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Boundary multifractality of electronic wave functions is studied analytically and numerically for the power-
law random banded matrix �PRBM� model, describing a critical one-dimensional system with long-range
hopping. The peculiarity of the Anderson localization transition in this model is the existence of a line of fixed
points describing the critical system in the bulk. We demonstrate that the boundary critical theory of the PRBM
model is not uniquely determined by the bulk properties. Instead, the boundary criticality is controlled by an
additional parameter characterizing the hopping amplitudes of particles reflected by the boundary.
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I. INTRODUCTION

Although almost half a century has passed after Ander-
son’s seminal paper,1 the properties of disordered systems at
Anderson localization transitions remain a subject of active
current research. This interest is additionally motivated by
the understanding that, besides the “conventional” Anderson
transition in d�2 dimensions, disordered fermions in two
dimensions �2D� possess a rich variety of critical points gov-
erning quantum phase transitions in these systems.

One of the striking peculiarities of the Anderson transi-
tions is the multifractality of the electronic wave functions,2,3

see Refs. 4 and 5 for recent reviews. Specifically, the scaling
of moments of the wave functions with the system size L is
characterized by a continuum of independent critical expo-
nents �q,

Ld����r��2q� � L−�q, �q � d�q − 1� + �q, �1�

where �¯� denotes the disorder average. In the field-
theoretical ��-model� language,2 �q are scaling dimensions of
higher-order operators describing the moments of the local
density of states. Note that one often introduces fractal di-
mensions Dq via �q=Dq�q−1�. In a metal Dq=d, while at a
critical point Dq is a nontrivial function of q, implying the
multifractality of wave functions. Nonvanishing anomalous
dimensions �q��q−1��Dq−d� distinguish a critical point
from a metallic phase and determine the scaling of wave
function correlations. Among them, �2�0 plays the most
prominent role, governing the spatial correlations of the in-
tensity ���2,

L2d���2�r��2�r���� � ��r − r��/L��2. �2�

This equation, which in technical terms results from an op-
erator product expansion of the field theory,6 can be obtained
from �1� by using the fact that the wave function amplitudes
become essentially uncorrelated at �r−r���L. Scaling be-
havior of higher order spatial correlations,
���2q1�r1��2q2�r2�¯�2qn�rn���, can be found in a similar way.
Above, the points ri were assumed to lie in the bulk of a
critical system. In this case we denote the multifractal expo-

nents by �q
b, �q

b, etc. The multifractality of wave functions
has been studied analytically and numerically for a variety of
systems: Anderson transition in d=2+�, three, and four
dimensions,2,7,8 as well as weak multifractality,9 Dirac fermi-
ons in random gauge fields,10 symplectic-class Anderson
transition,11 integer quantum Hall12 and spin quantum Hall13

transitions in two dimensions, and power-law random
banded matrices.14

Recently, the concept of the wave function multifractality
was extended15 to the surface of a system at the critical point
of an Anderson transition. It was shown that the fluctuations
of critical wave functions at the surface are characterized by
a new set of exponent �q

s �or, equivalently, anomalous expo-
nents �q

s�, which are in general independent from their bulk
counterparts. This boundary critical behavior was explicitly
studied, analytically as well as numerically, for the 2D spin
quantum Hall transition15,16 and a 2D weakly localized
metal15 and, most recently, for the Anderson transition in a
2D system with spin-orbit coupling.17

In the present paper, we analyze the boundary criticality
in the framework of the power-law random banded matrix
�PRBM� model.5,14,18 The model is defined18 as the ensemble

of random Hermitian matrices Ĥ �real for �=1 or complex
for �=2�. The matrix elements Hij are independently distrib-
uted Gaussian variables with zero mean �Hij�=0 and the
variance

��Hij�2� = a2��i − j�� , �3�

where a�r� is given by

a2�r� =
1

1 + �r/b�2	 . �4�

At 	=1 the model undergoes an Anderson transition from
the localized �	�1� to the delocalized �	�1� phase. We
concentrate below on the critical value 	=1, when a�r� falls
down as a�r�
1/r at r�b.

In a straightforward interpretation, the PRBM model de-
scribes a 1D sample with random long-range hopping, the
hopping amplitude decaying as 1/r	 with the distance. Also,
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such an ensemble arises as an effective description in a num-
ber of physical contexts �see Ref. 14 for relevant references�.
At 	=1 the PRBM model is critical for arbitrary values of b
and shows all the key features of an Anderson critical point,
including multifractality of eigenfunctions and nontrivial
spectral compressibility.5,18 The existence of the parameter b
which labels critical points is a distinct feature of the PRBM
model: Eq. �3� defines a whole family of critical theories
parametrized by b. The limit b�1 represents a regime of
weak multifractality, analogous to the conventional Anderson
transition in d=2+� with ��1. This limit allows for a sys-
tematic analytical treatment via the mapping onto a superma-
trix �-model and the weak-coupling expansion.5,14,18 The op-
posite limit b�1 is characterized by very strongly
fluctuating eigenfunctions, similarly to the Anderson transi-
tion in d�1, where the transition takes place in the strong
disorder �strong coupling in the field-theoretical language�
regime. It is also accessible to an analytical treatment using a
real-space renormalization-group �RG� method14 introduced
earlier for related models in Ref. 19.

In addition to the feasibility of the systematic analytical
treatment of both the weak-coupling and strong-coupling re-
gimes, the PRBM model is very well suited for direct nu-
merical simulations in a broad range of couplings. For these
reasons, it has attracted a considerable interest in the last few
years as a model for the investigation of various properties of
the Anderson critical point.14,20 We thus employ the PRBM
model for the analysis of the boundary multifractality in this
work. The existence of a line of fixed points describing the
critical system in the bulk makes this problem particularly
interesting. We will demonstrate that the boundary critical
theory of the PRBM model is not uniquely determined by the
bulk properties. Instead, the boundary criticality is controlled
by an additional parameter characterizing the hopping ampli-
tudes of particles reflected by the boundary.

The structure of the paper is as follows. In Sec. II we
formulate the model. Section III is devoted to the analytical
study of the boundary multifractal spectrum, with the two
limits b�1 and b�1 considered in Secs. III A and III B,
respectively. The results of numerical simulations are pre-
sented in Sec. IV. Section V summarizes our findings.

II. MODEL

We consider now the critical PRBM model with a bound-
ary at i=0, which means that the matrix element Hij is zero
whenever one of the indices is negative. The important point
is that, for a given value of the bulk parameter b, the imple-
mentation of the boundary is not unique, and that this degree
of freedom will affect the boundary criticality. Specifically,
we should specify what happens with a particle which “at-
tempts to hop” from a site i0 to a site j�0, which is not
allowed due to the boundary. One possibility is that such
hops are simply discarded, so that the matrix element vari-
ance is simply given by ��Hij�2�= �1+ �i− j�2 /b2	−1 for i , j
0. More generally, the particle may be reflected by the
boundary with certain probability p and “land” on the site
−j�0. This leads us to the following formulation of the
model:

��Hij�2� = Jij , �5�

Jij =
1

1 + �i − j�2/b2 +
p

1 + �i + j�2/b2 . �6�

While the above probability interpretation restricts p to the
interval �0,1	, the model is defined for all p in the range
−1� p��. The newly introduced parameter p is immaterial
in the bulk, where i , j� �i− j� and the second term in Eq. �6�
can be neglected. Therefore, the bulk exponents �q

b depend
on b only �and not on p�, and their analysis performed in
Ref. 14 remains applicable without changes. On the other
hand, as we show below by both analytical and numerical
means, the surface exponents �q

s are a function of two param-
eters, b and p.

Equation �6� describes a semi-infinite system with one
boundary at i=0. For a finite system of a length L �implying
that the relevant coordinates are restricted to 0� i , j�L� an-
other boundary term, p� / �1+ �i+ j−2L�2 /b2	, is to be in-
cluded on the right-hand side of Eq. �6�. In general, the pa-
rameter p� of this term may be different from p. This term,
however, will not affect the boundary criticality at the i=0
boundary, so we discard it below.

III. BOUNDARY MUTLIFRACTALITY: ANALYTICAL
METHODS

A. bš1

The regime of weak criticality, b�1, can be studied via a
mapping onto the supermatrix �-model,5,14,18 in analogy with
the conventional random banded matrix model.21 The
�-model action has the form

S�Q	 =
�

4
Str
����2 �

i,j=0

�

JijQiQj − i����
i=0

�

Qi�� , �7�

where Qr is a 4�4 ��=2� or 8�8 ��=1� supermatrix field
constrained by Qr

2=1, �=diag�1 ,−1�, and Str denotes the
supertrace.22 Furthermore, Jij are given by Eq. �6�, � is the
frequency, and � is the density of states given by the Wigner
semicircle law

��E� =
1

2�2b
�4�b − E2�1/2, �E� � 2�b . �8�

For definiteness, we will restrict ourselves to the band center,
E=0, below.

To calculate the multifractal spectrum to the leading order
in 1/b�1, we will need the quadratic form of the action �7�
expressed in terms of independent coordinates. Parametriz-
ing the field Q �constrained to Q2=1� in the usual way,

Qi = ��1 + Wi +
Wi

2

2
+ ¯ � , �9�

we obtain the action to the second order in the W fields,
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S�W	 =
���

4
Str �

i,j=0

�

Wi�2���J0
�i��ij − Jij� − i��ij	Wj ,

�10�

where

J0
�i� = �

k=0

�

Jik. �11�

The equation of motion for this action reads �after the Fou-
rier transformation from the frequency into the time domain�

�Wi�t�
�t

+ ���
j=0

�

��ijJ0
�i� − Jij	Wj�t� = 0. �12�

This equation is the analog of the diffusion equation for a
metallic system.

The �-model action allows us to calculate the moments
���r

2�q� at a given point r. On the perturbative level, the result
reads5,14,18,21

���r
2�q� = ���r

2�q�RMT
1 +
1

�
q�q − 1��rr� . �13�

Here the factor ���r
2�q�RMT is the random-matrix-theory result

equal to �2q−1�!!L−q for �=1 and q!L−q for �=2. The sec-
ond term in the square brackets in Eq. �13�, which constitutes
the leading perturbative correction, is governed by the return
probability �rr to the point r, i.e., the diagonal matrix ele-
ment of the generalized diffusion propagator �rr�. The latter
is obtained by the inversion of the kinetic operator of Eqs.
�10� and �12�,

���
j=0

�

��ijJ0
�i� − Jij	� jm = �im − L−1. �14�

�The “diffusion” operator has a zero mode related to the
particle conservation. The term L−1 on the right-hand side of
Eq. �14� ensures that the inversion is taken on the subspace
of nonzero modes.	 In the bulk case, the inversion is easily
performed via the Fourier transform,

�rr� → �̃�k� =
t

8�k�
, �k� � b−1, �15�

with t−1= �
4 ����2b2, i.e., t=4/b at the band center. The 1/ �k�

behavior of the propagator should be contrasted to its 1 /k2

scaling for a conventional metallic �diffusive� system. This
implies that the kinetics governed by Eq. �12� is superdiffu-
sive, also known as Lévy flights.23 Substitution of �15� in Eq.
�13� yields a logarithmic correction to the moments of the
wave function amplitude,

���r
2�q� = ���r

2�q�RMT
1 +
q�q − 1�
2��b

ln
L

b
� . �16�

Equation �16� is valid as long as the relative correction is
small. The logarithmic divergence of the return probability in
the limit L→�, which is a signature of criticality, makes the
perturbative calculation insufficient for large enough L. The
problem can be solved then by using the renormalization

group �RG�,5,14,18 which leads to the exponentiation of the
perturbative correction in Eq. �16�. This results in Eq. �1�
with the bulk multifractal exponents

�q
b = �q − 1��1 −

q

2��b
� . �17�

The first term �unity� in the second factor in Eq. �17� corre-
sponds to the normal �metallic� scaling, the second one de-
termines the anomalous exponents

�q
b =

q�1 − q�
2��b

. �18�

At the boundary, the behavior is qualitatively the same: the
return probability �rr increases logarithmically with the sys-
tem size L, in view of criticality. However, as we show be-
low, the corresponding prefactor �and thus the prefactor in
front of the second term in square brackets in Eq. �16�	 is
different. After the application of the RG this prefactor
emerges in the anomalous exponent,

�q
s =

q�1 − q�
2��b

Rp � �q
bRp. �19�

In the presence of a boundary the system is not translation-
ally invariant anymore, which poses an obstacle for an ana-
lytical calculation of the return probability �rr. While for
Lévy-flight models with absorbing boundary �that is obtained
from our Eq. �12� with p=0 by a replacement of J0

�i� with its
bulk value J0	 an analytical progress can be achieved via the
Wiener-Hopf method,24 it is not applicable in the present
case, since the kernel of Eq. �12� is not a function of i− j
only. We thus proceeded by solving the classical evolution
equation �12� numerically with the initial condition Wi�0�
=�ir. The value Wr�t� of the solution at the point r �i.e., the
probability to find the particle at the initial point� decays
with the time as 1/ t, so that the integral �dtWr�t� yields the
logarithmically divergent return probability discussed above.
Extracting the corresponding prefactor, we find the anoma-
lous exponent,

�q

q�1 − q�
= � 1

�
tWr�t��

t→�

. �20�

Note that the limit of the large system size L→� should be
taken in Eq. �20� before t→�, so that the particle does not
reach the boundary for r in the bulk �or, for r at the bound-
ary, does not reach the opposite boundary�.

We have checked that the numerical implementation of
Eqs. �20� and �12� reproduces the analytical result �18� in the
bulk. We then proceeded with numerical evaluation of the
surface multifractal exponents �q

s . For this purpose, we have
discretized the time variable in Eq. �12� with a step �t
=1/2. With the parameters ��=1/�, b=10, L=10 000, and
t=500, the product tWr�t� yields its required asymptotic
value with the accuracy of the order of 2%. The results for
the corresponding prefactor Rp, as defined in Eq. �19�, are
shown in Fig. 1 for several values of p between 0 and 3. It is
seen that the boundary exponents not only differ from their
bulk counterparts but also depend on p.
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For the particular case of the reflection probability p=1
we can solve the evolution equation �12� and find �q

s analyti-
cally. Indeed, the corresponding equation can be obtained
from its bulk counterpart �defined on the whole axis, −�
� i��� by “folding the system” on the semiaxis i�0 ac-
cording to Wi�t�+W−i�t�→Wi�t�, cf. Ref. 25. This clearly
leads to a doubling of the return probability, so that

R1 = 2, �21�

in full agreement with the numerical solution of the evo-
lution equation.

B. b™1

In the regime of small b the eigenstates are very sparse. In
this situation, the problem can be studied by a real-space RG
method that was developed in Ref. 19 for related models and
in Ref. 14 for the PRBM model. Within this approach, one
starts from the diagonal part of the Hamiltonian and then
consecutively includes into consideration nondiagonal matrix
elements Hij with increasing distance �= �i− j�. The central
idea is that only rare events of resonances between pairs of
remote states are important, and that there is an exponential
hierarchy of scales at which any given state finds a resonance
partner, ln �1�b−1, ln �2�b−2 , . . .. This allows one to formu-
late RG equations for evolution of quantities of interest with
the “RG time” t=ln �. We refer the reader for technical de-
tails of the derivation to Ref. 14 where the evolution equa-
tion of the distribution f�Pq� of the inverse participation ra-
tios, Pq=�r��r

2�q, as well as of the energy level correlation
function, was derived. In the present case, we are interested
in the statistics of the local quantity, the wave function in-
tensity ��r

2� at a certain point r. Assuming first that r is in the

bulk and generalizing the derivation of Ref. 14, we get the
evolution equation for the corresponding distribution func-
tion f�y���r

2 � �,

�f�y,��
� ln �

=
2b

�
�

0

�/2 d�

sin2 � cos2 �
�

−�

�

dy�f�y�,�����y

− y� cos2 �� + ��y − y� sin2 �� − ��y − y�� − ��y�	 .

�22�

Equation �22� is written for �=1; in the case of �=2 one
should make a replacement b→ �� /22�b. The physical
meaning of Eq. �22� is rather transparent: its right-hand side
is a “collision integral” describing a resonant mixture of two
states with the intensities y� and 0 at the point r, leading to
formation of superposition states with the intensities
y� cos2 � and y� sin2 �. Multiplying Eq. �22� by yq and inte-
grating over y, we get the evolution equation for the mo-
ments �yq�,

��yq�
� ln �

= − 2bT�q��yq� , �23�

where

T�q� =
1

�
�

0

�/2 d�

sin2 � cos2 �
�1 − cos2q � − sin2q ��

=
1

22q−3

��2q − 1�
��q���q − 1�

. �24�

The RG should be run until � reaches the system size L.
Thus, the bulk multifractal exponents are equal to

�q
b = 2bT�q� , �25�

in agreement with Ref. 14.
How will the evolution equation �22� be modified if the

point r is located at the boundary? First, the factor 2 on the
right-hand side of �22� will be absent. Indeed, this factor
originated from the probability to encounter a resonance. In
the bulk, the resonance partner can be found either to the
left-hand side or to the right-hand side, thus the factor of 2.
For a state at the boundary only one of these possibilities
remains, so this factor is absent. Second, one should now
take into account also the second term in the variance Jij of
the matrix element Hij, Eq. �6�. In view of the hierarchy of
resonances described above, the relevant matrix elements
will always connect two points, one of which is much closer
to the boundary than the other �say, i� j�. In this situation,
the two terms in �6� become equivalent �up to the prefactor p
in the second term� and can be combined,

Jij �
�1 + p�b2

j2 , i � j . �26�

Therefore, the effect of the second term amounts to the res-
caling b→ �1+ p�1/2b. Combining both the effects, we get the
boundary multifractal exponents,

FIG. 1. The ratio Rp=�q
s�b , p� /�q

b�b� of the surface and bulk
anomalous exponents for large b, as a function of the reflection
parameter p. Diamonds represent the results of the �-model analy-
sis with a numerical solution of the corresponding classical evolu-
tion equation, as described in Sec. III A. Circles represent a direct
computer simulation of the PRBM model, Eqs. �5� and �6�, see Sec.
IV, with b=8. The ratio Rp has been evaluated for the range 0�q
�1, where the numerical accuracy of the anomalous exponents is
the best. Within this interval we find that Rp is q-independent
�within numerical errors� in agreement with Eq. �19�.
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�q
s = �1 + p�1/2bT�q� =

�1 + p�1/2

2
�q

b. �27�

The above real-space RG method works for q�1/2, where
the multifractal exponent �q is small.26 The results can, how-
ever be extended to the range of q�1/2 by using the re-
cently found symmetry relation between the multifractal
exponents,27

�q = �1−q. �28�

Independently of whether q is larger or smaller than 1/2, the
obtained relation between the surface and the bulk multifrac-
tal spectra can be formulated in the following way:

�q
s�b,p� = �q

b�b → b�1 + p�1/2/2	 . �29�

IV. BOUNDARY MULTIFRACTALITY: NUMERICAL
SIMULATIONS

In this section we present the results for the multifractality
spectra obtained by direct numerical simulations of the
PRBM model, Eqs. �5� and �6�, with �=1. The model has
been implemented with two boundaries, each one having the
same boundary parameter p. Using standard diagonalization
routines, systems with sizes L=128, 256, 512, 1024, and
4096 sites have been studied with ensembles comprising of
107 �L=128, 3�108 wave functions� to 5000 �L=4096, 5
�106 wave functions� disorder configurations. The multi-
fractal analysis has been performed with intensities ��r

2� av-
eraged �coarse grained� over blocks of four neighboring sites
in order to access negative q values, q�−2. For the analysis
of the surface multifractal exponents, only the four sites clos-
est to boundaries have been taken into account.

Figure 2 illustrates nicely our main findings. We show
there the dependence of the anomalous dimension �2�D2
−1 on b in the bulk and at the boundary, for three different
values of the reflection parameter p. It is seen, first of all,
that the bulk exponent �2

b does not depend on p, in agree-
ment with the theory. Second, the boundary exponent �2

s is
different from the bulk one. Third, the boundary exponent is
not determined by b only, but rather depends on the bound-
ary parameter p as well. The lower panel of Fig. 2 demon-
strates the agreement between the numerical results and the
analytical asymptotics of small and large b.

Having discussed the b-dependence of the fractal expo-
nent with fixed q �equal to 2� shown in Fig. 2, we turn to Fig.
3, where the whole multifractal spectra �q are shown for
fixed large values of b. Specifically, the anomalous dimen-
sions �q

s and �q
b are presented for b=2, 4, and 8, with the

reflection parameter chosen to be p=1. For all curves the
q-dependence is approximately parabolic, as predicted by the
large-b theory, Eqs. �18� and �19�, with the prefactor in-
versely proportional to b. To clearly demonstrate this, we
plot in the lower two panels the exponents �q divided by the
corresponding analytical results of the large-b limit. While
for moderately large b the ratio shows some curvature, the
latter disappears with increasing b and the ratio approaches
unity, thus demonstrating the full agreement between the nu-
merical simulations and the analytical predictions. It is also

seen in Fig. 3 that the bulk multifractality spectrum for b
=4 and the surface spectrum for b=8 are almost identical, in
agreement with Eq. �21�. The same is true for the relation
between the bulk spectrum for b=2 and the surface spectrum
for b=4.

FIG. 2. Upper panel: Anomalous exponent �2�D2−1 as a
function of b from numerical simulations in the bulk and at the
boundary for the reflection parameter p=0 and 1. The inset shows
data for p=3 compared to the p=0 bulk values. Lower panel: Sur-
face and bulk data for p=0 compared with analytical results for
small and large b �using R0=2.78�, Eqs. �18�, �19�, �25�, and �27�.

FIG. 3. Upper panel: Boundary and bulk multifractal spectra, �q
s

and �q
b, at b=2, 4, and 8 for the reflection parameter p=1. In ac-

cordance with Eq. �21�, the surface multifractality spectrum is en-
hanced by a factor close to 2 compared to the bulk. Middle panel:
Surface spectrum divided by the analytical large-b result, Eq. �19�.
The dashed line represents the analytical result for b�1. With in-
creasing b, the numerical data nicely converges towards the analyti-
cal result. Lower panel: Analogous plot for the bulk spectrum, Eq.
�18�. The error estimate from the finite size extrapolation is 3%.
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We have further calculated the ratio of the large-b surface
and bulk anomalous dimensions, Rp=�q

s /�q
b, for several val-

ues of the reflection parameter, p=0, 1, and 3. As shown in
Fig. 1, the results are in good agreement with the �-model
predictions for Rp obtained in Sec. III A.

In Fig. 4 the surface and bulk multifractal spectra are
shown for the case of small b. While the spectra are strongly
nonparabolic in this limit, they clearly exhibit the symmetry
q→1−q, Eq. �28�. The data are in good agreement with the
RG results of Sec. III B. In particular, the surface spectrum
for p=3 is essentially identical to the bulk spectrum, as pre-
dicted by Eq. �29�. In the inset, the surface and bulk multi-
fractality spectra for p=0 are compared with the analytical
asymptotics, Eqs. �25� and �27�, supplemented by the sym-
metry relation �28�. Again, a very good agreement is seen,

except for a vicinity of q=1/2, where Eqs. �25� and �27�
break down.26

V. CONCLUSIONS

In summary, we have studied the boundary multifractality
of wave functions in the PRBM model describing a critical
1D system with long-range hopping. Our findings strongly
corroborate the ubiquity of the notion of boundary mutlifrac-
tality �recently introduced in Ref. 15� in the context of dis-
ordered electronic systems at criticality. We have demon-
strated, both analytically and numerically, that the surface
multifractal exponents �q

s�b , p� are not only different from
their bulk counterparts, �q

b�b�, but also depend on an addi-
tional parameter p characterizing the reflection of the particle
at the boundary. This peculiarity of the PRBM model is in-
timately related to the existence of the line of fixed points
�labelled by b� in the bulk model. Indeed, the freedom in the
choice of the amplitude of the boundary “hopping with re-
flection” term is of the same origin as the freedom in the
amplitude of the power-law hopping in the bulk.

We close on a somewhat speculative note. The existence
of a truly marginal coupling �implying a line of fixed points�
is not unique for the PRBM model. In particular, the 2D
Dirac fermions in a random vector potential10 share this fea-
ture. Furthermore, it was conjectured recently28,29 that the
quantum Hall transition might be described by a particular
point on a line of fixed points in a related model. Based on
our results, it is natural to ask whether the emergence of an
additional parameter p governing the boundary criticality is a
general property of critical theories with a truly marginal
coupling. The work in this direction is currently underway.30
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