
Multistate modified embedded atom method

M. I. Baskes,* S. G. Srinivasan, S. M. Valone, and R. G. Hoagland
Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

�Received 6 July 2006; revised manuscript received 6 October 2006; published 27 March 2007�

A multireference state formalism for determining the functions for the modified embedded atom method
�MEAM� is developed. This formalism eliminates almost all of the prior arbitrary choices in the MEAM
function determination and replaces it with first-principles calculations of the MEAM electron densities, em-
bedding energy, pair potential, and angular screening functions. The formalism accepts any level of first-
principles information and is applicable to all elements. It may be considered as a physically based interpola-
tion of the first-principles data for systems that fall within the range covered by that data. The critical addition
of multiple reference states includes the energy/volume relationship for those reference structures as well as
reference paths connecting the reference structures. The formalism is applied to Cu as a model material.
Extensive predictions of the model are made and compared to additional first-principles calculations, results of
two literature EAM potentials, and experiment. Our model, which uses as input only the first-principles
database, represents the first-principles calculations extremely well �better than the EAM calculations�. Fur-
thermore, it agrees with experiments almost as well as EAM models, derived from a combination of first-
principles calculations and experiments.
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I. INTRODUCTION

High fidelity atomistic simulations are predicated upon
the availability of a computationally efficient and accurate
description of interatomic interactions. Over two decades
ago Daw and Baskes1,2 introduced the embedded atom
method �EAM� as a superior alternative to central-body pair
potential interactions. Since then, EAM and EAM-like meth-
ods such as the glue model3 and N-body potentials4 have
become the mainstay of semi-empirical atomistic calcula-
tions. Although predictions using these methods have gener-
ally been quite good, both qualitatively and quantitatively
superior to the early pair potential calculations, unfortunately
these methods suffer from a major deficiency in that the
theory leads to non-unique potential functions. The literature
is now replete with EAM-type functions, each predicting
slightly different material properties and often yielding only
qualitative results. Therefore, for computational materials
science to become a predictive method of materials selection,
we need to develop more reliable interatomic potentials.

The purpose of a semi-empirical atomistic model is to
predict the bond energy between two atoms. Four critical
factors enter into the calculation of the bond energy. The
most important factor is the bond distance. This factor was
captured by early pair interaction models. Second in impor-
tance is the local coordination. This concept is embodied in
the EAM. Third is the variation in bond energy with highly
symmetric local arrangement of atoms. The critical effect
here is the angular dependence of the electron density, which
manifests itself in directional bonding and bond-bending
forces. The modified EAM �MEAM� was developed to
model this effect.5–7 Finally, the bond energy depends on
local defects or large strains. Transformation paths that
change the local coordination capture this behavior. These
four themes, bond length, coordination, symmetric local ar-
rangement, and transformations and deformations will be
more fully developed below.

Central to the EAM is the connection to a reference struc-
ture. Traditional models previous to the inception of the
EAM typically used equilibrium properties to determine the
model parameters, e.g., lattice constant and cohesive energy
as used in the Lennard-Jones model.8 In the EAM, the refer-
ence structure was chosen to extend these properties to non-
equilibrium conditions. Specifically the energy/volume rela-
tionship for a specific crystal structure �usually the ground
state� was reproduced exactly by construction. At this time
the so-called universal equation of state �UEOS� �Ref. 9� had
been developed. The UEOS was a simple way to obtain the
energy/volume relationship using the experimental equilib-
rium lattice constant, cohesive energy, and bulk modulus.
The use of the UEOS facilitates the correct bond energy–
bond length relationship for the chosen reference state.

Over this same period of time, increasing computing
power and development of different algorithms have permit-
ted first-principles calculations to evolve into a tractable and
reasonably accurate method for determining the energetics of
various simple atomic configurations. The accuracy of first-
principles calculations is approaching that needed for the
prediction of chemical reactivity and material properties. Un-
fortunately, due to the large computational cost of these cal-
culations, properties other than very simple ones are inacces-
sible. For example, the 0 K lattice constants and elastic
constants for high-symmetry crystal structures can be readily
calculated using first-principles methods, but it is usually not
possible to calculate directly their temperature dependence or
the free energies of different phases. Only by using addi-
tional, less accurate, models are such quantities routinely cal-
culated.

Nevertheless, the accuracy of first-principles calculations
for these high-symmetry systems now opens up an opportu-
nity in the area of semi-empirical potentials. We now can use
not only the energy/volume relationship derived from experi-
ment for crystal structures that occur in nature, but also the
energy/volume relationships for other crystal structures that
do not exist in nature. The use of energy/volume relation-
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ships for structures of different coordination and local envi-
ronment allows us to capture the second and third themes
discussed above. The use of multiple reference structures to
develop EAM functions was used by Laskowski.10

Of course, complicated thermodynamic properties, such
as those mentioned above, are readily calculated using semi-
empirical or empirical potentials, but the energetics of these
potentials for structures away from the reference structure
are not as accurate as the first-principles calculations. Thus,
we now have a Morton’s Fork, to use a first-principles
method to determine an accurate energy and a simple model
to obtain a questionable entropy, or employ a semi-empirical
potential to determine a questionable energy and more accu-
rate entropy. The present paper circumvents this dilemma by
describing an approach to develop a family of high fidelity,
computationally inexpensive, semi-empirical potentials that
are essentially an interpolation among multiple reference
states, as opposed to an extrapolation from a single reference
state, of first-principles calculations. We propose that quan-
titative thermodynamic properties of materials may be calcu-
lated relatively easily using our method.

As an example of this method, in this work, we choose Cu
as a model material, and use a standard first-principles
method �VASP�, within the framework of density functional
theory �DFT�, to calculate a reference database. We derive
our semi-empirical potential using this reference database.
The database not only includes the energetics of a number of
reference structures as discussed above, but also energetics
of the transformation paths between these structures. We call
these transformation paths, reference paths. A reference state
is either a reference structure or a reference path. By using
reference structures, we capture the dependence of the bond
energy on local coordination and atomic arrangement. Simi-
larly, by using the reference paths, we capture the depen-
dence of bond energy on large strain and changes in coordi-
nation.

Cu was chosen for three reasons: �i� the VASP calcula-
tions are straightforward compared to, e.g., more interesting
materials that are magnetic; �ii� many EAM potentials are
available for easy comparison; and �iii� this was a “worst
case” for MS-MEAM with respect to improvement over
EAM, i.e., any other material should show better improve-
ment.

The method we develop is generally applicable to any
�single component� material and any first-principles compu-
tational scheme and in no way is specific to Cu or VASP. We
have found that it is necessary to include angular forces in
our semi-empirical model to accurately represent the first-
principles data; hence, we base our model on the modified
EAM �MEAM�.5–7 For this reason, we name our model mul-
tistate MEAM, or MS-MEAM, to differentiate it from earlier
approaches. In the next section, we describe the MEAM
model, our first-principles method, and a simple analytic
EAM model that shows how dual reference states may be
implemented. We follow this with a section describing how
the MEAM functions are determined from the first-principles
database. Next, we conduct rigorous tests to determine the
predictability and transferability of our MS-MEAM model.
In this section, we also compare MS-MEAM to two EAM
potentials, an old EAM potential by Foiles et al. �FBD�,11

and a modern EAM potential by Mishin et al. �MMPVK�,12

EAM1 also fit to first-principles data. Note that MMPVK
was fit to first-principles linear augmented plane wave calcu-
lations, which in principle are more accurate than VASP, or
at least give slightly different numbers that might account for
some of the discrepancies between MS-MEAM and
MMPVK. We conclude with a short summary.

II. THEORY

A. MEAM

Daw13 has shown that the functional form of the EAM for
a single component material follows directly from density
functional theory. The form for the energy of an ensemble of
atoms, E, is given by

E = �
i
�F��̄i� +

1

2�
j�i

��Rij�� , �1�

where F is the embedding energy for a background electron
density �̄, the pair potential � is evaluated at the interatomic
distance Rij, and the sums are over atoms i and j. In order to
have a computationally efficient method of calculation, i.e.,
order N where N is the total number of atoms, the pair po-
tential is traditionally truncated at a specific distance �radial
cutoff� or by the local environment of the neighbors of an
atom �angular cutoff�.14 Previous work15 has shown that the
assumption of short ranged interactions in close-packed met-
als is a good one. In this work, we will use angular screen-
ing. Thus, the basic EAM ansatz becomes

E = �
i
�F��̄i� +

1

2�
j�i

��Rij�Sij
�� , �2�

where we make the simple physical assumption that the net
screening Sij

� is a multiplicative process mediated by neigh-
boring atoms m:

Sij
� = �

m�i,j
Simj

� , �3�

and Simj
� is the screening function for the pair potential be-

tween atoms i and j by neighbors m.
We now expand the angular dependence of the back-

ground electron density as a series of partial electron densi-
ties, which depend on zero order Legendre polynomials, P0

l :

�̄i
2 = ��i

0�2 + �
l=1

3

���i
l+�2 − ��i

l−�2� , �4�

where, as in the EAM, the spherically symmetric electron
density at atom i is given by

�i
0 = �

j�i

�a0�Rij�Sij
�0

. �5�

In EAM, the screening is usually implemented through a
radial cut-off function. The partial electron densities at atom
i are given by
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��i
l±�2 = �

j,k
P0

l �cos�� jik���al±�Rij��al±�Rik�Sij
�l

Sik
�l

, �6�

and as for �, the screening for the atomic electron densities
�al is given by

Sij
�l

= �
m�i,j

Simj
�l

. �7�

The physical justification for Eqs. �4�–�6� is given in Ap-
pendix A. Note that in previous versions of MEAM a
weighting factor tl was used for the angularly dependent par-
tial electron densities. Here this factor is absorbed into the
partial electron densities. Additionally, to encompass both
positive and negative changes to the background electron
density, two partial electron densities ��� are included.

The complete MEAM is given by Eqs. �2�–�7�. There are
14 unknown functions: F ,� ,Simj

� ,�a0 ,�al± , l=1,3, and

Simj
�l

, l=0,3, that will be determined below. In contrast,
MMPVK and FBD EAM potentials have 28 and 7 free pa-
rameters, respectively. Note that all prior versions of MEAM
have assumed that all of the angular screening functions
were identical and that only either the positive or negative
partial electron density was nonzero for each l. We find that
the first-principles database requires the additional flexibility
in the model presented above.

B. First-principles database: VASP

We calculate total energies using carefully converged ab
initio VASP �Vienna ab initio simulation package�
simulations.16 VASP is a density functional theory �DFT�
code using pseudopotentials �details below� and a plane-
wave basis set. VASP calculates the Kohn-Sham ground state
via an iterative unconstrained matrix diagonalization scheme
and an efficient Pulay/Broyden charge density mixing. Sam-
pling of the irreducible wedge of the Brillouin zone is per-
formed with a regular Monkhorst-Pack grid of special points.
Ground-state atomic geometries are obtained by minimizing
the Hellman-Feyman forces using either a conjugate gradient
or quasi-Newton algorithm, until the total force on each ion
reaches convergence. The generalized gradient approxima-
tion �GGA� of Perdew and Wang is used for evaluating the
exchange-correlation energy.17

A projector-augmented wave �PAW� method based Cu po-
tential is used for all VASP calculations reported in this
paper18,19 as it yields better results for bulk properties of Cu.
PAW pseudopotentials are generated with an atomic valence
configuration of �3d�10�4s�1, which is the ground state as
predicted by DFT. We first carry out plane-wave cutoff,
k-point convergence tests, and Murnaghan equation fitting
for bulk Cu to determine their optimum settings. A plane-
wave kinetic-energy cutoff of 400 eV ensures energy conver-
gence to 0.3 meV/atom, and a Monkhorst-Pack k-point mesh
of 20�20�20 guarantee an accuracy of 1 meV/atom in to-
tal energy calculations.

For each reference structure, the VASP energies are cal-
culated at a number of discrete nearest neighbor distances
�volumes� and specific points along the transformation paths
between reference structures. More specifically, the ratio of

the first nearest neighbor distance �r1NN� to the equilibrium
nearest neighbor distance of fcc Cu �r0� varies from 0.7 to
4.0. We vary this by 0.1 for r1NN /r0=0.7–2.0 and by 0.2 for
r1NN /r0=2.0–4.0. We calculate energies at 10–20 evenly
spaced points along each transformation path. In order to
have a continuum of energies for the MEAM function devel-
opment, VASP fcc energy, and for other structures, VASP
energy differences per bond, are fit to a series of exponen-
tials. We wish to point out that although we calculate ener-
gies of the unrelaxed hcp structure with ideal c /a ratio, this
does not pose a problem for modeling real hcp systems. If
the model works accurately, the real hcp system should relax
to its appropriate c /a ratio. Similarly, although we use Bain
path information at only one bcc volume, the potential is able
to predict correct energy versus volume as given by VASP.

In general, first-principles calculations of equilibrium lat-
tice constant and cohesive energy do not exactly agree with
experiment. To have a more flexible model, we scale all of
the VASP energies so that the minimum energy of the fcc
structure is -1 and scale all distances so that the nearest
neighbor distance of this structure is 1. In this work, we will
make most comparisons in this scaled system.

C. Analytical, two reference state illustration

Before we tackle the full multistate MEAM, we examine
a very simple illustration of how two reference structures can
be used to determine the MEAM functions. If one has
knowledge of binding curves for two or more crystal struc-
tures of an element, then it is possible to place consistency
requirements on the embedding function and/or background
densities. The question of how to make the embedding func-
tions consistent with two reference states has been addressed
within the context of EAM.10 It is known that the procedure
is either unstable or at best poorly convergent.

Here we assume that the embedding energy functional
form is known and we require consistency between the back-
ground densities for the two reference states where only
nearest neighbor interactions are relevant. Suppose that we
have reference monatomic crystal states a and b character-
ized as having Za and Zb nearest neighbors and Ea

ref and Eb
ref

binding curves, respectively.
From Eq. �2�,

E�
ref�R� = F���̄��R��� +

Z�

2
��R�, � = a,b , �8�

where �̄a and �̄b are the background densities associated with
the reference states. In the absence of angular forces �EAM�:

�̄��R� = Z��a0�R�, � = a,b , �9�

where �̄��R� is the atomic electron density. If we assume that
the embedding function is given by the specific form

F = A�̄ ln��̄� , �10�

by appropriate manipulation of Eq. �8�:
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Ea
ref�R�
Za

−
Eb

ref�R�
Zb

= A�a0�R�ln	Za

Zb

 , �11�

which is readily solved for �a0�R� using the known reference
structure energies E�

ref�R�. Since we now know the atomic
electron density, it is easy to determine � using Eq. �8�.

The fact that energies determine background densities is
directly attributable to the DFT underpinnings of the model.
This form of �a0�R� clearly entails participation of two ref-
erence states that enables the model to switch between con-
figurations. Each of those reference states has its own func-
tional dependence on R. As such, there is no requirement that
�a0�R� be positive. �The present form of the embedding en-
ergy is undefined at those points.� Note that, in prior models
of �a0�R�, a single exponential decay was allowed. This il-
lustration analytically displays the kind of physical behavior
that we are trying to capture with a multiple-reference state
determination of the MEAM model. A model of this form
was used to formulate a united-atom model of polyethylene
and to simulate shock compression of an amorphous
polymer.20,21

To complete the MEAM model, the angular dependencies
of �̄�R� and the screening functions are required. Below we
present a method to determine these from additional refer-
ence states.

III. DETERMINATION OF MEAM FUNCTIONS

Previously for both EAM and MEAM, we have built the
models around a single reference structure. That is, the en-
ergy of one crystal structure as a function of homogeneous
deformation �lattice constant�, usually the equilibrium
ground state, is used to determine one of the unknown func-
tions. Using this concept, the embedding function is usually
determined for EAM and the pair potential is determined for
MEAM. In this section, this concept is formally expanded,
using multiple reference states, hence the name multistate
MEAM or MS-MEAM. To aid the reader through this pro-
cedure, a summary of the reference states used and the cor-
responding MEAM function determined by that reference
state is included in Table I.

A. Reference structures

1. Structures with only 1NN

The extraction of the functions in Eqs. �2�–�7� is simpli-
fied if we first examine only fcc, simple cubic �SC�, hcp,
diamond cubic �DC�, a one-dimensional �1D� line, and a
diatomic molecule �dimer� structures, where we may safely
assume that interactions are determined by only the Z1 first
nearest neighbors �1NN�. These structures have been chosen
so that any atom in each structure has the same atomic en-
vironment; hence, every atom is equivalent and has the same
atomic energy. In these structures, all 1NN have Simj =1 and
for more distant neighbors all Simj =0 for both � and �. For
these simple cases the atomic energy is given by:

E = F��̄� +
Z1

2
��R� �12�

��̄2� = �Z1�a0�R��2 + �
l=1

3

sl	l�R� �13�

where

	l�R� = ��al+�R��2 − ��al−�R��2. �14�

We call the functions 	l�R� the net partial electron densities.
The geometric factors Z1 and sl for these structures are given
in Table II. We will see below that in structures where the
second nearest neighbor �2NN� screening parameter C
1
only 1NN interactions are present. These expressions sim-
plify significantly for the fcc and SC lattices and the differ-
ence in the energy per bond �Z1 /2� between these structures
is given by

�ESC-fcc
ref �R� =

1

6
�2F�6�a0�R�� − F�12�a0�R��� . �15�

Given �a0 for any initial 1NN distance R0, we can define a
series of 1NN distances Rn through

�a0�Rn� =
1

2
�a0�Rn−1� , �16�

and iterating Eq. �15� we obtain

F�12�a0�R0�� = 2Nmax+1F�6�a0�RNmax
�� − 6 �

n=0

Nmax

2n�ESC-fcc
ref �Rn� .

�17�

Thus if we knew �a0, we could directly obtain the embed-
ding function at any background electron density from the
embedding function at a much lower density and the known
reference structural energy differences of fcc and SC at spe-
cific distances. To obtain an initial estimate for �a0, we as-
sume that as, R→� ,�a0→0, the scaled embedding function
is equal to A�ln��� �see Baskes5 for the connection of this
functional form to the work of Pauling21�. Using this as-
sumption in Eq. �15�, the atomic electron density is given by

TABLE I. Correspondence between the reference states and the
MEAM function determined by that state. States and functions are
defined in the text. The transformation paths are used in combina-
tion to determine the angular screening.

Reference state Structure Path MEAM function

SC/fcc X F��̄�
fcc X ��R�
line X 	2�R�
hcp X 	3�R�
dimer X 	1�R�
DC X �a0�R�
Bain X Simj

� �C�
trigonal X Simj

�0 �C�
2D X Simj

�2 �C�
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�a0�R� =
− �ESC-fcc

ref �R�
2 ln�2�

, �18�

where we have set A=1.
We use Eq. �17� to obtain the embedding function, choos-

ing Nmax so that RNmax
4. It is trivial to calculate � using

Eqs. �12�–�14� and the known reference energy per atom for
the fcc structure:

��R� =
1

6
�Efcc

ref �R� − F�12�a0�R��� . �19�

To obtain 	2, note that in Table II, s1=s3=0 and s2�0 for
the hex, square, and line structures. We choose the line as our
reference structure. The energy of this structure is given by

Eline
ref �R� = F��2�a0�R��2 + sline

2 	2�R�� + ��R� . �20�

We solve this equation iteratively for 	2 for any R using the
previously determined embedding function, �a0, �, and the
known reference energies. Similarly we get the 	3 by using
the energy of the hcp structure �s3�0�. Finally, we obtain 	1

by using the energy of the dimer structure �s1�0�. These
functions are now used to calculate the energy of the DC
structure. For scaled R2 the calculated and known refer-
ence data agree well. For R�2 we adjust �a0 so that the
calculated DC energy agrees exactly with the known refer-
ence data. Since the embedding function is calculated itera-
tively �see Eq. �17��, the values at small background electron
density �large R� are not affected by changing �a0 at small R.

The resultant functions are shown in Figs. 1–4. The em-
bedding energy �Fig. 1� is smooth and featureless. The
spherically symmetric electron density �a0, shown in Fig. 2,
is nearly linear �exponential decay� at large scaled 1NN dis-
tance, shows a slight positive departure from linearity for

R�2, and increases sharply at short 1NN distance. At large
distance �a0 approaches the analytic approximation of Eq.
�16�. The net partial electron densities are compared in Fig.
3. At short distance �Fig. 3�a��, these net densities �l=1–3�
are negative and much smaller in magnitude than the square
of the spherically symmetric electron density �a0. In Fig.
3�b�, it is seen that the magnitude of the angular electron
densities decays essentially exponentially at large distance,
similar to the behavior of �a0. The cusps are due to the
change in sign of the net partial electron density. The pair
potential �Fig. 4�a�� is smooth and repulsive.

The calculated and known reference energies or energy
differences per bond of the reference structures �fcc, SC,
line, hcp, dimer, DC� are shown in Figs. 4�a� and 5�a�. Note
that by construction the known reference and calculated val-
ues agree exactly for MS-MEAM. For a simple pair potential
model, all energies per bond would equal the pair potential.
The deviation of these bond energies from a single curve
�Fig. 4�a�� shows the importance of the embedding energy.

TABLE II. Geometric factors for structures considered in this work. Factors given are the number of 1NN
Z1, weighting factors sl, ratio of 2NN to 1NN distance a, and the screening parameter for 2NN C. Reference
structures are denoted by an asterisk.

Structure Zl s1 s2 s3 Z2 a C

fcc* 12 0 0 0 6 2 1

hcp* 12 0 0 1/3 6 2 1

o-DC10 10 0 7/24 27/32 4 3/2 5/3

bcc 8 0 0 0 6 4/3 2

t-DC8 8 0 1/6 9/8 12 2 1

SC* 6 0 0 0 12 2 1

t-DC6 6 0 3/32 675/512 4 3/2 5/3

trigonal-6 6 0 8/3 0 6 4/3 2

2D-hex 6 0 6 0 6 3 1/3

DC* 4 0 0 32/9 12 8/3 1/2

2D-square 4 0 8/3 0 4 2 1

beam 4 3 19/6 9/4 2 3 1/3

graphene 3 0 3/2 9/4 6 3 1/3

zigzag-2 2 8/3 8/9 56/27 2 4/3 2

line* 2 0 8/3 0 2 2 0

dimer* 1 1 2/3 2/5 0 — —

FIG. 1. Embedding energy vs background electron density. The
data point denotes the value of the embedding energy at the ground-
state equilibrium background electron density.
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When comparing bonds with equal coordination, it is conve-
nient to look at bond energy differences �Fig. 5�a��, as the
bond energies are very close. Any variation from VASP for
the hcp-fcc reference structures may be attributed to the ini-
tial fit to the VASP database. In summary of this section �see
Table I�, we have used the six reference structures at 1NN
coordination Z=1–12 and scaled 1NN distances R
=0.7–4.0 to determine six of the unknown MEAM func-
tions: embedding energy, pair potential, spherical electron
density, and three net partial electron densities.

2. The structures with 1NN and 2NN interactions

In order to separate the net partial electron densities into
the individual partial electron density contributions, struc-
tures that have atom neighbors with at least two distances
must be considered. We have attempted to use such struc-
tures to determine the partial electron densities, but the struc-
tures we have tried are very insensitive to the details of the
individual partial electron densities. This insensitivity occurs
because the screening of the 2NNs is quite strong. In the
future, we intend to try other structure to see if the individual
partial electron densities can be determined from the first-
principles database. For the purposes of this work, we choose
the negative partial electron density as a simple exponential
�cf. Appendix A� and calculate the positive partial electron
density from

�al+�R� = 	l�R� + ��al−�R��2. �21�

The exponential is chosen so that the argument of the
square root in Eq. �21� is positive for 0.7�R�4. We have
not found a property that varies significantly with the choice
of this exponential. All of the electron densities are shown in
Fig. 6. Their behavior is essentially exponential for R1.

FIG. 2. Spherically symmetric electron density �a0 �full curve�
as a function of scaled 1NN distance. Dashed curve represents the
initial approximation �Eq. �18��.

FIG. 3. �Color online� Net partial electron density for l=1–3 	l

as a function of scaled 1NN distance compared to the square of the
spherically symmetric electron density �a0 �a� at short distance, and
�b� the magnitude at long distance.

FIG. 4. �Color online� Pair potential and bond energies as a
function of scaled 1NN distance for �a� MS-MEAM, �b� EAM
�MMPVK� �Ref. 12�, and �c� EAM �FBD� �Ref. 11�. 1NN coordi-
nation is shown in parentheses. Reference structures for MS-
MEAM are denoted with an asterisk.
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B. Reference paths

To determine the screening functions we next examine a
number of homogeneous transformation paths between the
reference structures discussed above as well as two 2D struc-
tures, a square lattice �2D-square� and a hexagonal lattice
�2D-hex�. Details of the transformation paths are given in
Appendix B. These transformation paths are analogous to the
reference structures used above, and will be called reference
paths. The screening functions determine how the bonding
changes as the 1NN coordination changes. We use three ref-
erence paths to determine the screening functions, the clas-
sical Bain path at the equilibrium fcc volume, a 3D trigonal
transformation path at the equilibrium fcc volume, and a 2D

shear transformation path at a scaled 1NN distance of unity.
The Bain path is a constant volume tetragonal distortion
from bcc �c /a=1� to fcc �c /a=2�. The trigonal path may be
considered as a constant volume tetragonal distortion of a
rotated bcc lattice. Since we will be comparing a number of
different transformation paths, we define a fractional defor-
mation, which goes from 0 �bcc� to 1 �fcc� for both the Bain
and trigonal paths and from 0.4 �2D-square� to 1 �2D-hex�
for the 2D path.

Along the Bain path at the fcc and bcc structures and
along the trigonal path at the fcc, bcc, and SC structures only
� and �a0 enter as functions to be screened. At all other
deformations �, �a0, and �a2 enter. We will not consider the
screening of �a1 and �a3 here; for simplicity, the screening of
these atomic electron densities will be taken as that of �a2.
This assumption is not necessary; use of appropriate refer-
ence paths can be used to determine all of the screening
functions individually.

In principle, the screening functions Simj for � and � are
each a function of the vector interatomic distances Rij, Rim,
and Rjm. Previously we have introduced the concept of the
screening ellipse14 and we will use that concept here. Con-
sider that the atom bond ij that is to be screened by atom m
lies along the x axis, with the origin of the coordinate system
at the bond center. Then an ellipse that goes through all three
atoms, i, j, and m, obeys the following equation:

x2 +
1

C
y2 = 	1

2
Rij
2

, �22�

where the parameter C is given by

C =
2�Xi + Xj� − 1 − �Xi − Xj�2

1 − �Xi − Xj�2 , �23�

and

Xl = 	Rlm

Rij

2

, l = i, j . �24�

The parameter C indicates the amount of screening: for
example, C=2 occurs for the 1NN screening of 2NNs in the
bcc structure and C=1 occurs for the 1NN screening of

FIG. 5. �Color online� Bond energy differences of structures
with equal coordination as a function of scaled 1NN distance for �a�
MS-MEAM, �b� EAM �MMPVK� �Ref. 12�, and �c� EAM �FBD�
�Ref. 11�. 1NN coordination is shown in parentheses. Reference
structure is denoted with an asterisk. The inset shows the details of
the hcp-fcc energy difference.

FIG. 6. �Color online� Electron densities for l=0,3 as a function
of scaled 1NN distance. Full �dashed� lines are the ���� density.
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2NNs in the SC, 2D-square, and fcc structures �see Table II�.
For any amount of fractional deformation, we can calculate
the C values that enter into the screening. Details are given
in Appendix B. These C values are shown in Fig. 7. This
figure is simply a result of the geometry along the reference
paths. The 2D path represents the simplest screening. At the
square lattice �f =0.4�, the four 2NNs all have C=1. As the
lattice is sheared �increasing f� C increases smoothly to 3, as
two of the 2NNs become 1NNs and decreases to 1/3 for the
other two 2NNs. Hence, along this path, the coordination
changes from 4 �2D-square� to 6 �2D-hex�. A similar process
occurs for the Bain path, where four bcc 2NNs become
1NNs in fcc. The screening along the trigonal path is much
more complicated, where six different screening environ-
ments occur. As discussed in Appendix B, we can simplify
the trigonal screening significantly by assuming that for C
�1 the screening is complete, i.e., Simj =0. This assumption
is consistent with having only 1NN interactions in fcc, SC,
and the 2D-square lattice. When this assumption is made,
only the full lines for the trigonal screening enter; the dashed
lines do not play a role.

The philosophy for determining the screening functions is
exactly the same as that used above to determine the other
MEAM functions, i.e., for each C we determine the three
unknown Simj �for �, �a0, and �a2� using three points along
the transformation paths simultaneously. We first determine
the screening for C=2. This value of C occurs for the bcc
structure �f =0� and for another point along both the trigonal
path �f =0.8� and the 2D deformation path �f =0.8�. Using the
known reference energies for these three structures, we ob-
tain Simj

� �2�, Simj
�0 �2�, and Simj

�2 �2�. We now determine the
screening at C=1.5. From Fig. 7 we see that for the trigonal
and 2D paths at f =0.64 and for the trigonal path at f =0.16
the screening parameter is 1.5. As above, we obtain Simj

�

�1.5�, Simj
�0 �1.5�, and Simj

�2 �1.5�. The MS-MEAM and VASP
energies at the endpoints of the 2D transformation �2D-
square and 2D-hexagonal� do not agree exactly, since these
structures are not reference structures. To facilitate the deter-
mination of the screening functions between the endpoints,
the energies relative to the endpoints are used for both MS-
MEAM and VASP.

Now, assuming smooth screening functions for C2 that
go through the values just determined at C=2, we determine

the screening for C�2 using the 2D and trigonal data for
f �0.72 and the trigonal data for f 0. Finally, we determine
the screening for C2 using the 2D and trigonal data for
f �0.72 and the Bain transformation data for all f . The pro-
cess is then iterated until convergence.

The resultant screening functions are shown in Fig. 8.
Note that the screening functions for � and �a0 are similar at
high C, while the screening function for �a2 falls off more
rapidly with decreasing C. Our previous work assumed that
the screening for all functions was identical. This work
shows that the previous assumption was close, but not exact.
It is shown in Fig. 9 that the resultant energetics for MS-
MEAM agrees almost perfectly with the VASP database for
the reference paths.

IV. MODEL PREDICTIONS

There are two ways to investigate the robustness of our
MS-MEAM functions. The first is to compare predictions of

FIG. 7. �Color online� Screening parameter as a function of
fractional deformation for the reference paths considered in this
work. The Bain, 2D, and trigonal paths are used to determine the
screening functions. See Appendix B for a discussion of the trigonal
screening parameters �green�.

FIG. 8. �Color online� Screening function for the pair potential
� and atomic electron densities �al vs the screening parameter C.

FIG. 9. �Color online� Predicted �line� and first-principles
�points� scaled energies as a function of fractional deformation
along �a� various paths, and �b� Bain path �expanded view�. Refer-
ence paths are denoted with an asterisk.
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the model with additional VASP calculations not used in the
function development, and the second is to compare the
model calculations with experiment. We use the latter com-
parisons where the VASP calculations are too computation-
ally expensive to perform. Of course, the latter comparison
has the disadvantage that the VASP model itself may not
predict experiment correctly.

At this juncture it is appropriate to comment on the speed
of the MS-MEAM code. A highly optimized parallel MEAM
code runs 3–5 times slower than an EAM code. A MS-
MEAM code should in principle run as fast as the traditional
MEAM code. However, our poorly optimized research code
for MS-MEAM runs about 10 times slower than our MEAM
code.

A. Comparison with first-principles calculations

We first use the functions developed above to predict the
energetics of a number of structures with a wide range of
1NN coordination. The results are shown in Figs. 4�a� and
5�a� and Table III. The graphene �one plane of graphite�
structure has a 1NN coordination of three. The predicted
energy as a function of 1NN distance agrees extremely well
with the VASP calculation. We discuss an orthorhombic
transformation of the DC structure below and in Appendix B.
One point along this deformation path is a tenfold coordi-
nated structure we call o-DC10. The predicted energy of this
structure as a function of 1NN distance also agrees well with
the VASP calculations. Similarly, we have examined a tetra-

hedral distortion of the DC structure �see below and Appen-
dix B for details of the transformation�. Along this path,
there is an eightfold coordinated structure we call t-DC8 �see
Fig. 16 in Appendix B�. Again, the MS-MEAM predictions
agree well with the first-principles calculations. We also have
calculated the energy difference between structures with the
same 1NN coordination. These energy differences are very
small and the demands on the model are severe. The com-
parison of the DC and 2D-square configurations �Z=4�
shows good agreement with VASP at all 1NN distances,
while the 2D-hex/SC �Z=6� and the t-DC6/SC �Z=6� com-
parison shows some disagreement at small 1NN distance.
Thus, we may conclude that the MS-MEAM agrees well
with the first-principles energy/volume calculations for 1NN
coordination ranging from 1–12 at most 1NN distances.

For comparison, we also present results for two literature
EAM potentials for Cu: the original potential by Foiles et
al.11 �FBD� and a more recent potential by Mishin et al.12

�MMPVK�. FBD used a small data set of experimental infor-
mation to develop the potential, while Mishin et al. used a
large database of first-principles calculations and experiment
to fit their potential. The results are also presented in Figs. 4
and 5. The MMPVK EAM potential represents the VASP
data quite well at high coordination, but has significant de-
viation at lower coordination. The FBD EAM potential does
surprisingly well near equilibrium for all coordinations even
though no low coordination data was used in its develop-
ment. It misses the behavior of the low coordination struc-
tures at low density and is too soft at high density. Both

TABLE III. Comparison of energy E and first neighbor distance r1 for equilibrium structures. The fcc energies �eV/atom� are relative to
isolated atoms at infinity and the fcc 1NN distance is in Å. The energies and 1NN distances of other structures are normalized by the fcc
energy and the fcc 1NN distance. Structures designated with an asterisk are MS-MEAM reference structures. MS-MEAM values have been
unscaled by 3.54 eV and 2.56 Å, the experimental values of the fcc cohesive energy and 1NN distance. For MS-MEAM, the c /a relative to
ideal is 1.008, the volume is 0.9997 relative to ideal hcp and the energy is 0.3 meV lower. Differences in energies between VASP and
MS-MEAM may be attributed to the scaling procedure.

Structure VASP MS-MEAM EAM �MMPVK� EAM �FBD�

E r1 E r1 E r1 E r1

fcc* −3.731 2.571 −3.540 2.560 −3.540 2.560 −3.540 2.560

hcp 0.998 0.999 0.997 0.998 0.998 0.998 0.999 0.998

hcp* �c /a ideal� 0.998 1.000 0.997 1.000 0.998 1.000 0.999 1.000

bcc 0.991 0.978 0.989 0.976 0.987 0.970 0.992 0.971

o-DC10 0.980 0.992 0.959 0.986 0.685 0.906 0.696 0.904

trigonal-6 0.956 0.930 0.956 0.964 0.958 0.948

t-DC6 0.907 0.929 0.912 0.939 0.915 0.936

t-DC8 0.905 0.966 0.925 0.960 0.925 0.957

SC* 0.878 0.938 0.878 0.938 0.878 0.935 0.877 0.932

2D-hex 0.809 0.951 0.749 0.991 0.717 0.961 0.737 0.961

DC* 0.727 0.903 0.717 0.910 0.685 0.906 0.696 0.904

2D-square 0.730 0.916 0.713 0.931 0.662 0.927 0.703 0.911

beam 0.693 0.982 0.597 0.940 0.625 0.930

zigzag-2 0.681 0.923 0.568 0.895 0.599 0.884

graphene 0.627 0.912 0.600 0.904 0.550 0.907 0.576 0.898

line* 0.464 0.897 0.464 0.897 0.423 0.893 0.467 0.884

dimer* 0.362 0.860 0.362 0.860 0.278 0.855 0.346 0.838
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EAM potentials capture the qualitative behavior of the en-
ergy difference between structures with the same 1NN coor-
dination, but clearly are far from quantitative. The MMPVK
potential shows significant oscillations in the energy differ-
ence between hcp and fcc at high densities. The FBD EAM
potential does not give even qualitative agreement with the
VASP database for the hcp/fcc energy difference. It is well
known that this potential does not reproduce the related
stacking fault energy very well.

The comparisons above are all for structures with only
1NN interactions. In Fig. 10 we present the comparison of
energy vs scaled 1NN distance for three structures where
2NN interactions are of some importance, bcc, a point along
the trigonal deformation path called trigonal-6, and a point
along a path called zigzag-2 �discussed below�. In Table II
we see that these structures have the largest value of the
screening parameter C and hence, the largest contribution of
2NN interactions. The trigonal-6 structure may be thought of
as compressing an fcc structure along the �111� axis so that
the out-of-plane neighbors are closer than the in-plane neigh-
bors by the factor given in Table II. Similarly, the zigzag-2
structure has the same 1NN/2NN distance ratio. The MS-
MEAM prediction is in excellent agreement with the VASP
database except at very short distances �50% volume com-
pression�. This agreement justifies the assumption made
above in Sec. III B that the angular screening is independent
of distance.

Elastic constants are important quantities for atomistic
calculations. Both EAM potentials used equilibrium elastic
constants as direct input to the model, while the MS-MEAM
included elastic constant information through the transforma-
tions. The predicted elastic constants for fcc for all three
models as a function of 1NN distance are compared with
VASP in Fig. 11. All three models represent the VASP data-
base quite well.

Deformations are an extremely sensitive measure of the
predictive capability of the model. Using a shear transforma-
tion analogous to the 2D transformation, we have calculated
the energetics of a homogeneous transformation of hcp to a
cubic structure through shear parallel to the basal plane. This
calculation starts with an hcp structure with ideal c /a ratio,

scaled 1NN distance equal to unity, and maintains constant
volume by adjusting the c /a ratio as the lattice is sheared.
This path is called hcp in Fig. 9. MS-MEAM is in excellent
agreement with VASP, although it has some small oscilla-
tions, most likely due to the screening function. We have also
looked at a tetragonal transformation �t-DC� of the DC lattice
�in cube orientation�. Starting with a DC structure with the
scaled 1NN distance equal to unity, straining to larger c /a
ratios yields a structure t-DC8 at � c

a
�3=6 with eight 1NN,

while straining to smaller c /a ratios yields a structure t-DC6
at � c

a
�3= 2

15 with six 1NN �see Fig. 16 in Appendix B�. These
symmetric structures are shown in Appendix B. While the
MS-MEAM is not in quantitative agreement with VASP, the
basic trend of the energy curve is in agreement with the
first-principles calculation.

It is also possible to transform the DC structure to a struc-
ture that has ten 1NN as mentioned above �o-DC�. The de-
tails of this transformation are given in Appendix B. The
volume is held fixed at the equilibrium fcc volume for this
transformation. The MEAM prediction is in reasonable
agreement with the first-principles calculation for this path.

Finally, we consider a homogeneous transformation with
low coordination that we call the zigzag transformation.
Consider a line of atoms �Fig. 12� with the scaled 1NN dis-

FIG. 10. �Color online� Predicted �line� and first-principles
�points� scaled energies as a function of scaled 1NN distance. One
point of the bcc curve was used as a reference structure.

FIG. 11. �Color online� Scaled elastic constants for fcc vs scaled
1NN distance for a� MS-MEAM, �b� EAM �MMPVK� �Ref. 12 and
�c� EAM �FBD� �Ref. 11� Points are the VASP calculations.
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tance between atoms equal to unity. Now place a second
such line parallel to the first line, so that each atom is at the
vertex of an equilateral triangle. We call this the beam con-
figuration, and each atom has four 1NNs and the angle be-
tween 1NN atoms is �z=60°. The periodic distance along the
line is 2 sin��z� and the distance between the lines is cos� �z

2
�.

As �z is increased from 60° to 180°, the beam is stretched
into a single line with 1NN coordination equal to two. For
the beam, the agreement with VASP is excellent. Since the
line was fit, we expect �and obtain� perfect agreement. Along
this transformation path the scaled 1NN distance is held
fixed at unity. The agreement with the VASP calculations is
only fair for this path. A significant disagreement is found
near the fractional deformation of 0.25 ��z=90�, C=1�. To
obtain agreement with VASP, we would have to have stron-
ger interactions at this C. Such a change is beyond the scope
of this work, but is necessary if MS-MEAM is to be applied
to transformations of very low coordination structures. Ap-
parently, the inclusion of the dimer reference structure is not
sufficient; bond breaking between singly and doubly coordi-
nated structures must be included.

We now examine the behavior of the two literature EAM
potentials for the same transformations. The results are pre-
sented in Figs. 13 and 14. The agreement of both EAM po-
tentials with VASP is excellent for the higher coordination
transformations. However, for the lower coordinations, 2D
and zigzag, the agreement is not very good. Both potentials
predict the maximum in the t-DC transformation to be at
lower deformation than the VASP database. For the Bain
paths, the bcc energy is in disagreement with VASP, but the
shape of the transformation curve is in reasonable agreement
with VASP.

An important deformation path for mechanical properties
of fcc materials is slip in a �112� direction in a �111� plane.
This deformation path is called the generalized stacking fault
�GSF�. The unrelaxed GSF energy has previously been
calculated22 using DFT and the data is reproduced here in
Fig. 15 along with the MS-MEAM results and the results
from the two literature EAM potentials. At a fractional de-
formation of zero, the structure is fcc and at a fractional
deformation of unity, a stacking fault is formed. The maxi-
mum half way through the path is called the unstable stack-
ing fault �USF�. The stacking fault energy �SFE� predicted

by MS-MEAM is in excellent agreement with the DFT cal-
culation because the SFE is closely related to the hcp/fcc
energy difference, which is part of the VASP database. The
predicted USF energy is not in very good agreement with the
DFT calculation. The MMPVK EAM potential is fit to the
SFE; thus, it has excellent agreement. Surprisingly, the GSF
for the FBD EAM potential is almost identical to that of the
MMPVK EAM potential.

B. Comparison with experiment

As to the more complicated tests of the model, we have
calculated a number of defect and thermodynamic properties.
The results are given in Tables IV and V. To compare with
experiment, the MS-MEAM results are unscaled by the ex-
perimental cohesive energy �3.54 eV� and the experimental
1NN distance �2.56 Å�. In general, there is not much differ-
ence between the three potentials and agreement with experi-
ment is reasonably good, but certainly not quantitative. If
any conclusion can be made, the MS-MEAM potential has
slightly poorer agreement with experiment, most likely be-
cause no experimental data was used in its derivation. There
are no critical problems with any of the three potentials. We
are somewhat disappointed by the lack of quantitative agree-
ment between MS-MEAM and experiment. Whether this dis-
agreement is due to a deficiency in the MS-MEAM formal-
ism or in the VASP database remains a subject for future
study.

FIG. 12. Schematic of the zigzag transformation. The beam
structure �gray� is transformed to a line �open�. Atoms labeled 1 are
1NN to the atom labeled 0. Arrows denote the atom path as a
function of the transformation parameter �z. The zigzag-2 structure
occurs for cos��z�= 1

3 .

FIG. 13. �Color online� MMPVK �Ref. 12� EAM �line� and
first-principles �points� scaled energies as a function of fractional
deformation along �a� various paths, and �b� Bain path �expanded
view�.
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V. SUMMARY

Formalism has been developed to determine MEAM
functions directly from a first-principles database. The
method presented here uses first-principles energy vs volume
calculations for a series of crystal structures that span nearest
neighbor coordinations of 1–12. In addition, first-principles
data along transformation paths connecting these structures
are used. The resultant MEAM functions for a model mate-
rial Cu reproduce the database of VASP calculations exactly
�by construction� and also predict additional first-principles

calculations. The model is also used to predict a large num-
ber of complex properties, which are in reasonable agree-
ment with experiment. We believe that this formalism pro-
duces a computationally efficient potential that is largely a
quantitative interpolation of any first-principles database.
Application of this formalism to multicomponent materials
systems could enable the long-promised goal of quantita-
tively predictive computational materials science. Towards
this end, we are developing a MS-MEAM model for hcp-Zr.
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APPENDIX A

A typical expression for an electron density consisting of
two contributions is

��r�� =
�u�r�;V� + �2�2�r��

1 + �2 = �u�r�;V� +
�2

1 + �2 ��2�r�� − �u�r�;V�� ,

�A1�

where ��r�� is the electron density at any point in space r� for

the current configuration �R� i�i=1,. . .,N and �u�r� ;V� is the elec-
tron density for a reference configuration of volume V. �2�r��
is a second density contribution that contains deviations from
the reference structure. Because � is assumed to be opti-

mized for each configuration, it will depend on the �R� i�. Thus
the �2�u�r� ;V� / �1+�2� density contribution is not precisely
the same as the contribution �u�r� ;V� itself. It is then natural
to view the background density Eq. �4� as having the same
form as Eq. �A1� with three independent contributions. Keep
in mind that �u�r� ;V� exists for each point on the reference
curve V, e.g., V may represent a specific atomic volume.
Knowing the average atomic volume in the current configu-
ration, we choose that volume on the reference curve.

Further, suppose that each constituent density can be rep-
resented by a single determinant wave function composed of
one-electron spatial orbitals. In this case, an electron density
can be represented as a sum of squares of the spatial orbitals
�m, all with equal weight:

��r�� = �
m=1

M

�m�r��2. �A2�

The sum is over all M electrons in the system. An analo-
gous expression holds for �u. The difference between the two
electron densities then becomes

�2�r�� − �u�r�� = �
m=1

M

��2m�r��2 − �m
u �r��2� . �A3�

FIG. 14. �Color online� FBD �Ref. 11� EAM �line� and first-
principles �points� scaled energies as a function of fractional defor-
mation along �a� various paths, and �b� Bain path �expanded view�.

FIG. 15. Scaled fault energy for unrelaxed shear of a �111� sur-
face in �211� angle direction as a function of fractional deformation.
Multiply the energy values by 8643 to convert them to mJ/m2.
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If the current system configuration does not deviate too
drastically from that reference state, the core orbitals of the
current configuration will not differ from the reference state.
These core orbitals may be removed from the density differ-
ence. In the simplest approximation, we retain only one or-
bital, say the Mth orbital, so that �2−�u��M

2 −�M
u2.

Next, we assume that it is possible to expand both �M and

�M
u in some common, primitive atomic basis set �a: �N�R� �

�� jCj�
a�R� −R� j� and �N

u �r���� jCj
u�a�r�−R� j�. Then �2 takes

the approximate form

�2 � �
jk

CjCk�2
a�r� − R� j��2

a�r� − R� k� . �A4�

A completely analogous approximation also holds for
�u�r� ;V�. We are interested in this density difference at a spe-

cific atom i; thus we set r�=R� i. If we can separate the radial
and angular dependence of �a as a product, we take

�a�R� ij� � �
l

�al�Rij��al��ij� , �A5�

where ���� represents the angular dependence referenced to

the axis defined by R� i−R� j. Then using a Legendre expansion,

the terms in Eq. �A4�, scaled by �2 / �1+�2�, become

�
l

Bijk
l �al�Rij��al�Rik�P0

l �cos�� jki�� , �A6�

where

Bijk
l = ���2CjCk�

al��ij��al��ik�
1 + �2 �P0

l �cos�� jki��� .

�A7�

The angular brackets indicate local angular averages
about the angle of interest. Substituting Eq. �A6� into Eq.
�A4� and switching the order of the summations, we obtain

�2�2

1 + �2 � �
l

�
jk

Bijk
l �al�Rij��al�Rik�P0

l �cos�� jki�� . �A8�

Comparing Eq. �A8� with Eq. �5b�, we see that the prod-
uct of the screening functions is analogous to the quantity B,

Bijk
l ↔ Sij

�l
Sik

�l
. �A9�

The screening functions appear as estimates of the opti-
mal expansion coefficients, but also include factors related to
the Legendre coefficients of both the expansion coefficients

TABLE IV. Calculated defect properties of fcc Cu at T=0 K compared to experiment. Values denoted by
an asterisk were fitted. MS-MEAM values have been unscaled by 3.54 eV and 2.56 Å, the experimental
values of the fcc cohesive energy and 1NN distance.

Property MS-MEAM FBDa MMPVKb Experiment

Stacking Fault energy �mJ-m−2� 49.6 17.35 36.2 45.0b

Coherent-twin boundary energy �J-m−2� 24.9 8.73 22.2 24.0b

�100� surface energy �J-m−2� 1.11 1.29 1.34

�110� surface energy �J-m−2� 1.05 1.18 1.23 1.79c

�111� surface energy �J-m−2� 1.37 1.42 1.47

�100� surface layer relaxation �%� −1.7 −1.4 −1.7 −1d

�111� surface layer relaxation �%� −3.4 −1.3 −1.7 −1d

�110� surface layer relaxation �%� +0.1 −0.1 −0.2 −5–−8e

Unrelaxed vacancy formation energy �eV� 1.06 1.32 1.30

Relaxed vacancy formation energy �eV� 1.02 1.28* 1.26* 1.15–1.30e

Vacancy formation volume ��� 0.89 0.74 0.71 0.78f

Relaxed vacancy migration energy �eV� 0.99 0.66 0.69 0.71b

�100� split self-interstitial formation energy �eV� 2.58 2.86 3.06

�100� split self-interstitial formation volume ��� 0.24 0.72 0.82 0.55±0.20g

Relaxed octahedral self-interstitial formation
energy �eV�h

3.44 unstable unstable

Relaxed �110� split self-interstitial formation
energy �eV�

2.45 3.05 3.30

aReference 11.
bReference 12.
cReference 23 �polycrystalline average�.
dSee references in Ref. 11.
eReferences 24 and 25.
fReference 26.
gReference 27.
hThe Oh interstitial relaxes to an off-center position for MS-MEAM and to the �100� split interstitials for the
EAM potentials.
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and the primitive basis functions. The factored form of the
expansion coefficients is used to keep the component-
dependence pair wise. �Otherwise, it would be necessary to
have density screening factors with three indices Sikj

�l , which
would be computationally much more demanding.� It is
through this set of approximations that EAM and MEAM
models attempt to avoid the variational determination of �̄.
Hence, there is no requirement that the functional forms for
the energy be variational in �̄. Historically, these density ex-
pressions have always been associated with �̄2 instead of just
�̄.

APPENDIX B

We present here the details of the transformation paths
and the relationships between the screening and the reference
paths.

1. Bain path

The Bain path is most simply characterized by the c /a
ratio ranging from 1 at bcc to 2 for fcc. The transformation
is characterized by

a = a0	 c

a

�−1/3�

, �B1�

c = a0	 c

a

�2/3�

, �B2�

where a0=21/6. We define the fractional deformation along
the Bain path by

f = 	 c

a

2

− 1. �B3�

For each point along the Bain path, there are two relevant
screening parameters:

C1
Bain = 2 + f , �B4�

C2
Bain =

2

1 + f
. �B5�

2. 2D path

The 2D path is characterized by an angle � between 1NNs
which varies from 60° for the hexagonal structure �a single
�111� plane in fcc� to 90° for the square structure �a single
�100� plane in SC�. The basis vectors along this path are
given by �1,0� and �sin��� , cos����. The fractional deforma-
tion is defined as

f =
2

5
�1 + 3 cos���� . �B6�

TABLE V. Comparison of calculated thermodynamic properties of fcc and liquid Cu at various temperatures T. MS-MEAM values have
been unscaled by 3.54 eV and 2.56 Å, the experimental values of the fcc cohesive energy and 1NN distance.

Property T�K� MS-MEAM FBDa MMPVKb Experimentc

fcc

Linear thermal expansion 300 15.5 16.8 16.4* 17.0

coefficient �ppm-K−1� 1273 28.2 29.1 29.5 20.3

Specific heat 300 414 405 403 386

�J-kg−1-K−1� 1310 498 517 524 473

fcc/liquid

Melting point �K� 1570 1282 1331 1357

Latent heat of melting �kJ-mol-1� 1350 16.6 11.13 11.75 13.02

Relative volume change on melting �%� 1350 9.1 4.59 4.97 4.20

Pressure derivative of melting �K-GPa−1� 1350 104 28 31 35d

liquid

Specific heat �J-kg−1-K−1� 1500 601 558 543 495

Density �c-cm−3� 1350 7.68 7.88 7.87 8.0

Temperature derivative of density 1425 −1.23 −0.89 −0.79 −0.80

�mg-cm−3-K−1�
Surface tension �mN-m-1� 1356 210 1092 1182 1285

Temperature derivative of surface 1356 0.00 −0.27 −0.20 −0.13

tension �mN-m−1-T−1�
aReference 11.
bReference 12.
cReference 28.
dReference 29.
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For each point along the 2D path there are two screening
parameters given by

C1
2D =

1 + cos �

1 − cos �
=

4 + 5f

8 − 5f
, �B7�

C2
2D =

1

C1
2D . �B8�

3. Trigonal path

The trigonal path has been described previously by Paidar
et al.30 and may be considered as a constant volume tetrag-
onal distortion of a bcc lattice whose x, y, and z axes are

parallel to the �11̄0�, �112̄�, and �111� directions, respec-
tively. The transformation is characterized by

a = a0
2p�−1/3� �B9�

b = a0
6p�−1/3� �B10�

c = a0

3

2
p�2/3�, �B11�

where a0 is the lattice constant of the bcc lattice defined
above and p is a parameter. When p=1, 2, or 4 the structure
is bcc, SC, or fcc, respectively. A more physical description
of the transformations is through the angle � between 1NN:

cos��� =
p2 − 4

p2 + 8
. �B12�

The fractional deformation is given by Eq. �B4� above.
Unfortunately, the trigonal path has six screening parameters
associated with it. Fortunately, the net screening factor for
any two atoms consists of a product of screening factors �see
e.g., Eq. �3�� and frequently the screening parameters are
small, leading to complete screening. If we assume that for
C�1 the screening is complete, i.e., Simk=0, then only four
screening factors are relevant and they are given by

C1
trig =

1 − cos �

1 + 2 cos �
=

8 − 5f

2 + 10f
�B13�

C2
trig =

cos � − 1

2 cos �
=

8 − 5f

4 − 10f
�B14�

C3
trig = C2

2D �B15�

C4
trig = C1

2D. �B16�

4. DC-tetragonal path

Another path that we consider is a tetragonal deformation
of the DC structure. Two symmetric structures occur along
this path: for �c /a�2=6 a structure with eight 1NN, t-DC8
and for �c /a�2=2/15 a structure with six 1NN, t-DC6 �Fig.
16�. For t-DC8 each 2NN is screened by two 1NN with C
=1 and for t-DC6 each 2NN is screened by two 1NN with
C=5/3. The fractional deformation is taken as a linear func-

FIG. 16. �Color online� Structure �a� t-DC8 formed by the te-
tragonal distortion of the DC lattice with �c /a�2=6, and �b� t-DC6,
�c /a�2=2/15. For t-DC8, the atom labeled 0 has eight 1NN �labeled
1� and twelve 2NN �unlabeled�. For t-DC6, the atom labeled 0 has
six 1NN �labeled 1� and four 2NN �unlabeled�. Colors denote depth
in the figure.

FIG. 17. �Color online� Structure o-DC10 formed by the octa-
hedral distortion of the DC lattice by an angle of 60° in Eq. �B9�.
The atom labeled 0 has ten 1NN �labeled 1� and four 2NN �unla-
beled�. Colors denote depth in the figure.
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tion of �c /a�1/3 ranging from 0 at t-DC8 to 0.45 at DC to 1 at
t-DC6. The transformation is at constant volume.

5. DC-orthorhombic path

It is also possible to perform an orthorhombic transforma-
tion of the DC structure to a structure that has ten 1NN
o-DC10 �Fig. 17�. The transformation may be characterized
by an angle �, 60° �o-DC10� ���90° �DC�. The ortho-
rhombic deformations are given by

�x = ����sin����1 − cos����

�y = �����1 − cos���/2�

�z = ����3 − �x
2 − �y

2. �B17�

For �=1 the scaled 1NN distance is fixed and for � cho-
sen so that �x�y�z=1, the transformation is at constant vol-
ume. We consider only the constant volume transformation
here. The fractional deformation is taken as a linear function
of � ranging from 0 at o-DC10 to 1 at DC.
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