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Thermal conductivity of porous media is considered. The model permits regular power-series expansion of
the expression for thermal conductivity as a function of porosity. The coefficients of the expansion depend on
two-site correlation function of local thermal conductivities, which can be calculated from the microscopy
image of the structure. Thermal conductivities of some model two-dimensional structures as well as a real
porous yttria-stabilized zirconia film are calculated and discussed.
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I. INTRODUCTION

The problem of heat transport in porous solid films at-
tracts much attention of researchers due to their possible ap-
plication as thermal barrier coatings. First of all, this con-
cerns yttrium-stabilized ZrO2 �YSZ�, in which its thermal
conductivity at 1000 °C is about 2 W/m K and can be re-
duced by microstructure modification. Meanwhile, some
other materials of low thermal conductivity �TC� draw atten-
tion: Y3Al5O12, nanocrystalline Al2O3 and superlattices
W/Al2O3,1 and multicomponent oxides, e.g.,
ZrO2-�Y,Gd,Yb�2O3.2

There are two ways of heat transport in solid dielectrics at
high temperatures: the phononic and radiation mechanisms
of thermal conductivity. The former is due to the lattice vi-
bration, whereas the latter is due to excitation and propaga-
tion of infrared light in a heated solid. The radiation compo-
nent is significant at high temperatures only �T�1000 °C�.
In the case of low electron-phonon interaction, �=�ph+�r,
where � is the total thermal conductivity and �ph and �r are
its phononic and radiation components, respectively.3 This
permits us to consider each component of thermal conduc-
tivity independently.

Aside from phononic and radiation mechanisms, there are
some other contributions to the thermal conductivity. First of
all, this concerns electronic component of thermal conduc-
tivity that dominates in metals. For YSZ at high temperatures
�above 300 °C�, similar component arises due to drift of O2−

ions.4 The mean free path of phonons as well as electrons in
metals and O2− ions in YSZ is much less than the pore size.
This allows us to add all these nonradiation contributions to
the thermal conductivity, so that �=�nr+�r, where �nr is the
sum of all nonradiation components of thermal conductivity
essential for the material under consideration.

In this study, we deal only with the nonradiation compo-
nent of thermal conductivity. The simple model we adopt
neglects heat transport through the pores. It is commonly
accepted that thermal conductivity of the porous solids can
be expressed as �nr=�i��p�, where �i is the thermal conduc-
tivity of the appropriate dense material and � is the factor
determined by porosity p. We shall call � the porosity factor.
Different authors have proposed different estimations for its

value. Klemens5 used a thermodynamical approach to inves-
tigate heat propagation in porous solids. He shows that the
thermal conductivity of the isotropic porous media with
small volume fraction of pores �low porosity� is �nr=�i�1
−4p /3�. This result is justified in experiments.6

Shafiro and Kachanov7 and Sevastianov and Kachanov8

studied the influence of the nonspherical �elliptical� pores
and cracks on thermal conductivity. The result is �nr=�i�1
−8� /9�, where � is the so-called crack density parameter;
this parameter has been introduced to determine the influ-
ence of the nonspherical inclusions.7 For the particular case
of spherical pores, this approximation yields �nr=�i�1
−3p /2�. The model of Ref. 7 has been generalized in Ref. 8
to consider the large number of anisotropically distributed
cracks; the single parameter describing the crack anisotropy
has been suggested.

Wang et al.9 proposed to use the microscopy image of
porous structure to calculate its thermal conductivity. The
model includes the image analysis, which is necessary to
develop the model structure comprising the pores, cracks,
and voids of different sizes. This model structure has been
used then for the direct calculation of thermal conductivity
with the finite element method. The approach allows one to
obtain a detailed map of the temperature field and the heat
flux distribution. However, consideration of a large structure
containing too many pores and cracks of different sizes
seems to be difficult because of computational complexity.

In this paper, we suggest another approach of using the
microscopy image of a porous structure to calculate its ther-
mal conductivity. We proved that the effective thermal con-
ductivity of porous media can be expressed via the pairing
correlation function of local thermal conductivities taken in
different points. This value can be easily calculated from the
microscopy image. Corson10 and Berryman11 developed
technical details of such a procedure. We suggest the dia-
grammatic technique, similar to that used in particle and sta-
tistical physics for estimation of average amplitudes,13 to de-
velop the thermal conductivity as series of porosity. We show
that the expression5,6 �nr=�i�1−4p /3� holds for the thermal
conductivity of the isotropic porous media of low porosity in
the absence of interaction between the pores and propose an
improvement to take this interaction into account.
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We consider the effect of large pores, the size of which is
0.1 �m or larger, which are typical for YSZ, on the thermal
conductivity. The wavelength of the phonon responsible for
the heat transport at high temperatures is of about a lattice
constant �a few tens of angstroms�, and the mean free path of
such phonons is about 100 nm or less.14 This means that
pores whose size exceeds 0.1 �m can be considered as large.
To take them into account, we write the heat-flow equation
with the position dependent thermal-conductivity coefficient.

II. MODEL

A. Effective thermal conductivity

To define this notion, it is useful to introduce some effec-
tive homogeneous, in general, anisotropic media, the re-
sponse of which on the external heating is equal to that of the
porous media under consideration. The thermal conductivity
of this effective media will be identified with the effective
thermal conductivity of the porous media. Let us begin with
this effective media and suppose that momentary heating
takes place at some point which we assume to be the coor-
dinate origin. We are interested in the evolution of tempera-
ture at some remote point L. We suppose that the distance �L�
between this point and the coordinate origin considerably
exceeds any other characteristic size of the problem. The
temperature T obeys the heat-flow equation

�T

�t
− �ij

�2T

�xi�xj
= ��r,t� , �1�

which can be solved by means of Fourier transform

T�r,t� =
1

�2��4 � 	�q,
�ei�qixi−
t�d3qd
 ,

where 	�q ,
� is the Fourier transform of temperature, q and

 are the relevant wave vector and frequency, respectively.
Then,

	�q,
� =
1

�ijqiqj − i

, �2�

so that

T�r,t� =
1

�2��4 � ei�qixi−
t�

�ijqiqj − i

d3qd
 . �3�

In particular, for an isotropic media where �ij =��ij, this
leads to the well-known result

T�r,t� =
1

8���2t�3/2e−�r�2/4�2t.

Consider now a similar problem for the porous material.
We call �̄ij the effective thermal conductivity of the porous
media, if this value permits us to estimate the average tem-
perature at a remote point from Eqs. �2� and �3� by the sub-
stitution �ij = �̄ij. This means also that the average tempera-
ture obeys the heat-flow equation with �̄ij as the thermal
conductivity. Apparently, this notion is reasonable if �̄ij is
independent of the distance �L�. We shall show this in Sec.
II C.

B. Description of porous media: Correlation function

If the size of pores much exceeds all mean free paths
essential for the heat transport, then the temperature T obeys
the heat-flow equation with the position dependent thermal-
conductivity coefficient ��r�:

�T

�t
− div���r�grad T� = ��r,t� , �4�

where

��r� = ��i outside the pores

0 inside the pores.
�

We can write the thermal-conductivity coefficient as the
sum of its average �0 and fluctuate ��r� components as fol-
lows:

��r� = �0 + ��r� ,

where

�0 = �i�1 − p�, ��r� = 0.

�i is the intrinsic thermal conductivity of the material under
consideration, and p is the porosity.15 Perturbation with re-
spect to ��r� permits us to study the effect of disorder in
terms of the two-point correlation function �CF� S�r ,r��
=��r���r��. For a homogeneous, in average, porous media,16

this value depends only on the distance, S�r ,r��=S�r−r��.
This function is maximal at zero, S�0�=�2�r�= p�1− p��i

2,
and vanishes at infinity: because fluctuations ��r� and ��r��
are independent, then �r−r��→�. Further, we will use the
normalized correlation function W�r−r��=S�r−r�� /S�0�; this
function is independent of the conductivity �i and deter-
mined only by the structure of the pore media.

The attenuation length of the correlation function is com-
parable with the mean pore size R. Note that this size can be
different in different directions for the anisotropic pores, e.g.,
cracks. Additional peculiarities of the correlation function
are due to interaction �interconnection� of pores, which is
small for low porosity. Generally speaking, the correlation
function W�r−r�� can be calculated from the microscopy im-
age, if it allows reconstruction of the three-dimensional �3D�
image of porous media.

The four-point and other multipoint correlations, which
arise from the higher orders of the perturbation, can be de-
composed into two-point ones: ��r1���r2���r3���r4�
=��r1���r2� ·��r3���r4�+��r1���r3� ·��r2���r4�
+��r1���r4� ·��r2���r3�. Corrections to this equality is ap-
preciable, only if all relevant points are close, �r1−r2�	�r1
−r3�	�r1−r4�	R. They can be omitted in thermal-
conductivity evaluation, if the mean size of pores is less than
the size of the specimen.

C. Determination of effective thermal conductivity

The Fourier transform of the temperature �k ,
� can be
introduced as
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T�r,t� =
1

�2��4 � �k,
�ei�kr−
t�d3kd
 .

By substituting this into Eq. �4�, multiplying by e−iqr, and
integrating over the entire space, we find the equation for
�k ,
�,

��0q2 − i
��q,
� +
1

�2��3 � kq�̃�k − q��k,
�d3k = 1,

�5�

where

�̃�k� =� ��r�eikrd3r

is the Fourier transform of �.
The solution of Eq. �5� can be developed as series in �̃:

 = 0 + 1 + 2 + ¯ , �6�

where

0�q� =
1

�0q2 − i

,

1�q� = −
0

�2��3 � kq�̃�k − q�0�k�d3k ,

¯

n�q� = −
0

�2��3 � kq�̃�k − q�n−1�k�d3k . �7�

This series is presented graphically in Fig. 1, where straight
lines correspond to 0�k� and crosses to the factors
−�2��−6k1k2�̃�k1−k2�. Integration over k1, k2, etc., is as-
sumed.

To determine the average temperature in disordered po-
rous media, we have to average each term of the equation in
Fig. 1 over the random value �̃. Then, the terms odd on �̃
vanish. As to the rest, we can evaluate them as sums of
paired averages, as it is presented in Fig. 2. See Appendix A
for the details of calculations.

In Fig. 2, the thin straight lines correspond to 0 �Eq.
�7��, the bold straight lines to the total sum  �Eq. �6��, and
the dashed lines to Fourier transforms of the correlation
function,

W̃�k� =� W�r�eikrd3r ,

and the factor �i�q · �q−k�� corresponds to each vertex be-

tween 0�q�, 0�q−k�, and W̃�k�. Integration over the inner
k vectors �i.e., d3k / �2��3� is assumed. The total wave vector
�
k� obeys the conservation law at each vertex. This law

permits addition of diagrams in Fig. 2. The result is

 =
1

��0 − ��q2 − i

, �8�

where

� =
�i

2p�1 − p�
�2��3 � kz

2W̃�k − q�
�0k2 − i


d3k .

The typical value of qi in Eq. �3� is q	1/L→0, 
	�2 /L2

→0, whereas �k�	1/R, where R is the mean pore size. This
allows us to assume �q�� �k�, 
→0, and omit these values in
all the lines except the incoming and outgoing. Then, � be-
comes independent of q and 
. For the cubic symmetry of
the correlation function, �= �1/3��i

2�0
−1p�1− p�

��2��−3�W̃�k�d3k= p�i /3; thus17

�̄ = �i�1 −
4

3
p . �9�

This coincides with the result of Refs. 5 and 6.
The second-order corrections that have not been consid-

ered in Fig. 2 correspond to the diagrams in Fig. 3. To take
into account the first diagram, we have to replace the thin
0�k� line in Fig. 2 with the bold one, i.e., to substitute �k�
for 0�k�. This leads to

� =
�i

2
�1 − p�1 −

10

3
p +

7

3
p2�

and

�̄ � �i�1 −
4

3
p −

1

9
p2 .

FIG. 1. Solution of Eq. �5�.

FIG. 2. Average temperature in the first approximation on p.

FIG. 3. Second-order �p2� corrections to the diagrams of Fig.
2.
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The second diagram yields the tensor correction to the
effective thermal conductivity. It can be written as qiqj�ij,
where

�ij =
�i

4p2�1 − p�2

�2��6�0
3 � k1ik2j�k1 · �k1 + k2���k2 · �k1 + k2��

k1
2k2

2�k1 + k2�2

� W̃�k1�W̃�k2�d3k1d3k2. �10�

The symmetry of this tensor is determined by the symmetry

of the correlation function W̃�k�. Supposing the cylindrical
symmetry, the z axis of which is directed along the normal to

the coating, we can assume W̃�k� to be independent of the
coordinate angles. Integrating with regard to these angles

shows that �ij is the diagonal tensor and �xx=�yy ��zz. For
the spherical symmetry, �xx=�yy =�zz.

In general, the total correction to the effective thermal
conductivity can be presented with the diagram in Fig. 4.
Here, �ij is the sum of the terms of Fig. 2, Fig. 3, and others,
which come from higher orders on porosity. It is important
that �ij is independent of q for R�L; this permits us to
consider �ij =�0−�ij as the effective thermal conductivity of
the porous media.

III. SOME SIMPLE TWO-DIMENSIONAL MODELS

Let us estimate effective thermal conductivity �or, more
precisely, the porosity factor ��p�� of the model two-
dimensional �2D� structures presented in Fig. 5. The struc-
ture in Fig. 5�a� represents a material with spherical pores of
the same size, whereas materials shown in Figs. 5�b� and 5�c�
have elliptical pores �cracks� �with aspect ratio 1:4� of the
same �b� or different �c� orientations with regard to the sub-
strate. It is important that the direction along the longer axis
of the ellipses is particular in Fig. 5�b�; meanwhile, the struc-
tures in Figs. 5�a� and 5�c� have no particular direction.

FIG. 4. General form of correction to the diagrams of Fig. 2.

FIG. 5. �Color online� Two-
dimensional models of pore struc-
tures �left� used in the calculations
and the corresponding correlation
functions vs distance �right�.
Characteristic pore size is used as
the unit of distance. Aspect ratio
of the ellipses in �b� and �c� is 1:4.
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To estimate the effective thermal conductivity using the
formalism of Sec. II, it is necessary to calculate the correla-
tion functions of the structures in Figs. 5�a�–5�c�. Such cal-
culations have been carried out, analyzed,11 and used to es-
timate the bounds of conductivity by Berryman.12 In this
work, we used the files of the structures, Fig. 5, in the bitmap
format. We have calculated the product ��r1���r2�, where
�=0, if the appropriate pixel is black, and �=1, if this pixel
is white. The product has been averaged over an array of
random points r1 �we have used 100 000 points� of the struc-
ture for each r=r1−r2. The correlation functions W of these
structures �more precisely, their projections on the r �along
the plane of substrate� and z �normal to this plane�� are pre-
sented in Fig. 5 on the right from the appropriate structures.

We see that the width of the main peak of the CF of Fig.
5�a� corresponds to the size of pores, whereas additional
equidistant peaks relate to the spacing between them. Simi-
larly, the width of the central peaks of CF of Fig. 5�b� �W�r�
and W�z�� corresponds to the longer and shorter axes of the
ellipses. These values can also be seen in Fig. 5�c� as differ-
ent slopes of the curve for r�1 and 1�r�4; however, for
this structure, both curves W�r� and W�z� coincide.

The correlation function W�r ,z� has been used to calcu-
late the effective thermal conductivity �ij =�0−�ij. In the
first approximation on porosity, the correction is �ij =��ij,

where � is determined by Eq. �8� and W̃�k� is the Fourier
transform of W�r ,z�. Corrections of the second order on po-
rosity ���1� and ��2�� are presented by the first and second
diagrams in Fig. 3, respectively. See also Eqs. �B3�–�B5� of
Appendix B, where the details of calculation are presented.

The porosity of the structures in Fig. 5 is about 15%.
Nevertheless, by changing the number or size of the pores,
we can change the porosity. Figure 6 presents the factor of
porosity � of the thermal conductivity of the structure of
Fig. 5�a� as a function of porosity. The dashed line presents
the result of the approximation �=1−3p /2, which replaces
Eq. �9� in the 2D case.17 We found a good agreement even
for high porosity p�30%.

Figure 7 presents factor of porosity in the directions along
and across the longer axis of the structure from Fig. 5�b�. It is
apparent that the thermal conductivity along the longer axis
exceeds the thermal conductivity across it, and they both are
appreciably distinguished from the approximation �=�i�1
−3p /2�. This is in agreement with Ref. 7. On the contrary,
the thermal conductivity of the disordered crack structure,
Fig. 5�c�, is close to that of Fig. 5�a� and so to the approxi-
mation �=1−3p /2. This follows from Eq. �8� for the corre-

lation function W̃�k� of the cubic symmetry.

IV. THERMAL CONDUCTIVITY OF POROUS YSZ
STRUCTURE

It is impossible to calculate the CF from a single 2D mi-
croscopy image of an arbitrary 3D structure. Nevertheless,
sometimes this can be done using the symmetry of the struc-
ture. It seems reasonable to suppose cylindrical symmetry of
thin coatings with the symmetry axis z normal to the sub-
strate plane, so that all directions in this plane �r� are equal.
Then, any microscopy image of the cut normal to the sub-
strate plane can be used to calculate the CF W�r ,z�.

Figure 8 presents optical micrograph of the air plasma
sprayed YSZ coating and its black-and-white image. To ob-
tain this image from the grayscale picture, we choose a
threshold pixel value, i.e., we assume that the pixel is white
if its value exceeds this threshold value or black otherwise.
The threshold pixel value we choose ensures the pore distri-
bution in Fig. 8�b� close to the initial, Fig. 8�a�. The porosity
p can then be calculated from Fig. 8�b�. The threshold pixel
value could also be obtained if the porosity of the structure
was measured.

The correlation function, which has been obtained from
Fig. 8�b� after averaging over 100 000 random points for
each pair r ,z from the rectangular net, is presented in Fig. 9.
In comparison with the correlation functions from Fig. 5, this
one is very simple, and it does not exhibit any oscillations at
large distances. This is the consequence of disorder of the
real coating shown in Fig. 8, which does not contain pores of

FIG. 6. �Color online� Factor of porosity for the structure in Fig.
5�a�. �=�i��p�. Dashed line corresponds to the approximation �
=1−3p /2.

FIG. 7. �Color online� Factor of porosity for the structures from
Fig. 5. �=�i��p�. Dashed lines correspond to the approximation
�=1− �1+J�p, where J=0.1, J=0.5, and J=0.8 for the upper, cen-
tral, and lower lines, respectively.
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the same shape. We found very small difference between CF
in r and z directions �along and across the film plane�. This
means good applicability of the simple approximation �
=1−4p /3. Indeed, for the coating, Fig. 8, 1−4p /3=0.69,
estimation of the porosity factor ��p� from diagrams of Fig.
2 yields 0.71; meanwhile, corrections coming from each dia-
gram of Fig. 3 are 0.005 and 0.004, respectively.

To estimate the thermal conductivity of the coating, the
porosity factor ��p� should be multiplied by the intrinsic
thermal conductivity �i of YSZ. We used the model of Ref. 6
to estimate �i as the function of temperature. The result is
presented in Fig. 10.

V. DISCUSSION

To introduce the concept of effective thermal conductiv-
ity, we have considered the heat propagation from some in-
finitely removed point origin. This is convenient to deter-
mine the effective thermal conductivity but seems too
artificial for applications. It would be more natural if we
considered a thick layer of porous material assuming the av-
erage temperatures of its sides, T1 and T2, to be different
�T2�T1�. Then, the effective thermal conductivity could be
determined by consideration of heat flux through the layer. It
is not obvious that averaging the temperature or the heat flux
leads to the same result. Nevertheless, such is the case: both
determinations are equivalent.

Indeed, the mean heat flux across the layer is
���r�grad T�=S−1���r��Td�, where S is the lateral area of
the layer; the integration is carried out over some plane �
parallel to this area. Then, the effective thermal conductivity
is

�̄ =
D

T2 − T1
���r�grad T� , �11�

where D is the width of the layer.
This value of the effective thermal conductivity is equal to

that determined in Sec. II. The simplest way to show that is
to evaluate the mean heat flux using the diagrammatic tech-
nique developed there. To do that, we have to multiply Eq.
�6� by ��r�=�0+��r� and kz before averaging. The result is
�̄=�0−�.

The identity of both determinations of thermal conductiv-
ity becomes clear, if we introduce two heat origins of oppo-
site signs �i.e., heat source and sink� far away from the layer

FIG. 8. �a� Optical micrograph of a 500 �m thick YSZ plasma
sprayed coating and �b� its binary image.

FIG. 9. �Color online� Correlation function of the coating of Fig.
8. Only its projections along and across the coating plane are
shown.

FIG. 10. �Color online� Thermal conductivity of the YSZ
plasma sprayed coating shown in Fig. 8. �=�i��p�. We adopt units
where ��1000 °C�=1.
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�i.e., substitute Q���−L , t�−��L , t�� for the right part of Eq.
�1�� and determine the temperatures T1 and T2 from Eq. �3�.
Then, estimation of �̄ either from Eq. �11� or from averaging
of T results in the same value, because inside the layer both
of them obey the same heat-flow equation,

�T̄

�t
− �ij

�2T̄

�xi�xj
= 0.

It seems to us that the disagreement between the factors of
porosity �=1−4p /3 obtained in Ref. 5 and �=1−3p /2 ob-
tained in Ref. 7 is due to different approaches used to calcu-
late the averages. Note that the factor �=1−3p /2 has also
been obtained in Ref. 18, where electric conductivity of po-
rous materials has been investigated. The average electric
conductivity has been estimated in Ref. 18 as �= �j� / �E�,
where �j� is the mean current density and �E� is the mean
electric field. Our result for thermal conductivity Eq. �9� co-
incides with that of Ref. 5.

It should be emphasized that estimation Eq. �9� is inde-
pendent of actual shape of pores; only the symmetry of the
porous structure is important. Indeed, Eq. �9� follows from

Eq. �8� for any correlation function W̃�k� of cubic symmetry;
therefore, it always holds in isotropic porous media of low
porosity. Deviation from this law can be expected either in
strongly anisotropic structures �e.g., in some plasma sprayed
coatings� or in porous materials of high porosity when cor-
rections of Fig. 3 �which are of the second order on porosity�
are significant.

The correlation functions presented in Figs. 5 and 9 have
one important peculiarity: their derivatives at r=0 are non-
zero. This is the consequence of the steplike behavior of the
local thermal conductivity; it is either zero �in the pores� or
constant �i outside them. Among the one-dimensional ran-
dom functions, such behavior is characteristic for the tele-
graph function. This function is equal to either 1 or 0, and its
correlation function is W�x�=exp�−x / l�, where l is the cor-
relation length, i.e., the mean length of the step. Hence, for
qualitative analysis of the porous media, we can accept the
following model functions:

W�r − r�� = e−��x − x��2+�y − y��2+�2�z − z��2/R

for 3D case or

W�r − r�� = e−��x − x��2+�2�z − z��2/R �12�

for 2D case. The dimensionless parameter � determines the
pore anisotropy. In particular, it allows investigation of
spherical pores �if �=1� or cracks directed along �for ��1�
or across �for ��1� the z axis. In a certain sense, � is similar
to the � value, which has been introduced in Ref. 8 to char-
acterize the pore anisotropy. Unlike the commonly used
Gauss correlation function, this one ensures abrupt disconti-
nuity of the thermal conductivity at the pore boundary. The
Fourier transform of Eq. �12� is

W̃�k,qz� =
8�

�R�k2 + qz
2�−2 + R−2�2 for 3D case

and

W̃�k,qz� =
2�

�R�k2 + qz
2�−2 + R−2�3/2 for 2D case, �13�

where k and qz are the components of the wave vector in the
plane of substrate and normal to it, respectively. It is impor-
tant that Eqs. �13� have power, but not exponential, factors
decaying with k, qz. This also distinguishes CF �Eqs. �12�
and �13�� from the Gauss one.

Apparently, Figs. 2 and 3 represent power-series expan-
sion of thermal conductivity as a function of porosity. To
estimate the actual error due to this expansion, assume that
we have a porous structure, where the pores are of the same
small aspect ratio but different orientation �like that in Fig.
5�c��. Let us write the correlation function of such structure
as the sum of two exponents, Eqs. �12�, with different �
parameters: W1 and W2 with �1=� and �2=1/�, respectively.

By substituting W̃1�k1 ,q1�W̃2�k2 ,q2� into Eq. �B4�, we can
find �zz

�2�� p2 /�2, if �→0.19 This means that contribution of
the second diagram of Fig. 3 is of the order of 1, if p2 /�2

	1, or of the order of p, if p /�2	1. The former condition
means total demolition of the structure due to high porosity;
the latter suggests that the second-order diagrams should also
be taken into account. The reason is apparent: even the web
of thin cracks, whose contribution to the porosity is zero, on
the 2D case makes thermal conductivity vanish.

We found that the effect of second-order diagrams �Fig. 3�
is very small. It is about 0.5% of the thermal conductivity for
both model and real structures. This is far less than the dif-
ference between the exact upper and lower bounds of con-
ductivity found in Refs. 11 and 12. Estimations of Refs. 11
and 12 are very useful for the structures of high porosity and
small aspect ratio, if our expansion diverges because of large
p /�.

The approach we have proposed have some advantages
and disadvantages. First, it permits using the microscopy im-
age to determine the thermal conductivity of the particular
specimen. Unlike approach of Ref. 9, it does not allow us to
obtain the microscopical picture of the temperature or heat
flux distribution. However, it allows us to distinguish rather
the time-consuming routine of the image characterization
�calculation of the correlation function� from the problem of
thermal-conductivity estimation. The latter reduces to calcu-
lation of some integrals. Moreover, we can use a few micros-
copy images �obtained with different magnifications� of the
same structure to calculate CF. This could be important to
take into account the pores and cracks of significantly differ-
ent sizes �e.g., globular and interlamellar pores in plasma
sprayed YSZ coatings�, which could be of equal importance
for thermal conductivity. This has been shown numerically
for the model two-scale structures.20

The effective thermal conductivity of coatings can be
written as �̄=�i��p�. The porosity factor ��p� depends on
total porosity, the shape of pores, and their size distribution.
All these factors are included into the correlation function.
However, the ��p� factor is independent of the pore size;
namely, the simultaneous increase or decrease of sizes of all
pores and distances between them, which does not change
the total porosity, has no effect on ��p�. The possible depen-
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dence of �̄ on the pore size, if being observed in experi-
ments, is due to the radiation component of thermal conduc-
tivity, which has not been considered in this study.

The model we have considered here concerns the pores,
whose size considerably exceeds the mean free path of
phonons �or another excitation that is responsible for the heat
transport�; only under this condition does the heat-flow equa-
tion �4� hold. It seems possible that small size pores can also
be important for thermal conductivity. This also concerns
other small size structure defects, such as impurities and
grain boundaries that result in the phonon scattering. In par-
ticular, this concerns phonon scattering at the grains of dif-
ferent polymorphic compositions that are characteristic for
YSZ. Perhaps, the effect of such defects depends on the ma-
terial and technology of the structure preparation. The au-
thors of Ref. 6 showed that the phonon scattering at grain
boundaries is not significant in their experiments on YSZ. On
the contrary, the authors of Refs. 14 and 21 have observed
essential dependence of thermal conductivity on the grain
size for the same material. It seems that the disagreement
between the calculated and measured values of thermal con-
ductivity of plasma sprayed YSZ observed in the paper9 can
be explained by the influence of the grain boundaries. To
take this factor into consideration, we have to replace the
intrinsic thermal conductivity �i with the thermal conductiv-
ity of the dense material where the phonon scattering at the
grain boundaries already had been taken into account. This
can be done either by the Kapitza model21 or by the model of
Ref. 22. It has been shown3 that both models yield the same
result.

In conclusion, we proposed the series expansion of the
expression for effective thermal conductivity of the porous
media in powers of porosity p. We found that the actual
parameter of this expansion is p /�, where � is the aspect
ratio. We showed that the coefficients of this expansion can
be estimated from the microscopy image of the porous me-
dia.
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APPENDIX A: ESTIMATION OF THE EFFECTIVE
THERMAL CONDUCTIVITY BY SUMMATION

OF DIAGRAMS

The diagram of the second order with respect to �̃ from
Fig. 1 corresponds to the expression

2�q� =
0�q�
�2��6 � �k1q�0�k1��̃�k1 − q�

� �k2k1�0�k2��̃�k2 − k1�d3k1d3k2.

This value should be averaged over �̃. Note that for the
homogeneous, in average, media,

�̃�k��̃�k�� = �i
2p�1 − p� � W�r − r��eik�r−r��+i�k+k��rd3rd3r�

= �2��3�i
2p�1 − p�W̃�k���k + k�� .

Therefore,

2�q� =
�i

20
2�q�

�2��3 � ��q − k� · q�2W̃�k�0�q − k�d3k .

This expression corresponds to the second diagram in the
series in Fig. 2. The third diagram of this sum follows from
the fourth-order diagram of the series in Fig. 1,

4�q� =
0�q�
�2��12 � �k1q��k2k1��k3k2��k4k3�0�k1�

� 0�k2�0�k3�0�k4��̃�k1 − q��̃�k2 − k1�

� �̃�k3 − k2��̃�k4 − k3�d3k1d3k2d3k3d3k4,

and the first term �second line� of the average

�̃�k1 − q��̃�k2 − k1��̃�k3 − k2��̃�k4 − k3�

= �̃�k1 − q��̃�k2 − k1� · �̃�k3 − k2��̃�k4 − k3�

+ �̃�k1 − q��̃�k4 − k3� · �̃�k2 − k1��̃�k3 − k2�

+ �̃�k1 − q��̃�k3 − k2� · �̃�k2 − k1��̃�k4 − k3� .

�A1�

Two other summands of Eq. �A1� are represented by the first
and second diagrams in Fig. 3.

The summation of the series, Fig. 2, leads to the calcula-
tion of the loop

q2� =
�i

2p�1 − p�
�2��3 � �q · �q − k��2W̃�k�0�q − k�d3k

and summation of the geometric progression. Namely, the
equation represented by Fig. 2 is

�q� = 0�q� + 0�q��q2���q� ,

i.e., �q�−1=0�q�−1−q2�. This results in Eq. �8�.
To increase the accuracy to the second order on porosity

�p2�, we have to add the diagrams in Fig. 3 to the loop �.
This leads to the tensor correction, Eq. �10�, to the loop, so
that Eq. �8� accepts the form

 =
1

��0�ij − �ij�qiqj − i

. �A2�

The corrections higher than p2 have not been considered
in this paper; nevertheless, this could be done with the dia-
grammatic technique. It is important that in all these correc-
tions, we can assume q→0, so that �ij is independent of q.
From comparison of Eq. �A2� with Eq. �2�, it follows that
�ij =�0�ij −�ij is the effective thermal conductivity.
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APPENDIX B: SOME FORMULAS USED IN THE
CALCULATION

The Fourier transform of the correlation function

W̃�k� =� W�r�eikrd3r ,

for the 3D case of cylindrical symmetry can be simplified as

W̃�k,qz� = 4��
0

� �
0

�

W��,z�J0�k��cos �qzz��d�dz .

�B1�

For the spherical symmetry,

W̃�k� =
4�

k
�

0

�

W�r�r sin �kr�dr . �B2�

Equation �B2� also follows from Eq. �B1� after the substitu-
tion r=��2+z2 for z and integration on �.

The integral, Eq. �8�, for the 3D case of cylindrical sym-
metry reads

� =
�ip

2�2�
0

� �
0

� kqz
2

k2 + qz
2W̃�k,qz�dkdqz. �B3�

For the 2D case �arbitrary symmetry�,

� =
�ip

�2 �
0

� �
0

� kx
2

kx
2 + ky

2W̃�kx,ky�dkxdky .

The first and second diagrams of Fig. 3 can be evaluated
using the cylindrical symmetry:

�zz
�1� =

�ip
2

4�2��4�1 − p� � k1k2q1
2

�k1
2 + q1

2�2 Izz
�1�W̃�k1,q1�

� W̃�k2,q2�dk1dk2dq1dq2,

�zz
�2� =

�ip
2

4�2��4�1 − p� � k1k2q1q2

�k1
2 + q1

2��k2
2 + q2

2�
Izz

�2�

� W̃�k1,q1�W̃�k2,q2�dk1dk2dq1dq2,

where

Izz
�1� = 4a1 − A +

�a1 − a2�2

�A2 − B2
,

Izz
�2� = A −

�a1 − a2�2

�A2 − B2
,

a1 = k1
2 + q1

2 + q1q2, a2 = k2
2 + q2

2 + q1q2,

A = a1 + a2, B = 2k1k2. �B4�

In the 2D case of any symmetry, the diagrams, Fig. 3, read

�zz
�1� =

�ip
2

�2��4�1 − p��−�

+� q1
2�a1 + k1k2�2

�k1
2 + q1

2�2�A + B�

�W̃�k1,q1�W̃�k2,q2�dk1dk2dq1dq2,

�xx
�1� =

�ip
2

�2��4�1 − p��−�

+� k1
2�a1 + k1k2�2

�k1
2 + q1

2�2�A + B�

�W̃�k1,q1�W̃�k2,q2�dk1dk2dq1dq2,

�zz
�2� =

�ip
2

�2��4�1 − p��−�

+� q1q2�a1 + k1k2��a2 + k1k2�
�k1

2 + q1
2��k2

2 + q2
2��A + B�

�W̃�k1,q1�W̃�k2,q2�dk1dk2dq1dq2,

�xx
�2� =

�ip
2

�2��4�1 − p��−�

+� k1k2�a1 + k1k2��a2 + k1k2�
�k1

2 + q1
2��k2

2 + q2
2��A + B�

�W̃�k1,q1�W̃�k2,q2�dk1dk2dq1dq2. �B5�
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