Therefore, an expansion in powers
of matrix operators is equivalent to expansion in the param-
eter �. In the present context, this expansion is justified due
to the easy-axis anisotropy ��1.

The terms in the expansion can be organized as a sum of
traces over products of � matrices and the Ising variables � j.
The order of � for each term also specifies the number of
connectivity matrices � appearing in that term.

Due to the trace operation, the product of � matrices rep-
resents closed loops on the lattice. The Ising variables ap-
pearing in each such term can only involve the sites on the
loops defined by the product of � matrices. Using the results
of Sec. III B 2, which discuss functions of the Ising variables
and � matrices precisely of the form appearing in this expan-
sion, it is evident that all terms involving less than six �
matrices will result in constants, which will not split energies
of the 3:1 states. As in Sec. II, the lowest-order term in the
expansion in � causing energy splitting in the 3:1 manifold
involves loops around hexagonal plaquettes of the pyro-
chlore lattice. For simplicity, we consider only these terms
and ignore any higher-order term in the expansion in �. After
extensive simplification, the sixth-order term reads

Hharm = Jzs��

2
�6 1

512
�14 Tr�� · � · � · �5�

+ 14 Tr�� · �2 · � · �4� + 7 Tr�� · �3 · � · �3�

− 6 Tr�� · � · � · � · � · � · � · �3�

− 3 Tr�� · �2 · � · � · � · �2 · � · ��

− 6 Tr�� · �2 · � · �2 · � · � · � · ��

+ Tr�� · � · � · � · � · � · � · � · � · � · � · ���

+ O��8� . �80�

From the expression, one extracts only those terms corre-
sponding to loops around hexagonal plaquettes. Equation
�80� takes the form of the function in Eq. �39�, with n=6 and
the “loop” diagram Gn= 
�12� , �23� , �34� , �45� , �56� , �61��.
The corresponding function f��a1

, . . . ,�a6
� reads

f��a1
, . . . ,�a6

� = 14�a1
�a2

+ 14�a1
�a3

+ 7�a1
�a4

− 6�a1
�a2

�a3
�a4

− 3�a1
�a3

�a4
�a6

− 6�a1
�a3

�a5
�a6

+ �a1
�a2

�a3
�a4

�a5
�a6

.

�81�

The effective Hamiltonian therefore describes all possible
spin interactions on the hexagonal plaquette of the pyro-
chlore lattice—two, four, and six spin interactions. It is far
more convenient to express this complicated Hamiltonian in
terms of energies of plaquette configurations, in the same
way we formulated the results of the DPT in Sec. II as
Hharm=	PEP �using the same five plaquettes in Table I�.

As in Sec. III C, there are only three independent
plaquette configuration energies V1,2,4, which to O��6� are

V1 = 0,

V2 =
Jz�

6s

512
,

V4 = 0. �82�

Comparing Eq. �82� with Eq. �64�, we find complete
agreement between the DPT of Sec. II and the large-s expan-
sion of this section in the limit of both �→0 and s→�,
where both approaches are justified �see Fig. 9�. This serves
an excellent check on the correctness as well as validity of
our calculations in the parameter regime where the approxi-
mations overlap.

V. LOW-ENERGY STATES OF THE EFFECTIVE
HAMILTONIAN

A. Strict easy-axis limit for sÐ3/2

In this section, we consider the �=J� /Jz�1 limit, for
which the lowest-order nonvanishing terms in the effective
Hamiltonian are dominant. For any s�3/2, this is just the
sixth-order diagonal contribution.

FIG. 9. This figure shows the regions of parameter space where
the DPT and large-S expansions are justified and their region of
overlapping validity.
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1. Infinite s case

We first consider the infinite s limit. As is clear from Eq.
�82� that at order s, only the type 2 plaquette suffers from a
positive energy correction, while V1 and V4 are only nonzero
at order s0 or lower. Hence, the type 2 plaquette is strongly
disfavored for large s in general and completely disallowed
for infinite s. This in combination with the 3:1 constraint
allows us to restrict ourselves to the “0-flux manifold” in the
large-s region �see Sec. IV for the definition of a 0-flux mani-
fold.�.

To see this, let us first introduce a “cell” comprised by
four link-sharing plaquettes. Choose four hexagonal
plaquettes such that any pair of two plaquettes out of these
four plaquettes always shares a link. Then, these four
plaquettes form a single polyhedron �a truncated tetrahe-
dron�, with four hexagonal faces and four triangular faces
�see Fig. 10�. We will refer to this polyhedron as a cell. In the
pyrochlore lattice, one may distinguish two kinds of cells—
when one completes the tetrahedra enclosing a cell, we can
identify up-headed and down-headed cells, according to the
direction at which the tetrahedra are pointing �see Fig. 10 for
examples of both kinds�. Each up- and/or down-headed cell
shares its faces �hexagonal plaquettes� with four nearest-
neighboring down- and/or up-headed cells. Thus, centers of
cells constitute a diamond lattice, where those of up-headed
cells take part of one fcc lattice and those of down-headed
cells form the other fcc lattice. The up-headed cells contain
all the up-pointing tetrahedra, and so it suffices to determine
the spin configuration on only these up-headed �down-
headed� cells in order to specify the spin configuration on all
sites of the lattice.

Observing the local constraint, one can readily enumerate
the various minority-spin configurations of a cell. In Table
III, all possible cell configurations allowed in the 3:1 mani-
fold are listed. Each cell type is described by the configura-
tions of its four hexagonal plaquettes.

To see that the ground-state manifold in the large-s region
is composed only of type 0, 3, and 4 plaquettes �i.e., 0-flux
states�, notice from Table III that any cell type which con-
tains a type 1 plaquette always contains at least one type 2
hexagonal plaquette. This implies

0 � x1 � x2, �83�

where xa are the plaquette-type fractions, as introduced in
Sec. III C. Disallowing the type 2 plaquette inevitably leads

to excluding the type 1 plaquette, and, therefore, the positive
V2 in leading order of s−1 expansion allows us to conclude
that the classical ground-state spin configurations in the infi-
nite s limit consist of only the 0-flux states.

2. Large-s case

Next, we turn to consider the large but finite s limit. The
ground states of the infinite s limit, the 0-flux states, are
massively degenerate. However, higher-order quantum cor-
rections in s−1 can select a particular classical state out of this
0-flux manifold. To see this, let us expand the plaquette en-
ergies in s−1,

V1

Jz�
6 = −

3

512
+ O�s−1� ,

V2

Jz�
6 =

s

512
+

3

1024
+ O�s−1� ,

V4

Jz�
6 =

17

65 536s
+ O�s−2� . �84�

Notice first that the O�1� negative energy correction to V1

plays no role in lifting the degeneracy of the 0-flux manifold,
since this manifold does not contain any type 1 hexagonal
plaquettes. Thus, provided that V2 dominates the other two,
the most relevant correction in the large-s limit is V4, which
always disfavors the type 4 hexagonal plaquette, since it is
positive.

Since the type 4 plaquette is disfavored, observing the
0-flux condition on all plaquettes, we have only to minimize
x4 to obtain the ground state in the large-s region. However,

FIG. 10. �Color online� A cell is composed of four link-sharing
hexagonal plaquettes �the polyhedron bounded by thick �blue�
lines�. The cell on the left is up-headed and the one on the right is
a down-headed cell.

TABLE III. The various cell configurations are described by the
number of each plaquette type included in the plaquettes compris-
ing a cell. In the zero-flux manifold, only types 9, 10, 11, and 12
cells are allowed, since they do not contain types 1 and 2 hexagonal
plaquettes. Furthermore, a cell must contain a type 2 plaquette
whenever it contains a type 1 plaquette. This is quantified by 0
�x1�x2.

Cell

Plaquette

Type 1 Type 2 Type 3 Type 4 Type 0

Type 1 1 1 1 1 0

Type 2 1 3 0 0 0

Type 3 0 4 0 0 0

Type 4 0 2 2 0 0

Type 5 0 2 1 1 0

Type 6 0 2 1 0 1

Type 7 0 2 0 1 1

Type 8 0 2 0 0 2

Type 9 0 0 4 0 0

Type 10 0 0 2 1 1

Type 11 0 0 0 3 1

Type 12 0 0 0 0 4
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in the 3:1 manifold, the 0-flux condition becomes so strong
that x4 is, in fact, bounded by 3

28 from below �x4�
3

28
�. To see

this, notice first that only types 9, 10, 11, and 12 cells drawn
in Fig. 11 are allowed in the 0-flux manifold. Next, we de-
note by y9,10,11,12 the fraction of cell types 9,…,12 in the
entire pyrochlore lattice �we use these instead of plaquette-
type fractions �x3 ,x4 ,x0� for later convenience�. In the 0-flux
manifold, only these cell types may occur, and therefore
	 j=9

12 yj =1. Together with the “global” 3:1 constraint, i.e., Eq.
�57�, one finds

3y12 = y9, �85�

as well as

y12 =
1

4
�1 − y10 − y11� . �86�

An important step to identify the lower bound on x4 is to
note that packing these four cell types into a pyrochlore lat-
tice is highly constrained by the local 3:1 rule imposed on
each tetrahedron. We shall note three useful facts in particu-
lar:

�i� A type 12 cell can only have cell types 10, 11, and 12
as neighboring cells.

�ii� Each type 10 and 11 cell can neighbor at most one
type 12 cell, as they both have only one type 0 plaquette, and
the type 12 cell consists only of type 0 plaquettes.

�iii� One can show that a type 12 cell can have at most
one neighboring type 12 cell, and the remaining neighboring
cells must be of type 10 or 11.

As a result of �i�, �ii�, and �iii�, we find that a type 12 cell,
if it neighbors no other type 12 cell, mandates four other
cells to be type 10 or 11. Otherwise, if we have two adjacent
type 12 cells, all the other cells adjacent to them must be of
type 10 or 11. In this latter case, the two type 12 cells man-
date six other cells to be type 10 or 11. We conclude from
this short analysis that each type 12 cell mandates the exis-
tence of at least three cells of type 10 or 11 and that these

cells cannot be shared by other type 12 cells �see �ii��. The
total number of type 10 and 11 cells must therefore exceed
the number of type 12 cells threefold, or in terms of the cell
type fractions

3y12 � y10 + y11. �87�

Now, using Eq. �86�, we obtain the lower bound on the frac-
tion of type 10 and 11 cells: y10+y11�

3
7 . Since these two

types of cell are the only cells allowed in the 0-flux mani-
fold, which have type 4 hexagonal plaquettes, this lower
bound immediately gives us that for the fraction of type 4
hexagonal plaquette,

x4 =
1

4
y10 +

3

4
y11 �

1

4
y10 +

1

4
y11 �

3

28
. �88�

From the derivation in Eq. �88�, one can easily see that
the equal sign can be realized only if y11=0. Excluding type
11 cell configurations y11=0, the bound becomes y10�

3
7 .

Saturating the bound with y10= 3
7 determines completely the

ratios of the cell types, via Eqs. �85� and �86�, to be
y9 :y10:y11:y12=3:3 :0 :1 �or equivalently, x0 :x1 :x2 :x3 :x4
=7:0 :0 :18:3�.

With the type 11 cells excluded, one can show that any
type 12 cell always neighbors three type 10 cells and one
type 12 cell. As a consequence, the condition 3y12=y10 is
satisfied only when any type 10 cell has a type 12 cell as its
nearest-neighboring cell, through its single type 0 plaquette.

In what follows, we will show that this lower bound for x4
is uniquely �up to a finite degeneracy� realized by the peri-
odic minority-spin configuration depicted in Fig. 12. This
collinear magnetic ordered state, which we shall refer to as
the “trigonal7” state, contains seven pyrochlore unit cells in

FIG. 11. �Color online� The four cell types allowed in the zero-
flux manifold. Minority sites are specified by the �red� circles.

FIG. 12. �Color online� The trigonal7 state. The spin configura-
tion of a planar layer of tetrahedra is shown. Triangles with lines
connected at their centers represent up-pointing tetrahedra, while
the other triangles represent down-pointing tetrahedra. Minority
sites are denoted by small solid circles �red�. Two dashed triangles
denote up-pointing tetrahedra in the planar layer of tetrahedra im-
mediately above the one depicted in this figure. These two tetrahe-
dra are used to show the primitive vectors for the pyrochlore lattice
a1,2,3 and for the magnetic unit cell of the trigonal7 state E1,2,3. The
seven up-pointing tetrahedra included in one valid choice of a mag-
netic unit cell for the trigonal7 state are marked by �blue� letters,
indicating one of 4 3:1 configurations for a single tetrahedron. The
type 0 plaquettes residing between pairs of adjacent type 12 cells
are marked by large open circles �blue�.
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the magnetic unit cell. The magnetic ordering has primitive
vectors E1=2a1−a3, E2=2a2−a1, and E3=2a3−a2, where
a1,2,3 are the primitive unit vectors of the pyrochlore lattice
�fcc lattice vectors a1=a /2�0,1 ,1� and cyclic permutations�.
From the unit-cell vectors, we can find the volume of the
magnetic unit cell as follows:

�E1 � E2� · E3 = 7�a1 � a2� · a3. �89�

These three primitive vectors are of equal lengths and are not
mutually perpendicular. Therefore, the magnetic Bravais lat-
tice is in the trigonal crystal system—-whence the name
trigonal7 state. In Fig. 13, we show the Wigner-Seitz cell of a
lattice with primitive vectors E1,2,3, together with a basis of
the minority sites only.

From the planar view in Fig. 12, it is clear that this mag-
netic state has a threefold rotation symmetry about the a1
+a2+a3=a�1,1 ,1� axis perpendicular to the page. In the di-
rection of the pyrochlore lattice primitive Bravais vectors,
there is a periodicity of 7, giving rise to a sevenfold degen-
eracy due to fcc lattice translations alone. The trigonal7 state
breaks a reflection symmetry about a plane perpendicular to
the Kagome plane, parallel to a2, and passing through the
point where the three vectors E1,2,3 originate in the figure
�see Fig. 14 for another view of this symmetry operation�.
Together with the fourfold choice of the set of Kagome
planes, it is evident that the degeneracy of this magnetic state
is 4�7�2=56.

As is clear from Fig. 12, the spin configuration satisfies
both the local zero-flux condition and the local 3:1 con-
straint. Counting the fractions of plaquette types, we find that
the trigonal7 state realizes the lower bound x4= 3

28. We con-

clude that the trigonal7 state is at least one of the ground
states in the large-s region.

As argued above, any state saturating the bound must
have every type 0 plaquette connecting between a type 12
cell and a type 10 cell. We shall refer to this as the cell
composition rule. Starting with a type 12 cell and using this
rule together with the 3:1 constraint and the zero-flux condi-
tion suffice to uniquely construct the trigonal7 state up to the
finite degeneracy described above. Starting from the initial
type 12 cell, the plaquette connecting this cell to another type
12 cell defines the Kagome plane in Fig. 12. Next, pick one
of the two mirror image choices in Fig. 14 of the type 10 cell
configurations neighboring the first type 12 cell. From this
point on, the three rules mentioned above �the cell composi-
tion rule, the 3:1 constraint, and the zero-flux condition�
uniquely determine the rest of the magnetic configuration in
the entire lattice.

Finally, the energy per plaquette of the trigonal7 state is

1

N
Etrigonal7

=
3

28
V4. �90�

3. Spin sÐ2

We expect that the trigonal7 state described above is the
ground state for sufficiently large s. In the following, we
shall argue that this is indeed the case for s�2. For s
=3,5 /2 ,2 ,3 /2 ,1, the energy parameters in the effective
Hamiltonian are given in Table IV.

For all the cases in Table IV, V1 is the largest and most
negative energy. This would suggest that the lowest-energy
3:1 state is the one with a maximum number of plaquettes of
type 1. However, the geometry of the lattice as well as the
3:1 constraint pose stringent restrictions. From the inequality
�83� we previously derived, we see that the energy of a type
1 plaquette is offset by the energy cost of a type 2 plaquette,
which is the highest-energy cost for all the s values in Table
IV. Therefore, the number of type 1 plaquettes is not neces-

FIG. 13. �Color online� Wigner-Seitz cell of the trigonal7 state.
Large solid �red� circles denote the basis positions �the minority
sites in the trigonal7 state�. The solid lines denote the edges of the
Wigner-Seitz cell, and the small solid �blue� circles denote the cor-
ners of this cell. The dashed �green� lines are used as a guide to the
eyes for the relative positions of the basis points.

FIG. 14. �Color online� The broken reflection symmetry. Start-
ing from a type 12 �up-headed� cell, and drawing the ten tetrahedra
surrounding it, we first choose the place of the nearest-neighboring
type 12 cell �down-headed�—the two type 12 cells share the hex-
agonal plaquette marked by thick dashed �blue� lines. With this
choice, the minority sites on seven tetrahedra are automatically de-
termined �marked by open �red� circles�. However, minority sites
for the other three tetrahedra �solid �red� circles� are not fully de-
termined and we still have a “mirror” degree of freedom. For con-
venience, we also draw the primitive vectors of pyrochlore lattice,
in accordance with those defined in Fig. 12.
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sarily maximized in the ground state even with small s. Be-
cause of this, V2 is significant, despite its small magnitude. In
contrast, due to its very small magnitude compared with both
V1,2, V4 will not play a significant role in determining the
energetically favored states.

One observes that the magnitude of the energy V1 is com-
parable to V2 already at s=5/2, and this trend continues to
higher s—V2 becomes more dominant. Given the restriction
x1�x2 and the large energy cost of type 2 plaquettes, it may
be that for s�5/2, type 2 plaquettes are excluded com-
pletely, just as in the above subsection, and then the trigonal7
state may be the lowest-energy state for s�5/2. The case
s=2 is close to the boundary for a change in behavior.

In order to search for other candidate ground states, we
have enumerated all 3:1 states on a variety of periodic finite
clusters and determined the exact lowest-energy state for
each one for s=1,3 /2 ,2 ,5 /2 , ¯ ,6. For s�2, we find no
states with lower energy than that of the trigonal7 state. This
strongly suggests that the trigonal7 state is the ground state
for all s�2, though of course this limited numerical inves-
tigation does not constitute a proof that this is the case.
Moreover, states with large numbers of type 1 plaquettes are
among the highest-energy states we have found, which does
give credence to our assessment that when the V2 and V1 are
comparable energy scales �with opposite signs�; because of
the condition x1�x2, the energy V2 is still dominant. One
can conclude that if there is a state with lower energy for s
�2, it must have a large unit cell, which is incompatible
with all the clusters considered in Table V.

4. Spin s=3/2

Spin s=3/2 is the smallest spin value for which in the
extreme easy-axis limit ��1, the off-diagonal term in the
effective Hamiltonian may be ignored. The corresponding
plaquette energies are given in column 4 of Table IV. The
energy for type 1 plaquettes is approximately 50% larger
�more negative� than for s=2. In the extreme limit of very
large and negative V1, the ground state has been determined
previously in Ref. 9. The state, referred to as the R state in
Ref. 9 as well as in the remainder of this paper, maximizes
the fraction of type 1 plaquettes and is unique �up to lattice
symmetries�.

The numerical investigation mentioned in the previous
section shows that the R state is not the lowest-energy state

for the diagonal effective Hamiltonian at s=3/2. Instead, we
find a highly degenerate set of classical ground states. One
example of these states has all the minority sites contained in
a set of parallel Kagome layers of the pyrochlore lattice.
Every Kagome plane can have the configuration shown in
Fig. 15, or two other symmetry related configurations with
the same �3��3 structure in the Kagome planes, indepen-
dent of the other Kagome planes. We shall refer to this large
subset of this manifold of states as the �3��3 states.

The analysis of this degenerate manifold of states is
somewhat involved. We therefore leave the details to Appen-
dix C and only mention a number of facts here. All the states
we have found numerically have plaquette-type fractions of
x0=1/6 ,x1=1/6 ,x2=1/3 ,x3=1/6, and x4=1/6. As a conse-
quence, the energy per plaquette of these states is

TABLE IV. Energies V1,2,4 of the plaquette configurations types
1, 2, and 4 for s=3, 5

2 , 2, 3
2 , 1.

Energy s=3 s= 5
2 s=2 s= 3

2 s=1

V1

Jz�
6

−0.0100 −0.0113 −0.0135 −0.0188 −0.0410

V2

Jz�
6

0.0097 0.0090 0.0084 0.0083 0.0099

V4

Jz�
6

0.0001 0.0002 0.0003 0.0005 0.0015

K 0.0020 0.0111 0.0564 0.2509 0.8840

TABLE V. 3:1 configurations on periodic clusters. Energy is
given in units of Jz�

6.

Number of
unit cells

Number of
3:1 states

s= 3
2

E gs

2�2�1=4 36 1.3�10−4 4

2�2�2=8 272 1.3�10−4 12

4�2�1=8 708 1.3�10−4 4

3�3�1=9 1,120 −2.9�10−4 24

5�2�1=10 3,370 4�10−4 4

3�2�2=12 2,436 1.3�10−4 4

4�2�2=16 23,696 1.3�10−4 12

6�3�1=18 649,480 −2.9�10−4 192

3�3�2=18 61,192 −2.9�10−4 30

5�2�2=20 237,156 1.3�10−4 4

4�3�2=24 1,685,508 1.3�10−4 4

3�3�3=27 7,515,136 −2.9�10−4 216

FIG. 15. �Color online� 3:1 spin configuration of a single layer
of tetrahedra in the �3��3 state. Only minority-spin sites are
marked by �red� solid circles. Flippable plaquettes �type 1� are de-
noted by an open �blue� circle drawn at their center. The same
conventions as in Fig. 12 are used here.

BERGMAN et al. PHYSICAL REVIEW B 75, 094403 �2007�

094403-18



1

N
E�3��3 =

1

6
�V1 + 2V2 + V4� . �91�

In Appendix C, we show by explicit construction that the
degeneracy is at least

18 � 2N/12L + 4 � 3L − 36, �92�

which grows exponentially with system size. We have not
shown that the above states exhaust the possibilities with
energy given by Eq. �91�, so the above formula is only a
lower bound for the degeneracy.

B. Effect of off-diagonal term

In this section, we add to the effective Hamiltonian the
off-diagonal term where it is likely to be important �low
values of s�. For s=1/2, the off-diagonal term is parametri-
cally larger than the diagonal terms in the ��1 limit. For
s=1, it is of the same order as the diagonal terms. However,
in this case, the off-diagonal term is numerically more than
20 times bigger than the largest diagonal plaquette energy
and should therefore dominate. For s�3/2, the off-diagonal
term is negligible in the ��1 limit, but extrapolating the
DPT results to the isotropic case �=1, the off-diagonal term
may be significant and, in some cases, may even be domi-
nant.

Comparing the diagonal energy scales and K in Table IV,
we find that for spin s=3/2, the off-diagonal term dominates
in the isotropic ��=1� limit. For spin s=2,5 /2, the diagonal
energy scales are significant compared with K.

For spin s=3, K is smaller than the diagonal energy
scales. From Table II, we can see that K decreases rapidly as
s increases. The form of K in Eq. �70� would suggest that the
decay is a result of the factor 1 /26s. The off-diagonal term is
not accessible in the perturbative large-s expansion and,
therefore, must be exponentially decaying in s. Examining
the values in Table II, we find that indeed K decreases expo-
nentially with s. In contrast, the diagonal energies change far
slower, as is evident at large s from Eq. �84�. The off-
diagonal term then becomes less important for higher spin
values.

We therefore conclude that when extrapolating to �=1,
for spin s�3, the diagonal term remains more significant
than the off-diagonal term, while for s�3/2, the diagonal
term can most likely be neglected. For s=2,5 /2, both diag-
onal and off-diagonal terms may be important.

In what follows, we will discuss several likely phases for
different spins in the isotropic limit �=1 from the perspec-
tive of order by disorder and the general theoretical frame-
work of QDM-type models.

1. Purely off-diagonal QDM: sÏ3/2 case

Let us consider first the simple case of s�3/2, for which
the Hamiltonian is approximated by including the off-
diagonal only. Clearly, low-energy ground states of this
Hamiltonian must have significant amplitude for type 1
plaquettes, as other plaquettes are annihilated by the off-
diagonal term. We note that the trigonal state has no type 1
plaquettes. This implies that it is an exact zero energy eigen-

state of the purely kinetic Hamiltonian. Since it is straight-
forward to construct states with significantly negative energy
per plaquette, the classical trigonal7 state is clearly an excited
state in this case. It seems difficult to imagine any way that
the ground state could be adiabatically connected to the
trigonal state �or any other zero energy state with no type 1
plaquettes�.

Let us instead consider what sort of states might naturally
minimize the energy of the kinetic term. This sort of pure
QDM problem has been considered in numerous places in
the literature. Specifically for the QDM on the diamond lat-
tice, the question has been discussed in Ref. 33 �see refer-
ences therein for a guide to QDMs�. Roughly speaking, the
energy is minimized by delocalizing the wave function as
much as possible among different dimer configurations.
However, the nontrivial connectivity in the constrained space
of dimer coverings makes the nature of this delocalization
subtle.

One possibility in such a three-dimensional QDM is that
the ground state is a U�1� spin liquid, in which the delocal-
ization is sufficiently complete as to prevent any symmetry
breaking �the meaning of the U�1� is discussed in depth in,
e.g., Ref. 2�. Roughly speaking, the wave function has sup-
port for all possible dimer coverings, with equal amplitudes
for all topologically equivalent configurations. The existence
and stability of such a state can be established in a QDM
with a particular form of diagonal interaction, in the neigh-
borhood of the so-called Rokhsar-Kivelson �RK� point.
While this point �corresponding to V1=K	0, V2=V4=0� is
not physically relevant to the pyrochlore antiferromagnets, it
is possible that such a U�1� spin-liquid state remains the
ground state for the purely off-diagonal QDM.

A second possibility is that the delocalization is incom-
plete, due to “order-by-disorder” physics. In particular, it
may be favorable to delocalize only over a limited set of
classical states, among which the connections are greater
than those among generic classical configurations. In this
case, there is generally some symmetry breaking induced by
the selection of the states involved. Two sorts of such order-
ing have been proposed and observed in other similar QDM
models. The first type of order-by-disorder state is the one in
which the set of classical states for which the ground-state
wave function has the largest amplitude are “centered” about
a single classical state having the maximal number of type 1
plaquettes. Such a wave function may be “selected” by the
kinetic energy, since under the action of the kinetic term of
the QDM, this is the classical state that is connected to the
largest number of other classical states. In our problem, this
classical state is just the R state mentioned above and dis-
cussed at length in Refs. 9 and 10. A simple form for such a
wave function is

�93�

where 
R� is the classical R state �with definite Si
z=S�i� and

�P are variational parameters, which can be used to optimize
the quantum state 
R , 
�P��.
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The second type of order-by-disorder state is the one in
which there are a maximal number of independently resonat-
ing plaquettes. This is based on the observation that the exact
ground state for the kinetic term on a single plaquette is
simply an equal amplitude superposition of the two type 1
states. However, neighboring plaquettes share sites, and,
therefore, it is not possible to form a direct product of such
resonances on all plaquettes. Instead, the best one can
naïvely do along these lines is to find the classical state with
the largest number of type 1 plaquettes, which can be inde-
pendently flipped, and on these type 1 plaquettes form an
equal amplitude superposition of these two states.

A state with the maximal number of independently flip-
pable plaquettes can be described starting from the �3��3
states introduced in Sec. V A 4. The largest set of indepen-
dently flippable plaquettes is a subset of all the type 1
plaquettes. An appropriate choice in a single plane is dem-
onstrated in Fig. 16, which includes half of the flippable
plaquettes in the plane. It is interesting to point out that in
each plane, there are two possible choices of the plaquettes
to be resonated �one half or the other�, so out of each �3
��3 state, we can construct 2L different choices of the
plaquettes that will be resonating. The degeneracy of these
state is therefore 2L�3L�4=6L�4. Other states realizing
this maximum number of independently resonating
plaquettes may be possible, but we have not pursued this
further. We refer to these states as “resonating plaquette
states” �RPS�. A precise wave function describing the RPSs
we have derived from the �3��3 states is


RPS� = �
P�G

1
�2

„1 + �
˝A��˝B
 + H.c.�…
�� , �94�

where G denotes the set of nonoverlapping resonating
plaquettes and 
�� denotes one of the �3��3 states. There
are 4�3L choices for 
�� and 2L choices for G given 
��.
We note that the symmetry of the RPS is distinct and lower
than that of the �3��3 state—even in a single layer. Thus
there is a precise distinction between these two states inde-
pendent of the detailed form of their wave functions, for

which the above explicit forms are of course only crude ap-
proximations.

While potentially there might be some other state we have
not anticipated, we think that most likely one of the three
above states obtains in the purely kinetic QDM, which we
argue is valid for s�3/2. We will, however, refrain from
making any definite statement as to which of these is the true
ground state. One may imagine comparing the energies of
the wave functions in Eqs. �93� and �94� to gauge the relative
favorability of the R and RPS states. Unfortunately, even
evaluating the variational energy of the 
R� state in Eq. �93�
is rather challenging. Another difficulty is the considerable
freedom in choosing the RPS wave functions. Furthermore, a
good variational wave function for the spin liquid is also
needed for a more complete comparison. As always, there is
much arbitrariness in defining each variational wave func-
tion, making the predictive power of such an approach un-
clear. We believe that this issue is more likely to reliably
resolved in the future through numerically exact methods
such as quantum Monte Carlo or exact diagonalization.

2. sÐ3 QDMs

For s�3, the diagonal term is always larger in energy
scale than the off-diagonal term. A crude guess would be to
completely neglect the off-diagonal term, in which case the
ground state is the trigonal7 state. In all known QDMs,
whenever the diagonal term has an energy scale larger than
that of the off-diagonal term, the state is determined exclu-
sively by the diagonal term. We therefore presume that it is
unlikely that the off-diagonal term is strong enough to
change the state of the system and expect the structure of the
trigonal7 state to persist for all s�3.

3. s=2,5 /2 QDMs

For s=2,5 /2, the ground state of the classical diagonal
term alone is the trigonal7 state, which is strongly disfavored
by the kinetic term. In the last paragraph of Sec. V A 3, we
mentioned that for s�2, states with high numbers of type 1
plaquettes are disfavored by the diagonal term. As a result of
this observation, we may speculate that the high energetic
cost for type 1 plaquettes can be qualitatively captured by a
single diagonal energy V1	0.

To get an idea for the energy scale of this effective diag-
onal term, consider the difference between the diagonal en-
ergy per plaquette for trigonal7 and R states, which is 2.9
�10−3 and 3.9�10−3 for s=2,5 /2, respectively. Since these
energy differences are smaller than K for s=2,5 /2, we ex-
pect the effective diagonal term to satisfy 0�V1�K.

In this effective QDM, we are closer to the RK point V1
=K	0 than in the case of the kinetic term alone V1=0.
While any of the ground states discussed in Sec. V B 1 may
also be the ground state here, the additional diagonal term
V1	0 presumably lowers the energy of a U�1� spin-liquid
state relative to the RPS and R state.

VI. DISCUSSION

Since the development of the DPT and its analysis in this
paper are rather involved, we begin in the first Sec. VI A by

FIG. 16. �Color online� Choice of nonoverlapping flippable
plaquettes to resonate in a plane of the �3��3 state. The chosen
plaquettes are marked with �red� crosses in the middle. The minor-
ity sites are marked by solid �red� circles.
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recapitulating the central points. In the second Sec. VI B, we
will then turn to a brief discussion of the implications on
experiments and future directions of this work.

A. Summary

As a prototypical model of a magnetization plateau in a
strongly frustrated quantum antiferromagnet, we considered
in this paper a nearest-neighbor spin-s model on the pyro-
chlore lattice at half the saturation magnetization. Such pla-
teaus have been observed in the spinel materials such as
HgCr2O4 and CdCr2O4. We argued that a useful starting
model is the easy-axis XXZ Heisenberg model in an external
field, Eq. �4�. This model possesses all the same symmetries
as the isotropic Heisenberg model in an external field, and
indeed we were able to extrapolate our results to this limit.
This model has the advantage that the transverse spin fluc-
tuations can be treated systematically as a perturbation to the
underlying Ising model. The resulting Ising model can be
rewritten as a sum over the elementary tetrahedra of the py-
rochlore lattice. In this Ising limit on the plateau, the spins on
each tetrahedron satisfy a 3:1 constraint, comprising a set of
three majority spins fully polarized parallel to the field and
one minority spin antiparallel to the field. The half-polarized
state has a macroscopic degeneracy corresponding to the
number of possible positions for all the down-pointing spins
in the lattice. It is expected that the transverse spin fluctua-
tions will play a role in selecting a ground state or set of
ground states from the massively degenerate 3:1 manifold. In
this way, we are led to a theoretical model involving a “con-
strained” degenerate perturbation theory in the 3:1 manifold.
Our paper is devoted to a detailed analysis of such a theory
and many parts are couched in sufficiently general language
to be applicable to a broad class of systems.

We began our discussion of the constrained easy-axis de-
generate perturbation theory by deriving the general structure
of the effective Hamiltonian that occurs at each order of
dimensionless coupling �=J� /Jz, Eq. �15�. We found that
the effective Hamiltonian could be cast into a convenient
form by performing a unitary transformation that rotates all
down-pointing �minority� spins to up-pointing spins and also
by introducing a connectivity matrix �whose elements are 1
for nearest-neighbor spins and 0 otherwise�. The latter makes
it possible to convert the sums over nearest-neighbor lattice
sites to sums over the entire lattice �Eq. �23��. These trans-
formations cast the terms of the effective Hamiltonian com-
ing from each order of perturbation theory into a form rather
convenient for analysis. The resulting terms are expressed
explicitly in terms of the Ising variables on the lattice sites,
the spin s, and the connectivity matrix. These terms were
studied order by order in perturbation theory. We found that
diagrams representing these terms naturally fell into two cat-
egories: contractible and noncontractible. Contractible dia-
grams are those whose dependence on some of the Ising
variables is eliminated by summing with respect to their site
index over all lattice points. Thus, a function of N Ising
variables can be reduced to a function of less than N Ising
variables after this “contraction” process. The allowed con-
tractions depend on the lattice geometry, the 3:1 constraint,

and the Ising nature of the spin variables. We termed non-
contractible those diagrams for which it is not possible to
perform a contraction �equivalently, a reduction in the num-
ber of relevant Ising variables�.

The central result of the analysis of contractible and non-
contractible diagrams is that all terms in the constrained de-
generate perturbation theory up to and including fifth order
are constant within the 3:1 manifold. Individual terms are
shown to be constant by first contracting the diagrams as
much as possible and then noting that the value of the dia-
gram is unchanged under permutation among site indices
associated with the Ising variables. The latter statement im-
plies that the value of the diagram is independent of spin
configurations allowed in the 3:1 manifold and hence a con-
stant. In a similar manner, most terms at sixth order are also
shown to be constant. However, we also observe that, at sixth
order, there appears a “single large loop” diagram, which
cannot be contracted and also defies the permutation argu-
ments mentioned above. In fact, this loop diagram brings
about nonconstant contributions to the effective Hamiltonian
in the 3:1 manifold. Therefore, this is the lowest-order term
which lifts the degeneracy of the 3:1 manifold �at least for
s	1�. The nonconstant sixth-order term includes effective
interactions among spins on each hexagonal plaquette of the
pyrochlore lattice. Depending on the arrangement of minor-
ity sites, there are five distinct kinds of plaquettes that may
appear and we label them 0,1…,4 �see Table I�. Using the
results of our degenerate perturbation theory, we evaluate the
energy of each of these plaquettes as a function of � and s
and correct a mistake in Ref. 9. The 3:1 condition constrains
the allowed ratios of the various plaquettes in the lattice and
allows us to express the total energy of the system �up to an
overall constant�, Eq. �60�, in terms of only three energies
�Eq. �62��.

As a check on the results immediately above and as a
further test of the robustness of those results, we also per-
formed a large-s expansion in the easy-axis limit. As with the
full quantum theory, we expanded the harmonic spin-wave
energy in powers of � up to the sixth order, applied the
diagrammatic analysis above involving contractible and non-
contractible diagrams, and studied the resulting energy of the
nonconstant sixth-order terms. The result �Eq. �82�� agrees
exactly with the O�s� term obtained from the quantum de-
generate perturbation theory �Eq. �64��. This satisfying con-
sistency tells us that the large-s limit and small-� limit com-
mute, and thus our analysis is likely well controlled.

In the final section of the paper, we used the results of the
degenerate perturbation theory to determine the low-energy
states on the plateau as a function of s. Our result that the
first nonconstant diagonal term in perturbation theory comes
at sixth order is independent of the spin value s. However,
terms that allow plaquettes �such as type 1� to resonate occur
at order 6s, which can either be larger or smaller than 6
depending on s. In the strict easy-axis limit, therefore, for s
�3/2, the low-energy states are therefore determined only
by a diagonal effective Hamiltonian, which can be analyzed
classically. In the large but finite s limit, we are able to re-
solve the degeneracy of the zero-flux manifold found in the
large-s analysis �extended from that of Hizi and Henley26 to
the XXZ model�. We predict a trigonal7 state �see Fig. 12� to

DEGENERATE PERTURBATION THEORY OF QUANTUM… PHYSICAL REVIEW B 75, 094403 �2007�

094403-21



be the exact ground state in this easy-axis limit and for large
s, and numerical analysis suggests that this is obtained for
s�2. For s=3/2, the lowest-energy configuration we have
found in the Ising limit is a massively degenerate set of states
�for example, the �3��3 states, see Fig. 15�. For s�1, and
for s=3/2, 2, 5 /2 extrapolated to the isotropic limit, we find
that the off-diagonal term in the effective Hamiltonian be-
comes dominant, and we suggest several likely candidates
for the ground states in these cases. This includes a possible
U�1� spin-liquid state, which would be quite remarkable if
realized.

B. Implications and future directions

First, let us comment briefly upon the relevance to the
spinel chromites. For HgCr2O4, it is known that the tempera-
ture at which the plateau forms ��7 K� is comparable to the
highest temperature at which magnetic order is observed.
The theoretical estimate of the magnitude of the couplings in
the effective Hamiltonian due to quantum fluctuations for s
=3/2 is K�0.25 J �from Table II�. A crude estimate based
on the measured Curie-Weiss temperature in HgCr2O4 �Ref.
6� would predict an ordering temperature �1 K. However,
the observation of significant spin-lattice coupling8 in
HgCr2O4 would suggest that other mechanisms—i.e., phys-
ics outside the Heisenberg model—must be behind the pla-
teau formation and the magnetic ordering. Indeed, a recent
study of a simple model of spin-lattice coupling gives a rea-
sonable explanation of the plateau and its order, predicting
stabilization of the R state.10 It would be quite interesting to
see whether quantum fluctuations might, however, play a
role in the other chromite spinels, e.g., CdCr2O4.

We now move away from the experiments on HgCr2O4,
where the spin-lattice interactions are most likely more im-
portant than quantum fluctuations. Instead, we would like to
address a basic question that may be in the mind of the
reader. In the pure spin-s isotropic Heisenberg model �i.e.,
J�=Jz=J�, is there a plateau at half-magnetization? At s=�,
i.e., the strict classical limit, the answer is no, and indeed the
magnetization is a simple linear function of field in this case.
In principle, this question can be addressed by the 1/s
expansion.36 However, to the order studied, the situation re-
mains unclear: the leading-order spin-wave spectrum re-
mains gapless even in a field. Higher-order calculations in
1/s are required to resolve this question via that approach.
Within the XXZ model, for any amount of anisotropy ��
�1�, a plateau is expected even in the classical limit, so by
continuity it is likely to persist at smaller s. However, the
extrapolation to �=1 is not clear. In Appendix A, we present
some simple calculations aimed at addressing the plateau
width. In particular, we show that the plateau narrows both
from above and below upon perturbing away from the Ising
limit, where it is maximal. The plateau edges are determined
by the points at which the gap to excitations with nonzero Sz

vanishes. Unfortunately, unlike the calculation of the split-
ting within the plateau states �the main focus of this paper�,
the energy difference between the plateau ground state and
excited states with higher and/or lower Sz is nonvanishing
already at quadratic and/or linear order in �. Hence, a high-

order calculation of this gap becomes much more involved
than those in the bulk of this paper, and an extrapolation to
the isotropic limit is probably not reliable. The existence of a
plateau in the isotropic limit is a subject worthy of study by
other methods.

Next, we turn to future applications of the formalism de-
veloped here to other problems. From our exposition, it
should be evident that our methods generalize rather straight-
forwardly to other models of quantum antiferromagnets with
Ising anisotropy, provided a few conditions hold. First, the
lattices should be composed of site-sharing simplexes. A sim-
plex is a collection of sites in which every pair of sites is
connected by a bond; examples include triangle, crossed
square, and tetrahedron. Second, the ground states of the
Ising part of the Hamiltonian on a single simplex should all
be permutations of one another. This allows Ising exchange,
single-site anisotropies, biquadratic, and other interactions.
Third, the interactions should be the same on each bond but
could include quite arbitrary combinations of exchange, bi-
quadratic couplings, etc. There are quite a number of inter-
esting models of frustrated magnetism which share these fea-
tures. For instance, the XXZ models on the Kagome and
checkerboard lattices can be studied this way at several val-
ues of the magnetization. The XXZ model on the pyrochlore
lattice at zero field is also such a system. It will be interesting
to explore the behavior of these models at various values of
s using the methods of this paper.

More generally, the methods of this paper are possible
because of a key simplification: in a strong magnetic field,
the symmetry of the spin Hamiltonian is U�1� rather than
SU�2�. Many more theoretical methods are available to treat
systems with Abelian conserved charges than for SU�2�-
invariant spin models. Furthermore, in the interesting search
for spin-liquid states of quantum antiferromagnets, much
theoretical success has been achieved in recent years in real-
izing such states in U�1�-symmetric models, while examples
of SU�2�-invariant spin liquids, even in models, are much
more limited. Therefore, it seems likely that quantized mag-
netization plateaus may be an excellent hunting ground for
such exotic states of matter, and, moreover, there is hope for
theory and experiment to meet on this plane.
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APPENDIX A: EDGES OF THE MAGNETIZATION
PLATEAU

In this appendix, we analyze the gap to spin excitations
above the 3:1 plateau. To lowest order in the transverse spin
fluctuations, in the field range corresponding to the plateau in
the Ising model, excitations carrying 
Sz= ±1 are separated
by an energy gap of order Jz from the manifold of half-
polarized states. As the magnetic field is varied, this gap
decreases. At zero temperature, the magnetization plateau
ends when the energy gap to one of these spinful excitations
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vanishes. We shall consider the spin 
S= ±1 “single par-
ticle” excitations above the 3:1 manifold only and find a
rough perturbative estimate for the limits of the half-
magnetization plateau region. Clearly, the plateau region
cannot extend beyond the magnetic-field values at which the
gap to these excitations vanishes and so can only be more
narrow than the extent we shall find here.

Consider 
S= +1 excitations above the ground state.
These excitations are more favorable in higher magnetic
fields. The simplest way to insert such an excitation is by
raising one minority spin by one unit, i.e., obtained by acting
with Sj

+ on a minority site to change Sj
z=−s to Sj

z=1−s. This
creates two “defective” tetrahedra �shared by this site�,
which no longer have the optimal 3:1 spin configuration. We
will call the space of such states “manifold A.” For s	1/2,
manifold A comprises all the lowest-energy 
S= +1 excita-
tions in the Ising Hamiltonian. Other 
S= +1 states, which
involve more spin raising/lowering operators, e.g., those cre-
ated by Si

+Sj
+Sk

−, have higher energy because they either cre-
ate more defect tetrahedra or make the two defect tetrahedra
more energetically costly. The exception is s=1/2, for which
manifold A is actually incomplete, and there are other 
S
= +1 excitations outside it with the same zeroth-order en-
ergy. We will henceforth assume s	1/2 in the remainder of
this appendix to avoid this complication.

The zeroth-order energy difference from the ground-state
manifold is

EA
0 − E3:1

0 = 2Jz�3s − h� . �A1�

The gap shrinks as h increases and vanishes at a magnetic
field hA=3s. This corresponds to the high-field edge of the
half-polarized plateau in the �=0 limit. The single-site exci-
tation is, however, highly degenerate. The excitation can re-
side on any of N /4 minority sites �N is the number of pyro-
chlore sites�. We expect that breaking this massive
degeneracy �i.e., having this magnon “flatband” acquire
some dispersion� will lower the energy of this excitation
�closing the gap at lower magnetic field�. One therefore
needs to take into account corrections from higher orders in
DPT.

To first order in �, only spin 
Si
z= ±1 can be transferred

from one site to a nearest neighbor. In any 3:1 configuration,
the nearest minority spins reside on next nearest neighboring
sites in the lattice sense, which means that these sites are a
distance of two links apart. Therefore, this process always
leaves manifold A, and the first-order term has no contribu-
tion.

To second order in �, there are various viable processes.
Apart from hopping spin 1 between neighboring sites and
then back, there is also a nontrivial process in which the
defect site �the −s+1 spin� swaps with one of the �next-�
nearest-neighbor minority spins. This is also a legitimate
member of the manifold A. Processes not involving the de-
fect directly are affected by the presence of the defect only
when involving the nearest neighbors of the defect site. All
other sites have the same contribution to the second-order
correction as in the ground-state manifold.

We immediately conclude that the form of the effective
“magnon Hamiltonian” to second order is

HA
2 − H3:1

2 = − �c1 + c2 	
��ij��

�ei
†ej + H.c.�� , �A2�

where ��ij�� denotes next-nearest-neighbor sites on the pyro-
chlore lattice that are both minority sites, c1,2	0 are coeffi-
cients depending on the physical couplings, and the operator
ej

† creates a local excitation—it replaces a spin Sj
z=−s with a

spin Sj
z=1−s on site j:

ej
† = 
− s� j�1 − s
 j . �A3�

An arduous yet straightforward calculation for manifold A
results in

HA
2 − H3:1

2 = −
Jz�

2

2s − 1�3s�4s2 − 3s + 1�
4s − 1

+
s2

2 	
��ij��

�ei
†ej + H.c.�� . �A4�

Note the singularity in Eq. �A4� for s=1/2, which reflects
the incompleteness of manifold A in this case.

In a hopping Hamiltonian of the form of Eq. �A4�, the
magnon eigenstates are delocalized Bloch states. The spec-
trum of these states, in general, depends in detail upon the
structure of the lattice of minority sites. However, if we are
interested in the minimum energy state only, there is an
amusing simplification. Since the hopping above is every-
where negative, the lowest-energy state is expected to be
nodeless. Thus, the minimum energy state is simply a con-
stant amplitude �i.e., zero quasimomentum� Bloch state. For
any configuration of the minority spins 
�0� in the ground-
state manifold, the corresponding state in manifold A is


�� = 	
j

ej
†
�0� . �A5�

Direct calculation yields

	
��ij��

�ei
†ej + H.C.�
�� = 6
�� , �A6�

where 6 comes about as the number of next-nearest neigh-
bors with spin Sj

z=−s the excitation can hop over to. Because
in any 3:1 configuration there are always precisely six mi-
nority spins two links away, we are therefore able to obtain
the lowest-energy 
Sz= +1 magnon energy irrespective of
the particular arrangement of the minority sites.

The minimum energy of Eq. �A4� is therefore

EA,min
2 − E3:1

2 = − Jz�
23s�8s2 − 4s + 1�
�2s − 1��4s − 1�

. �A7�

The combined gap to manifold A is now


EA = Jz2�3s − h� − Jz�
23s�8s2 − 4s + 1�
�2s − 1��4s − 1�

. �A8�

The gap vanishes at a magnetic field of

hA = 3s − �2 3s�8s2 − 4s + 1�
2�2s − 1��4s − 1�

. �A9�

Note that for s�1, the O��2� correction is well behaved, i.e.,
it scales in the same way as the zeroth-order threshold field.
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Excitations with 
S=−1 �manifold B� can be realized by
replacing a spin Sj

z= +s with a spin Sj
z=s−1. The zeroth-

order energy difference from the ground-state manifold is
calculated in an identical manner as in the 
S= +1 case and
yields

EB
0 − E3:1

0 = 2Jz�h − s� . �A10�

At this order, the 
S= ±1 excitation spectra are symmetric
about h=2s.

Oppositely from the behavior at the high-field edge of the
plateau, the gap shrinks as h decreases and vanishes at a
magnetic field hB=s. Once again, due to a huge degeneracy
�the defect can reside on any of 3N /4 majority sites�, we
must resort to DPT in order to break the massive degeneracy
of manifold B, expecting to lower the excitation energy.

In contrast to the 
Sz= +1 excitations above, it is already
possible at first order to hop the spin Sz=s−1 onto other sites
and stay within manifold B. This is because the majority
sites are not isolated �four of the six neighboring sites of a
majority site are also majority sites�. Therefore, for any
given 3:1 state, one can immediately obtain the effective
Hamiltonian to O���:

HB
1 = Jzs�	

ij

Wijhi
†hj . �A11�

Here, Wij is the connectivity matrix of the lattice of majority
sites for the particular 3:1 state in consideration and the op-
erator hj

† creates a local excitation—it replaces a spin Sj
z=s

with spin Sj
z=s−1 on site j:

hj
† = 
s − 1� j�s
 j . �A12�

Since �	0, the hopping amplitudes in this case are posi-
tive, rather than negative as above. Thus, unfortunately, the
lowest-energy eigenstate is a nontrivial Bloch state, whose
energy depends upon the precise form of Wij, i.e., it is dif-
ferent for each of the 3:1 states. Therefore, it is difficult to
say anything specific about the O��� correction to the mini-
mum 
Sz=−1 magnon energy. Because one can easily con-
struct variational states with negative hopping energy �e.g.,
an antibonding state with support only on two sites�, the
O��� correction must be negative and, clearly from Eq.
�A11�, is of the form EB

1 =−Jzs�c, with c	0 a dimensionless
constant �the largest eigenvalue of Wij�. This gives

hB = s�1 + �c� 	 s . �A13�

Thus, the upper edge of the plateau decreases and the
lower edge of the plateau increases as � is increased, nar-
rowing the plateau with increasing quantum fluctuations. It is
plausible that for sufficiently large �, the plateau is obliter-
ated entirely, and the upper and lower edges meet. Unfortu-
nately, this is beyond the realm of this perturbative analysis.
Even a naïve extrapolation of the above lowest-order results
is nontrivial, since the lower plateau edge depends upon the
nontrivial constant c. It can, in principle, be computed for the
various states obtained in Sec. V, but we do not do so here.

APPENDIX B: ALTERNATIVE CALCULATION OF
THE DEGENERATE PERTURBATION THEORY

In this appendix, we present an alternative way of calcu-
lating the DPT sixth-order diagonal term, providing a check
on the calculation described in Sec. III.

The perturbation �6� can be viewed as a sum over spin
transfer operators,

H1 =
�

2
Jz	

�i,j�
�Ŝi

+Ŝj
− + H.C.� =

�

2
Jz 	

�=�i,j�
�ĥ� + H.C.� ,

�B1�

where ĥ� transfers one quantum of spin angular momentum
from site i to site j if this is on adjacent sites i , j. As a result,
the nth order virtual processes can be classified by choosing
n links to act on with spin transfer operators in a particular
order. In order to return to the initial 3:1 configuration, the
links must form closed loops of spin transfer. These include
self-retracting loops, defined as loops where after following
some path in the lattice, we turn back and travel the same
path in the reverse order back to the origin. The chosen links
can be represented by a graph on the lattice by coloring these
links. Apart from the graph, we must also specify the order
by which the links operate.

The virtual states in a DPT process will have a number of
sites in a different spin state relative to the initial 3:1 state.
We denote Sj

z=� j�s−mj�, where the variables mj are non-
negative and take on any integer value between 0 and 2s. Let
us denote the set of modified sites by M. Thus mj�0 only if
j�M. Using the fact that 	 j�i=

1
2	 j1 and 	�ij��i� j =0, both

due to the 3:1 constraint, we find that the inverse resolvent
can be rewritten as a sum involving only the modified sites,

H0 − E0 = Jz	
�ij�

Si
zSj

z − E0� = Jz	
�ij�

�i� j�s − mi��s − mj� − E0�

= Jz� 	
�ij��M

�i� jmimj + 2s 	
j�M

mj� − E0�, �B2�

where we have absorbed all constant energies into E0�. With
all mj =0, this resulting energy should vanish �energy differ-
ence to a state in the 3:1 manifold� and therefore conclude
that the energy E0�=0 in the final expression above. Finally,
our virtual state energy is

H0 − E0 = Jz� 	
�ij��M

�i� jmimj + 2s 	
j�M

mj� . �B3�

At first order, the perturbation �6� takes any initial state
out of the 3:1 manifold and therefore gives no contribution
�equivalently, no loop can be closed with only one link�.

In second order, we must act on the same link twice to
undo the spin transfer and return to the 3:1 manifold. There-
fore, all nonvanishing processes are confined to one tetrahe-
dron. The same process can act on one of the links of this
tetrahedron, with the same resolvents for a given order of the
link operators. Therefore, by summing up these diagrams,
we will get a function of the spins on this tetrahedron, which
is invariant under any permutation of the four sites �the sum
is represented in a diagrammatic way drawn in Fig. 17�.
Therefore, the 3:1 configuration on any single tetrahedron
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has the same energy at this order in DPT, no matter which
corner is chosen to be the minority site. For this reason, the
second-order contribution gives a constant shift in energy to
all the 3:1 states.

In third order, the only way one can return to the 3:1
manifold is by forming a single closed loop of spin transfer
around a triangular side of a single tetrahedron. As in the
second-order processes, we can sum over all such processes
occurring on the single tetrahedron. One again, we end up
with a function that is invariant under any permutation of the
four sites of the single tetrahedron �the sum is represented in
a diagrammatic way drawn in Fig. 18�. Once again, we can-
not distinguish energetically between the different 3:1 states
defined on this single tetrahedron. As a result, the third-order
term must produce a constant shift in energy.

As exemplified in the second- and third-order terms, all
DPT processes �of any order� that are confined to one tetra-
hedron �meaning all the spin transfer operators act on links
in the same tetrahedron� all add up to constant shifts in en-
ergy. In every such case, the argument is the same as above.
Starting with a given process defined on a single tetrahedron,
sum over all the processes of the same structure on the same
tetrahedron. Then, one always arrives at a function that is
invariant under any permutation of the four corners. Within
the 3:1 manifold, these processes cannot favor one configu-
ration over the other and must produce a mere shift in the
overall energy. More explicitly, every process results in a
function of the four Ising variables on a tetrahedron, as de-
fined in Sec. II. The sum of all diagrams with the same
structure then takes on the generic form

f��1,�2,�3,�4� + �all permutations of 1, . . . ,4�

= a0 + a1��1 + �2 + �3 + �4�

+ a2��1�2 + �1�3 + �1�4 + �2�3 + �2�4 + �3�4�

+ a3�1�2�3�4��1 + �2 + �3 + �4� + a4�1�2�3�4.

�B4�

The 3:1 constraint gives �1�2�3�4=−1 as well as ��1+�2

+�3+�4�=2. The generic four spin function then reduces to

f��1,�2,�3,�4� = const + a2 	
i�j=1

4

�i� j

= const +
a2

2
�	

j=1

4

� j�2

= const. �B5�

Given this result, we can always ignore virtual processes
confined to one tetrahedron for the remainder of our discus-
sion.

Similar arguments can be applied to processes confined to
two adjacent tetrahedra. Summing over all possible pro-
cesses confined to pairs of adjacent tetrahedra, one always
ends up with a constant energy shift in the 3:1 manifold. A
pair of adjacent tetrahedra can only be in one of three con-
figurations in the 3:1 manifold �see Fig. 3�. The adjacent
tetrahedron pairs can be enumerated by the site connecting
them. Therefore, the number of distinct pairs is equal to the
number of pyrochlore sites. In the 3:1 manifold, the number
of configurations where the shared site is a minority site �see
Fig. 3�a�� is fixed to be 1

4 of the sites. In the remaining 3
4 of

the sites, the shared site is a majority site. The two configu-
rations in Fig. 3�a� with a majority site connecting the pair of
tetrahedra are distinguishable physically because of the dif-
ferent directions of the links, but in terms of the diagrams
defining DPT processes, Figs. 3�b� and 3�c� are indistin-
guishable �they are identical in the graph sense—the link
structure is the same�. Therefore, the summation over all
possible processes confined to these two adjacent tetrahedra
always results in a function of the Ising variable defined on
the shared site,

f��i� = a0 + a1�i. �B6�

For each pair of adjacent tetrahedra, we have the same
function �B6� of the shared site Ising variable. Summing
over all pairs of adjacent tetrahedra is equivalent to summing
over the sites of the pyrochlore lattice. Therefore, the sum of
all the DPT processes of this sort results in

	
i

f��i� = Na0 + a1	
i

�i = Na0 +
N

2
a1, �B7�

where N denotes the total number of pyrochlore lattice
points. Once again, we are led to the conclusion that all such
processes can only give a constant shift in energy, and we
shall ignore all such instances in the remainder of our dis-
cussion.

At fourth order, we have a number of possible processes.
The only spin transfer processes comprising a single loop
will be confined to two adjacent tetrahedra. According to the
arguments above, this single loop process will give a con-
stant shift in energy within the 3:1 manifold. Apart from
single closed loop, we can only also have processes with two
separate closed loops, comprising two nonoverlapping links
which get acted on twice. Each chosen link occupies its own
tetrahedron �if the two links are on the same tetrahedron, one
must act on a bond with two majority spins, and automati-

FIG. 17. �Color online� Second-order process.

FIG. 18. �Color online� Third-order process.
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cally produces zero�. The case in which these two tetrahedra
are adjacent will result in a constant, by our arguments
above. Otherwise, there are only two possibilities. In one
case, these two tetrahedra share a neighboring tetrahedron. In
the second case, they are separated by more than one tetra-
hedra. This classification is necessary because, in the former
case, different resolvents may show up through the interac-
tion term of the virtual state energy �B3�. If the two links are
separated by more than one tetrahedron, this does not occur.

In the case where the two tetrahedra are sufficiently well
separated, with no mutual interaction in the virtual state en-
ergy, we can once again invoke the trick of summing over all
such processes on each single tetrahedron containing a link,
and the DPT term cannot distinguish between the four 3:1
configurations on each tetrahedron. Once again, we end up
with a constant shift in the overall energy for all the 3:1
configurations.

Now, we consider the processes where the two tetrahedra
share a neighboring tetrahedron. One such diagram is pic-
tured in Fig. 19. The structure spans a chain of three tetra-
hedra. In the present case, when summing over diagrams,
one must be cautious to sum over diagrams with the same
resolvents. Summing over equivalent diagrams on the chain
of three tetrahedra, such as those found by permuting site 2
with 3 and 4, yields a function that treats the three sites at the
outer side of each edge tetrahedron on equal footing. We
graphically indicate the sum of diagrams by coloring all the
links that appeared in one of the diagrams we summed over
�see Fig. 20�.

Formally, the sum of processes gives rise to a function of
the eight Ising variables on the two edge tetrahedra

f̃��1 , . . . ,�8�. Because of the above arguments, this function
has to be invariant under permutations of the three outer
edge spins. Considering all possible expressions we can form
out of the three edge spins in a “symmetric” way,

f��1, . . . ,�8� = a0 + a1��2 + �3 + �4�

+ a2��2�3 + �2�4 + �3�4� + a3�2�3�4,

�B8�

where the dependences of a0,1,2,3 on �1,5,6,7,8 are implicit.

Using the 3:1 constraint on this tetrahedron ��1+�2+�3

+�4�=2, as well as the identities it implies, �1�2�3�4=−1
�or �2�3�4=−�1� and ��2�3+�2�4+�3�4�=1−2�1, we find
that f��1 , . . . ,�8� can be rewritten as a function of �1,5,6,7,8

alone,

f��1, . . . ,�8� = a0 + a1�2 − �1� + a2�1 − 2�1� − a3�1

= ã0 + ã1�1. �B9�

Repeating the same simplification for the three Ising vari-
ables of the other edge, �6,7,8, one finds that the sum of
diagrams above can only produce a function depending on
the two spins connecting the edge tetrahedra to the third
tetrahedron in the middle of the chain �sites 1 and 5 in Fig.
20�. This function is, therefore, a function of two neighbor-

ing spins on a single tetrahedron f̃��1 ,�5�. Each three tetra-
hedron chain process can be represented by the pyrochlore
link between the two sites shared between the tetrahedra
�sites 1 and 5 in Fig. 20�. Summing over all the processes
represented by the six links in the central tetrahedron, which
contains sites 1 and 5, one ends up with a function which is
symmetric under a permutation of the four sites on this tet-
rahedron. Repeating the steps outlined in Eqs. �B4� and �B5�,
we find that the resulting function is constant.

The particular case analyzed above is only an example of
a vastly more general case, which we now describe. Given a
set of diagrams that reside on chains of tetrahedra, with the
two edge tetrahedra not sharing a neighboring tetrahedron
between them in any of the diagrams �except through the
chain itself�, one can sum over sites at the edge that we are
free to permute �see examples in Figs. 21 and 22�. The sum-
mation in both examples will result in a function of the spins
at site 1. This procedure of contracting the diagram can be
continued from both edges, and we will always end up with
a function of two sites residing on one tetrahedron. We then
sum over all the different choices of the last two remaining
sites on this tetrahedron. We then end up with a symmetric
function of the four sites on a single tetrahedron, which is
always a constant, from Eqs. �B4� and �B5�. Therefore, we

FIG. 19. �Color online� Fourth-order process.

FIG. 20. �Color online� Sum of fourth-order processes.

FIG. 21. �Color online� Summing over equivalent edges of a
diagram to contract the dependence on sites in the cluster.

FIG. 22. �Color online� Summing over equivalent edges of a
diagram to contract the dependence on sites in the cluster.
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conclude that all such diagrams can be summed over to give
constant shifts in energy. We shall refer to these sets of dia-
grams as “retractable chains.”

Bearing the above arguments in mind, we now turn to
fifth order in DPT. Any diagram which consists of only one
closed loop of spin transfer is confined to two adjacent tet-
rahedra. As elaborated above, the different 3:1 configurations
on the pair of adjacent tetrahedra are indistinguishable in the
graph sense. These diagrams can therefore contribute only a
constant shift in energy. Other than these diagrams, the only
possibility is to have two separate closed loops of spin trans-
fer. One must involve a single link being acted on twice, and
the other must be a three-link loop. Both loops reside on two
different tetrahedra. If the two tetrahedra are adjacent, or
share a neighboring tetrahedron �as in Fig. 23�, the tetrahedra
are part of a retractable chain. Our general analysis for re-
tractable chains then applies here as well. Therefore, these
diagrams must also sum up to a constant in the 3:1 manifold.
Otherwise, the two tetrahedra are sufficiently well separated,
and we can sum over the various diagrams on each tetrahe-
dron separately. The summation gives an expression in
which each of the four tetrahedron corners are on equal foot-
ing and cannot distinguish between different 3:1 states, re-
sulting in a constant energy shift.

In agreement with the results of Sec. II, DPT terms of
order less than 6 will not split the energy of the 3:1 states.
Finally, we turn to sixth order in DPT,

H6 = − P�H1R�5H1P , �B10�

where R= �1−P� / �H0−E� is the resolvent. At this order, we
have another new class of single closed loops—loops around
hexagonal plaquettes of the pyrochlore lattice �see Fig. 24�,

which will split the energy of different 3:1 configurations.
These processes can be enumerated by the hexagonal
plaquettes they act on. So, we can write the contribution
from these processes 	Pg̃��1 , . . . ,�6� where the spins around
the hexagonal plaquette are denoted by 1,…,6.

All other single closed-loop diagrams are confined to one,
two, or three adjacent tetrahedra; the first two we already
know will sum up to constant shifts in energy. The self-
retracting loop residing on a chain of three tetrahedra is de-
picted in Fig. 25 and is also summed over to produce a
constant, since this is a retractable chain.

Next, we consider the diagrams which comprise two
closed loops. There must be two of length 3, or one of length
4, and one of length 2. In the case of two loops of length 3,
each loop must reside on a single tetrahedron. If the two
tetrahedra are adjacent, or even share a neighboring tetrahe-
dron �as in Fig. 26�, they form a retractable chain and result
in a constant. Otherwise, the tetrahedra are sufficiently well
separated so that we can sum over diagrams on the two tet-
rahedra separately and end up with a constant.

We now turn our attention to the case of one loop of
length 4 and one of length 2. The loop of length 2 must be
one link appearing twice and is therefore confined to a single
tetrahedron. The loop of length 4 must be confined to two
adjacent tetrahedra �or even just 1�. If the two loops are
sufficiently well separated �by more than one tetrahedra�, we
can sum over all two-loop diagrams in the tetrahedron,
where the loop of length 2 resides, resulting in a constant.
We can then sum over diagrams on the tetrahedron cluster
containing the four loops to produce another constant. If the
two clusters are adjacent, or separated by just one tetrahe-
dron, we have a retractable chain, which we have already
shown must result in a constant.

The last set of sixth-order diagrams is that of three closed
loops, each comprising a single link, acted on twice. Each
loop is therefore confined to a single tetrahedron. Using the
same arguments as before, if all three tetrahedra are sepa-
rated by more than one tetrahedron from one another, we can

FIG. 23. �Color online� Fifth-order process.

FIG. 24. �Color online� Hexagonal plaquette loop process.

FIG. 25. �Color online� Single self-retracting loop on a chain of
three tetrahedra.

FIG. 26. �Color online� Sixth-order diagram with two loops of
length 3.
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sum over all such diagrams contained in the same tetrahedra.
In particular, sum over diagrams related by permuting over
sites on each single tetrahedron separately results in a con-
stant. Even if only one tetrahedron is well separated from the
other two, we can first sum over diagrams on the isolated
tetrahedron to produce a constant and then deal with the
other two tetrahedra. The remaining two will reside on a
retractable chain of tetrahedra, again resulting in a constant.

The only cases which we must deal with more carefully
are those diagrams where each pair of tetrahedra either
shares a neighboring tetrahedron or the two are adjacent.
When at least one pair of loops resides on adjacent tetrahe-
dra, the cluster of tetrahedra will always be a retractable
chain, with either four or three tetrahedra. We are left only
with diagrams where all three tetrahedra containing the loops
are not adjacent but rather have shared neighboring tetrahe-
dra. There are three tetrahedron clusters possible where this
occurs. Figure 27 shows a diagram residing on a closed chain
of six tetrahedra, enclosing a hexagonal plaquette. This is not
a retractable chain. In Fig. 28, the three tetrahedral contain-
ing the loops all share one single neighboring tetrahedron.
Finally, in Fig. 29, the three loops reside on a linear chain of
five tetrahedra. However, it is important to note at this point
that the tetrahedra at the two edges of this chain �1 and 7�
can be identified to give the cluster shown in Fig. 27.

The processes on the cluster shown in Fig. 27 cannot be
contracted and will split the energy of the different 3:1 states.
We denote the sum of processes with the three loops on the
same tetrahedra as in Fig. 27, f��1 , . . . ,�6�. There is also a

contribution from all the processes where the three loops
reside on the complementary set of tetrahedra, which must
result in f��6 ,�1 . . .�5� �the same function with the spins
cyclically permuted once�. Cyclically permuting the spins
again takes us back to the set of processes we summed over
in f��1 , . . . ,�6�, and therefore f must be invariant under two
permutations. This is a good check for the correctness of the
result we find. The sum f��1 , . . . ,�6�+ f��6 ,�1 , . . . ,�5� ac-
counts for all the diagrams on a given cluster enclosing a
plaquette, and the total contribution to the effective Hamil-
tonian can be written as

	
P

�f��1, . . . ,�6� + f��6,�1, . . . ,�5�� . �B11�

The processes on the cluster shown in Fig. 28 can be
contracted from the “loose ends” of the diagram, similar to
the contraction we have implemented for the retractable
chains. For the particular example in Fig. 28, we sum over
the corresponding diagrams with 2 permuted with 3 and 4.
The resulting sum can only be a function of sites 1, 5, 7, 9,
and 12. We then sum over the corresponding diagrams with 7
permuted with 6 and 8 and then sum over 12 permuted with
10 and 11. After these summations, the resulting function can
only be a function of the sites 1, 5, and 9. Finally, we sum
over all choices of three such sites on the central tetrahedron,
which must result in a constant �a symmetric function of the
four sites of a single tetrahedron�.

Next, we turn to the processes on the chain in Fig. 29. At
first glance, it would seem that these are retractable diagrams
that will amount to a constant. Such a summation would
include 81 different diagrams �we retract the tetrahedra 2, 3,
5, and 6, each time summing over three permutations of
sites�. However, two of these diagrams are of the form of
Fig. 27, in which case the tetrahedra 1 and 7 at the edges of
the chain are identified. As a result, these two diagrams may
have different resolvents from the other 79 diagrams in this
sum, since the sites on tetrahedra 1 and 6 may now interact.
These two terms have, in fact, already been taken into ac-
count in f��1 , . . . ,�6� and therefore should not be added
again to the effective Hamiltonian. The summation that
makes contractible diagrams give constant energy shifts re-
quires that the resolvents be identical for the entire set of
diagrams.

Rather than explicitly calculating the remaining 79 dia-
grams, we employ the following trick. In order to produce a
constant, we add to the 79 diagrams two terms having the
same resolvent, but replacing the spin variables � j with those
at the positions 1–6 in Fig. 27. All these 81 terms have the
same resolvent as that of the process in Fig. 29 and therefore
will result in a constant. The two additional terms do not
represent actual DPT processes and therefore must be sub-
tracted from the effective Hamiltonian. The terms we need to

FIG. 27. �Color online� Three-loop diagram residing on a closed
chain of tetrahedra, enclosing a hexagonal plaquette. This is the “f”
process.

FIG. 28. �Color online� Diagram contributing to the function
“g.”

FIG. 29. �Color online� Diagram contributing to the function
“r.” The loops are embedded in the tetrahedra marked 2, 4, and 6.
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subtract are enumerated by the choice of central tetrahedron
in the chain in Fig. 29 �tetrahedron 4�, which we can identify
with the tetrahedron containing sites 3 and 4 in Fig. 27.
Given a choice of the central tetrahedron, each term of this
sort is a function of the six spins r��1 , . . . ,�6� as defined in
Fig. 27. Given a hexagonal plaquette, there are six choices of
the central tetrahedron and, correspondingly, six terms, and
we must take all of these into account. Choosing a different
central tetrahedron is equivalent to cyclically permuting the
spins 1,…,6, and so the total contribution of all these pro-
cesses is

− 	
P

�r��1, . . . ,�6� + r��6, . . . ,�5� + r��5, . . . ,�4�

+ r��4, . . . ,�3� + r��3, . . . ,�2� + r��2, . . . ,�1�� . �B12�

The sixth-order term in the effective Hamiltonian finally
reads

H6 = 	
P

g��1, . . . ,�6� + 	
P

�f��1, . . . ,�6�

+ f��6,�1, . . . ,�5�� − 	
P

�r��1, . . . ,�6� + r��6, . . . ,�5�

+ r��5, . . . ,�4� + r��4, . . . ,�3� + r��3, . . . ,�2�

+ r��2, . . . ,�1�� . �B13�

Calculating these functions explicitly, we find the exact same
results as in Sec. II.

APPENDIX C: SPIN s= 3
2 DIAGONAL TERM GROUND-

STATE DEGENERACY

In this appendix, we analyze the lowest-energy states
found for the diagonal term in the effective Hamiltonian for
spin s= 3

2 discussed briefly in Sec. V A 4. The lowest-energy
states turn out to be massively degenerate. We have found
what is at the very least a subset of this manifold, which
already exhibits a degeneracy that grows with the system
size, diverging in the thermodynamic limit.

First, we consider all the possible states we can construct
with all the Kagome layers in the pyrochlore taking on the
�3��3 configuration in Fig. 15. Given a plane in this �3
��3 configuration, there are three different ways to place
the following layer �also in the �3��3 configuration� above
it, as described in Fig. 30. This freedom in the way the planar
configurations are stacked is the source of a massive
degeneracy—there are 3L possible stacking choices, where L
is the linear dimension in the �111� direction of the system.
Also, there are four plaquette directions in which to choose
the direction of the stacking, resulting in an overall number
of such states 4�3L. For now, we shall work with this subset
of the entire degenerate manifold, since these states are
rather easy to handle. We shall refer to this set of states as the
�3��3 states.

Now, we turn to calculate the energy of these states, prov-
ing that these are degenerate states. Each plaquette in the
�3��3 planes shares links with three plaquettes above it.
These four plaquettes enclose an up-headed cell, as defined

in Sec. V A. For any of the 3�3��3 spin configurations of
the next Kagome plane, we always get the same up-headed
cell types above the type 1 and type 0 plaquettes in the �3
��3 plane. The clusters enclosing these up-headed cells
above the type 1 and type 0 plaquettes are depicted in Figs.
30�a� and 30�b�, respectively. Since we are only considering
up-headed cells, every one of the plaquettes appears in only
one cell.

Inspection of Fig. 30�a� shows that it includes one
plaquette of type 1, one of type 2, one of type 3, and one of
type 4 �this is just the type 1 cell in Table III�. For the cluster
in Fig. 30�b�, we find that it includes two type 0 plaquettes,
and two type 2 �type 8 cell in Table III�. Of the plaquettes in
the planes, which comprise 1

4 of the plaquettes in the lattice,
2
3 are in a type 1 configuration and 1

3 are in a type 0 configu-
ration. Since each planar plaquette determines the configura-

FIG. 30. �Color online� Stacking of two planar �3��3 states.
The solid lines represent the tetrahedra of the lower plane. The
dashed lines represent the tetrahedra of the upper layer. The same
convention regarding up-pointing and down-pointing tetrahedra ap-
plies here as in Fig. 12 for both the solid and dashed line triangles.
In both figures, the dashed tetrahedron with the corners 1, 2, and 3
must have one of these three corners a minority site �marked by
solid �red� circles�, and any of these three can be chosen. Once the
minority site has been chosen from 1, 2, and 3, the �3��3 state of
the upper layer is then uniquely determined. The choice of site 1 is
explicitly shown in both cases.
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tion of the unique up-headed cell it is a part of, we therefore
find that 2

3 of the up-headed cells are type 1 cells �y1= 2
3

� and
the remaining 1

3 are type 8 cells �y8= 1
3

�. The corresponding
plaquette-type fractions are x0= 1

6 , x1= 1
6 , x2= 1

3 , x3= 1
6 , and

x4= 1
6 . Finally, the energy per plaquette of the �3��3 states

is

1

N
E�3��3 =

1

6
�V1 + 2V2 + V4� . �C1�

We expect the fractions of plaquettes in all the states in this
degenerate manifold to be the same as in this subset, since,
otherwise, it is rather unlikely �though not impossible� that a
different combination of fractions will yield the same energy.

Having analyzed this set of states we turn to an additional
set of states, with the same energy. Consider a particular
subset of �3��3 states, with every two Kagome planes
stacked in the same manner. This subset of the �3��3 states
has a total of 4�32=36 states—factor of 4 for choosing the
direction of the layering, a factor of 3 for the choice of how
to position the planar configuration on one plane, and an-
other factor of 3 from the freedom to choose how to stack the
next planar layer. We shall refer to these as the uniformly
stacked states.

Starting from any of these uniformly stacked states, we
note that the type 1 cell can swap its type 1 and 3 plaquettes
by changing the position of only one minority site. In Fig.
30�a�, this can be accomplished by moving the minority site
at site 4 to site 5. In addition, site 5 is part of a type 8 cell,
and it is denoted also in Fig. 30�b�, where it is evident that in
order to maintain the 3:1 constraint, we must also shift the
minority site at site 1 in Fig. 30�b� to site 6. Because the
stacking of the next layer is exactly the same, the same shift-
ing of minority sites must occur along the entire straight line
passing through site 4 in the direction from site 4 to site 5.
Closing this chain at infinity makes this chain into an infinite
length loop of alternating minority and majority sites that are
flipped, and, therefore, this maintains the 3:1 constraint. One
can convince oneself from Fig. 30�b� that the type 8 cell will
remain a type 8 cell under these minority site shifts. Since all
the cells remain in the same configuration type, the
plaquette-type fractions remain the same as in the �3��3
states, have the same energy, and are therefore degenerate.

We now turn to calculate the degeneracy of this set of
states. Each type 8 cell has exactly one site it can shift in this
manner, but since the chains are not shared between different
type 0 plaquettes in the plane, one can convince oneself that
these straight line chains of sites can be flipped indepen-
dently. Therefore, starting from a particular uniformly
stacked state, since there are N /4L plaquettes in every plane
�where N is the number of pyrochlore sites and the number
of hexagonal plaquettes�, there are N /12L chains we can

independently flip between two configurations, resulting in a
degeneracy of 36�2N/12L. However, an additional subtlety
must be addressed.

Every �3��3 state has all the up-pointing tetrahedra in
one of three 3:1 configurations. Flipping any chain in a uni-
formly stacked state will introduce some number of up-
pointing tetrahedra in the fourth possible 3:1 configuration of
a single tetrahedron. Starting from one uniformly stacked
state, flipping all possible chains, we will change all the tet-
rahedra of one of the three 3:1 configurations into the fourth
tetrahedron configuration type, which was absent in the ini-
tial uniformly stacked state. Once again, we will find our-
selves with all tetrahedra in only three possible different 3:1
configurations. This suggests that perhaps this final state we
have reached is also a uniformly stacked state. From inspec-
tion, we find that this indeed is the case, so that from one
uniformly stacked state we can reach one other such state by
flipping all possible chains in the manner described above.
We must therefore correct the degeneracy to 18�2N/�12L� to
account for this double counting.

In total, we have found the degeneracy of these two sets
of states to be

18 � 2N/12L + 4 � 3L − 36, �C2�

where we have subtracted 36 since this is the number of
states that appear in both sets of states we have analyzed
�these are simply the uniformly stacked states�. We shall re-
fer to the combined set of states as the 1-8 manifold of states,
since it involves only type 1 and type 8 cells. The degeneracy
we have calculated matches precisely the degeneracies in
Table V for all the clusters where we have found the lowest-
energy state for s= 3

2 , namely, the 3�3�1, 6�3�1, 3�3
�2, and 3�3�3 clusters. Our analysis clearly shows that
this set of states is massively degenerate, and despite ex-
hausting all the states we have found numerically with this
energy, we cannot be certain that these exhaust all possible
states with this energy.

In a previous publication,10 analyzing the same 3:1 degen-
erate manifold of states, the authors ascertained the maxi-
mum fraction of type 1 plaquettes that can be placed on a
pyrochlore lattice is 1

4 . The 1-8 states do not realize this limit
but come fairly close to it with 1

6 of the plaquettes in the type
1 configuration. Therefore, the �3��3 states are a “compro-
mise” between the energy gain of V1 �which favors the type
1 plaquettes� and the energy loss of V2 �which disfavors the
type 2 plaquettes�, taking into account the constraint x1�x2.
This becomes evident when calculating the energy of the
various cell types. The state realizing the maximum fraction
of type 1 plaquettes found in Ref. 10 comprised only type 2
cells. For s= 3

2 , type 1 cells are far more favorable in energy
than type 2 cells, and type 1 cells are abundant in the 1-8
states.
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