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The method of homogeneous deformation was combined with first-principles total-energy calculations to
provide a general method for determining second- and third-order elastic constants for single crystals of
arbitrary symmetry. Lagrangian strain tensors characterized by a single strain parameter are applied to the
crystal lattice and the elastic strain energy is calculated from first principles. Second- and third-order elastic
constants are obtained from a polynomial fit to the calculated energy-strain relation. Fitting the energy-strain
relation, rather than the stress-strain relation, provides a more robust procedure and enables the use of certain
first-principles codes where the stress tensor cannot be determined directly. To illustrate the method and to
compare with previous work, we calculated the complete set of second- and third-order elastic constants for
silicon �cubic lattice�. Our results provide better agreement with experimental data than results from previous
first-principles calculations. To demonstrate the use of the method for lower-symmetry crystals, second- and
third-order elastic constants for �-quartz �trigonal lattice� were calculated and reasonable agreement was
obtained with experimental results. Our method is general and can be applied to crystals with low symmetry
and/or low yield strength where experimental determination of the third-order elastic constants is difficult.
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I. INTRODUCTION

In the finite-strain theory of elastic deformation, the elas-
tic constants provide a complete description of the elastic
response of a solid.1–3 For single crystals, the second-order
elastic constants �SOEC� describe the linear elastic stress-
strain response, including the propagation velocity of acous-
tic disturbances along different crystallographic directions.
Higher-order elastic constants, such as third-order elastic
constants �TOEC�, reflect the nonlinear elasticity of the ma-
terial, including changes in acoustic velocities due to elastic
strain.2,3 Therefore, both SOEC and TOEC are important pa-
rameters for modeling the mechanical response of crystals
under high pressure and for simulating large amplitude stress
wave propagation in single crystals.4,5 In addition, SOEC and
TOEC values are useful for other purposes, such as the de-
velopment of ion-electron pseudopotentials6 or empirical in-
teratomic potentials.7

In previous studies, the TOEC for a wide variety of ma-
terials have been determined from experiments.8 However,
for crystals with low symmetry and/or low yield stress, such
as molecular crystals, obtaining a complete set of TOEC
from experimental methods presents significant difficulties.
Therefore, it is desirable to be able to determine the TOEC of
such materials using theoretical methods. This determination
is the focus of the present work.

Several theoretical approaches have been introduced to
calculate the TOEC of single crystals. These methods include
empirical force-constant models,9,10 molecular-dynamics
simulations using fluctuation formulas,11,12 and the method
of homogeneous deformation based on empirical or first-
principles total-energy methods.1,13 To date, most of the the-
oretical calculations of TOEC have used the method of ho-
mogeneous deformation. In this method, the changes in
stress or energy due to a homogeneous strain are calculated.
The elastic constants are determined as strain derivatives of

the calculated stresses or energy. Previous determinations of
TOEC using this method include a variety of calculations for
metals using pseudopotentials14–16 or interatomic
potentials.17,18

The use of first-principles quantum mechanics calcula-
tions to determine TOEC was first introduced by Nielson and
Martin.19,20 Using the stress theorem21 within density-
functional theory, they incorporated first-principles quantum
mechanics calculations into the method of homogeneous de-
formation to obtain the SOEC and TOEC for several crystals
having the diamond structure. More recently, the TOEC for
several zinc-blende-type crystals have been calculated using
first-principles methods.22

However, the theoretical developments presented in Ref.
22 were specific to the case of cubic symmetry and there is a
need to extend the first-principles calculations to crystals
having lower symmetry. Therefore, in this paper, we gener-
alize the previous approach22 to provide a useful method for
calculating the complete set of SOEC and TOEC for single
crystals of arbitrary symmetry from first-principles calcula-
tions via the application of homogeneous deformations. Our
approach, while related to that of Nielsen and Martin,19,20

contains features that enhance its usefulness for calculations
involving complex crystal lattices. We apply our method to
cubic silicon and trigonal �-quartz crystals to illustrate its
general applicability.

II. THEORETICAL METHOD

In this work, we have combined continuum elasticity
theory with first-principles total-energy calculations to calcu-
late the elastic constants of single crystals. Therefore, the
basic continuum elasticity theory, the first-principles compu-
tational method, and the incorporation of the first-principles
calculations into the method of homogeneous deformation
used in our work are summarized in the following sections.
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A. Continuum elasticity theory

Our method for calculating elastic constants draws upon
finite-strain continuum elasticity theory. A detailed discus-
sion regarding the summary presented here can be found in
the monographs by Thurston2 and Wallace.3

Let ai be the initial coordinates of some material element.
After a homogeneous elastic deformation, the same material
element has coordinates xi=xi�aj�. The deformation applied
to the material is described by the deformation gradient

Fij =
�xi

�aj
. �1�

From the deformation gradients, we define finite Lagrangian
strains

�ij =
1

2�
k

�FkiFkj − �ij� . �2�

Because the Lagrangian strains are symmetric, they contain
no information regarding rigid rotation of the material ele-
ment.

Elastic constants are defined by expanding the internal
energy per unit mass U as a Taylor series in elastic strain at
constant entropy,2,3,23

�0U��ij,S� = �0U�0,S� +
1

2�
ijkl

Cijkl
S �ij�kl

+
1

6 �
ijklmn

Cijklmn
S �ij�kl�mn + ¯ , �3�

where �0 is the initial mass density of the material and the
initial state is assumed to be stress-free. An expansion in
terms of symmetric strains is appropriate because the internal
energy is invariant under rigid rotations.3 The expansion co-
efficients in the Taylor series of Eq. �3� are the isentropic
elastic constants:2,3,23

Cijkl
S = �0� �2U

��ij��kl
�

�=0
�SOEC� , �4�

Cijklmn
S = �0� �3U

��ij��kl��mn
�

�=0
�TOEC� . �5�

Similarly, isothermal elastic constants are obtained by ex-
panding the Helmholtz free energy per unit mass at constant
temperature,2,3

�0F��ij,T� = �0F�0,T� +
1

2�
ijkl

Cijkl
T �ij�kl

+
1

6 �
ijklmn

Cijklmn
T �ij�kl�mn + ¯ . �6�

In our first-principles calculations, deformations are applied
under isothermal conditions, so that Eq. �6� is applicable.
However, our calculations are performed at an effective tem-
perature of 0 K, so that

F��ij,T = 0K� = U��ij,T = 0K� . �7�

Because our calculations produce isothermal elastic con-
stants at zero temperature, care must be exercised in compar-
ing with the experimentally determined isentropic elastic
constants at room temperature.

To calculate elastic constants using the method of homo-
geneous deformation, a specified Lagrangian strain tensor �ij
is applied to the crystal and the energy for the strained crys-
tal is calculated. The elastic constants are extracted by fitting
Eq. �3� �which is equivalent to Eq. �6� at T=0K� to the cal-
culated energy-strain results. The first-principles calculation
of total energy for the strained crystals is discussed next.

B. First-principles total-energy calculations

In the work presented here, the first-principles calcula-
tions were carried out using a plane-wave-pseudopotential
method based on density-functional theory �DFT�. However,
our overall framework places no restriction on the particular
first-principles total-energy method being used. Therefore,
other first-principles methods, such as Hartree-Fock theory24

or DFT using atomic basis sets,24,25 could be used as well.
The ability of our approach to accommodate a variety of
total-energy methods and basis sets is a feature that is not
available in the previous work by Nielson and Martin.19,20

All of our DFT plane-wave-pseudopotential calculations
were performed using the ABINIT code.26,27 Within the
local-density approximation �LDA�, the Ceperley-Alder
exchange-correlation28 parametrized by Perdew and Wang29

was used. We found that LDA is sufficient to describe the
elastic properties of silicon and quartz crystals, since includ-
ing a gradient correction had no significant effect on
the theoretical results. The ion-electron interaction was
modeled by Troullier-Martins norm-conserving nonlocal
pseudopotentials30 in the Kleinman-Bylander separable
form.31 The numerical pseudopotential used in this work was
generated by the Fhi98PP program.32 The energy cutoff for the
plane-wave basis was 50 Ry for silicon and 160 Ry for
quartz. We found that these high energy cutoffs were neces-
sary to provide well-converged values for the elastic con-
stants. The Brillouin zone for silicon and quartz crystals was
sampled using 6�6�6 and 4�4�4 grids of k points, re-
spectively, following the Monkhorst-Pack scheme.33 Further
increasing either the number of k points or the plane-wave
energy cutoff did not change our theoretical results.

The equilibrium theoretical crystal structures for silicon
and quartz at ambient conditions were determined by mini-
mizing the Hellmann-Feynman force on the atoms and the
stress on the unit cell. The modified Broyden algorithm34,35

was used in the geometry optimization. The tolerance for the
total-energy difference in the self-consistent-field calculation
was 10−9 a.u., and the tolerance for the maximum force in
the geometry optimization was 10−6 a.u. The known space
groups for the silicon and quartz crystals were maintained
during the optimization of the initial crystal ground states.
However, the homogeneous strains applied in this work typi-
cally lowered the symmetry of the crystal. To obtain the unit
cell for the strained crystal, the deformation gradient Fij was
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applied to the dimensionless crystal lattice vectors ri to ob-
tain the deformed lattice vectors ri�:

ri� = Fijr j . �8�

The deformation gradients Fij were determined from the La-
grangian strains �ij by inverting Eq. �2�. For a given �ij, the
associated deformation gradients Fij are not unique, the vari-
ous possible solutions differing from one another by a rigid
rotation. The lack of a one-to-one relationship between �ij
and Fij is not a concern because the calculated energy is
invariant under rigid rotations, as discussed in Sec. II A. For
a given applied deformation, relaxation of the crystal internal
coordinates for the deformed unit cell was performed to ob-
tain the minimized energy for the strained crystal.

C. Calculation of elastic constants

To calculate elastic constants, we introduced Lagrangian
strain tensors �ij for cubic and trigonal crystals that result in
an energy expansion �Eq. �3�� containing a small number of
second- and third-order elastic constants. The �ij used in this
work are listed in the Appendix, where we have written the
nonzero components of each Lagrangian strain tensor in
terms of a single parameter �. This feature, though not sci-
entifically profound, has an important practical benefit. In-
serting these strains into Eq. �3�, the elastic energy per unit
mass can be written as an expansion in the strain parameter
�,

�0�U��� − U�0�� =
1

2
A2�2 +

1

6
A3�3 + O��4� , �9�

where U�0� is the energy for the initial state. The coefficients
A2 and A3 are combinations of second- and third-order elastic
constants of the crystal, respectively. These coefficients are
obtained by fitting Eq. �9� to plots of energy versus �. The
use of a single strain parameter � enables a one-parameter fit
to be performed, even for strain tensors with many nonzero
components. For each strain tensor chosen, the calculations
were performed by increasing the magnitude of � in steps of
0.0025 up to a maximum strain �max. Some sample results
from this procedure are shown in Fig. 1, which plots the
elastic energy density increase �0�U���−U�0�� for an
�-quartz single crystal as a function of � for strain tensor
�A8� from the Appendix. A polynomial fit using Eq. �9� up to
fourth order yields the coefficients A2=100.16 GPa and A3
=−852.18 GPa.

The relationship between the coefficients A2 and A3 and
the second- and third-order elastic constants are presented in
Table I for the specific strain tensors listed in the Appendix.
Results are shown for both cubic and trigonal crystals. In
Table I and in subsequent discussion, we make use of the
contracted �Voigt� notation2,3,23 �11→1, 22→2, 33→3, 23
→4, 13→5, and 12→6� for the tensor indices to write Cijkm
and Cijklmn as C�� and C��	, respectively. For a given single
crystal, the number of independent SOEC and TOEC de-
pends on the crystal symmetry,36 with the number of inde-
pendent SOEC and TOEC increasing with decreasing crystal

symmetry. For example, a cubic crystal has three indepen-
dent SOEC and six independent TOEC, while a trigonal
crystal has six SOEC and 14 TOEC.36

To obtain the complete set of SOEC and TOEC, the fitted
values for the coefficients A2 and A3 for each strain tensor
are equated with the corresponding combination of elastic
constants from Table I to generate a system of simultaneous
linear equations. The solution of these equations determines
the SOEC and TOEC. To obtain a solvable system of equa-
tions for the TOEC, the number of applied strain tensors
must be as large as the number of independent
TOEC of the crystal �six for cubic crystals and 14 for trigo-
nal crystals�.

An important parameter in these calculations is the maxi-
mum strain parameter �max included in the polynomial fit. In
our work, the fitted coefficient A2 for the second-order term
was very stable and was almost independent of the range of
fitting. However, the coefficient A3 was more sensitive to
�max. To illustrate this feature, several TOEC of silicon are
plotted in Fig. 2 as a function of the �max used in the fitting.
The figure shows that the results from the polynomial fit
converge for maximum strain parameters �max above a cer-
tain magnitude �approximately 0.0175 for silicon� and is in-
sensitive to ��max� over a certain range �approximately
0.0175–0.030 for silicon�. For maximum strain parameters
��max� above this range, the contribution from higher-order
elastic constants �beyond the TOEC� becomes important so
that the fitted coefficients are again sensitive to the �max
value. Therefore, we chose ��max�=0.025 for silicon. Simi-
larly, we found ��max�=0.035 to be a reasonable choice for
quartz.

III. APPLICATIONS

A. Silicon

As a specific application of the method, we first per-
formed calculations for the SOEC and TOEC of silicon,

FIG. 1. The calculated change in elastic energy density
�0�U���−U�0�� for �-quartz single crystals as a function of the
strain parameter � �negative in compression� for strain tensor �A8�
defined in the Appendix. A polynomial fit up to fourth order yields
�0�U���−U�0��=50.08�2−142.03�3+781.42�4.
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which is a well-studied cubic crystal having the diamond
structure. Thus, we could compare our results with previous
studies.19,37,38 After structural optimization, our LDA calcu-
lations predict the equilibrium lattice constant to be a
=5.38 Å, in reasonable agreement with the experimental lat-
tice constant a=5.43 Å.39 In Table II, we compare our cal-
culated elastic constants with experimental results37,38 and
with previous DFT calculations.19 In the previous calcula-

tions, four of the third-order elastic constants �C111, C112,
C123, and C456� and one combination �C144+2C166� were ob-
tained. Overall, good agreement is found between our theo-
retical calculations and the experimental results for both
SOEC and TOEC. Careful examination shows that our re-
sults agree better with the experimental results than the pre-
vious DFT calculations.19 In the case of the SOEC, the pre-

TABLE I. The coefficients A2 and A3 in Eq. �9� as combinations of second- and third-order elastic
constants for cubic and trigonal crystals. The strain tensors are defined in the Appendix.

Strain A2 A3

Cubic crystal

A1 C11 C111

A2 2C11+2C12 2C111+6C112

A3 3C11+6C12 3C111+18C112+6C123

A4 C11+4C44 C111+12C144

A5 C11+4C44 C111+12C166

A6 12C44 48C456

Trigonal crystal

A1 C11 C111

A2 2C11+2C12 4C111+6C112−2C222

A3 2C11+2C12+4C13+C33 4C111+6C112+6C113+6C123+6C133−2C222+C333

A4 C11+4C14+4C44 C111+6C114+6C144+8C444

A7 C11 C222

A8 C33 C333

A9 C11+2C13+C33 3C113+3C133+C222+C333

A10 4C44 8C444

A11 2C11−2C12+C33 6C113−6C123+C333

A12 C11−4C14+4C44 −6C114−12C124+12C155+C222+8C444

A13 C11+4C44 12C144+C222

A14 C33+4C44 C333+12C344

A15 C11+2C13+4C14+C33+4C44 C111+3C113+6C114+3C133+12C134+12C144+C333

+12C344+8C444

A16 2C11+2C12+4C44 4C111+6C112+12C144+12C155−2C222

FIG. 2. Third-order elastic constants of silicon as a function of
the maximum strain ��max� included in the polynomial fit.

TABLE II. Comparison of theoretical and experimental values
for the second- and third-order elastic constants for silicon �in units
of GPa�.

Present work LDAa Expt.b Expt.c

C11 162.07 159 165.64 165.77

C12 63.51 61 63.94 63.92

C44 77.26 85 79.51 79.62

C111 −810 −750 −795±10 −825±10

C112 −422 −480 −445±10 −451±5

C123 −61 �0 −75±5 −64±10

C144 31 15±5 12±25

C155 −293 −310±5 −310±10

C444 −61 −80 −86±5 −64±20

aReference 19.
bReference 37.
cReference 38.
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vious DFT calculations underestimate C11 and C12 by about
4% and overestimate C44 by about 7%, while the deviation of
our theoretical values for C11, C12, and C44 from the experi-
mental values38 is 2.2%, 0.6%, and 2.9%, respectively. For
the TOEC, C111, C112, C123, and C456 from our calculations
are almost within the uncertainty �about ±10 GPa� of the
experimental data, while for C144 and C166, the discrepancy
between the theoretical and experimental values is about
20 GPa. On the other hand, the previous DFT calculations19

underestimate C111 by about 60 GPa and overestimate C112
by about 35 GPa. Moreover, the previous calculations pre-
dict C123�0, whereas the experimental value is −64 GPa
�Ref. 38� or −75 GPa.37

B. �-quartz

As an example of the application of our method to non-
cubic crystals, we performed calculations for �-quartz
�SiO2�, because experimental data are available for
quartz.40,41 The crystal structure of �-quartz is trigonal, with
space group P3121. The lattice constants for the trigonal unit
cell from our calculations are a=4.85 Å and c=5.35 Å,
while the measured lattice constants are a=4.91 Å and c
=5.40 Å.39 Due to the trigonal symmetry of �-quartz, there
are six independent SOEC and 14 independent TOEC.36

These SOEC and TOEC have been measured in previous
experiments.40,41 However, we are unaware of any previous
theoretical calculations for the TOEC of quartz. Using the
method described above, 14 strain tensors �see the Appendix
and Table I� were applied to the quartz crystal and the com-
plete set of 14 TOEC were determined. Because �-quartz is
piezoelectric, elastic constants determined under conditions
of constant electric field are distinct from those determined
under constant electric displacement. However, in our calcu-
lations, as in the experimental work,41 we assume that the
difference between constant field and constant displacement
is negligible for the elastic constants of quartz.

The theoretical values for the elastic constants are com-
pared with experimental results in Table III. For the SOEC,
our LDA calculations show good agreement with the experi-
mental values �within 	10% for the larger values�. For the
TOEC, our theoretical calculations reproduce most of the
measured elastic constants reasonably well �within 	10%
for TOEC with absolute values 
200 GPa, or within 30 GPa
for many of the smaller TOEC�. The discrepancy between
theory and experiment for C114, C124, and C155 is somewhat
larger. The reason for this is not clear because we obtained
similar values for these same elastic constants using several
different strain tensor combinations. However, the discrep-
ancy might be related to the application of shear strains to
the crystal, because the agreement with experimental values
is generally better for those elastic constants that result from
strain tensors where no shear deformation is involved �i.e.,
C111, C222, C333, C112, C113, C133, and C123�.

Despite the existing discrepancy, the overall reasonable
agreement between theoretical and experimental TOEC dem-
onstrates the usefulness of our method for a noncubic crystal.
Moreover, our method provides a general approach for de-
termining higher-order elastic constants and is not limited to

third-order elastic constants. For example, as shown in Fig.
1, the polynomial coefficient fitted for the fourth-order term
yields C3333=A4=24�781.42 GPa�=18 754 GPa for quartz,
which compares well with an experimental value of C3333
=17 481 GPa obtained from shock wave loading
experiments.42 In general, very few higher-order elastic con-
stants �beyond the TOEC� are available experimentally.

C. Discussion

Overall, the elastic constants obtained from our first-
principles calculations agree well with the experimentally
measured values. This good agreement is in spite of the fact
that our calculations yielded isothermal elastic constants at
T=0 K, while the experiments measured isentropic elastic
constants at room temperature. For silicon, the thermal-
expansion coefficient is small relative to metals and ionic
solids, which reduces the effect of thermal contributions to
the elastic stiffness. For quartz, the thermal-expansion coef-
ficients are larger. However, the difference between the zero
temperature, isothermal elastic constants, and the room tem-
perature isentropic elastic constants is likely to remain small
because the stiffness change encountered in going from T
=0 K to room temperature �which typically reduces the elas-
tic constants� tends to offset the changes due to conversion
from isothermal to isentropic conditions �which increases the
elastic constants�.

Regarding the theoretical method, our approach is similar
to that used in previous first-principles calculations by Niel-

TABLE III. Comparison of theoretical and experimental values
for the second- and third-order elastic constants for quartz �in units
of GPa�.

Present work Expt.a

C11 77.48 86.8

C12 9.65 7.04

C13 9.22 11.91

C14 −18.70 −18.04

C33 100.16 105.75

C44 54.95 58.2

C111 −234 −210±7

C222 −347 −332±8

C333 −852 −815±18

C112 −306 −345±6

C113 13 12±6

C114 −382 −163±5

C123 −264 −294±5

C124 133 −15±4

C133 −325 −312±7

C134 −21 2±4

C144 −150 −134±7

C155 −36 −200±8

C444 −191 −276±17

C344 −80 −110±7

aReferences 40 and 41.
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son and Martin.19,20 In their calculations, Nielson and Martin
determined the TOEC by fitting the calculated crystal stress
to a stress-strain relationship obtained by differentiating Eq.
�3�. As discussed by Nielson,20 fitting theoretical stresses,
rather than the total energy, requires fewer first-principles
calculations to determine the SOEC and TOEC. For large
systems, this economy of computational effort can be of con-
siderable importance. However, fitting the theoretical stress
also has several shortcomings. First, some quantum chemis-
try or solid-state physics codes �e.g., CRYSTAL,24 DMOL,25 and
WIEN2K �Ref. 43�� are unable to directly calculate the stress
on the crystals, which severely limits their usefulness with
the stress-based method. Second, we find that fitting the
energy-strain relation is more robust numerically than fitting
the stress-strain relation, i.e., the coefficients derived from
fitting the calculated total energy are less sensitive to the
details of computations compared to the stress-based ap-
proach. As we found with quartz crystals, this robustness of
the fitting process is of particular importance for lower-
symmetry crystals. Furthermore, because of the greater sen-
sitivity of the stress-based procedure, fitting of the elastic
constants up to fourth order by this method often produces
unreliable results. For example, fitting the stress-strain curve
for quartz under the strain tensor �A8� in the Appendix, in-
cluding terms involving the fourth-order constants, yields
C333=615 GPa and C3333=16 109 GPa. In contrast, fitting
the energy-strain curve yields C333=852 GPa and C3333
=18 754 GPa, which compare more favorably with the ex-
perimental values of C333=815±18 GPa �Ref. 41� and
C3333=17 481±340 GPa.42 Similar behavior is also observed
for other TOEC such as C111 and C222. Therefore, our
energy-based approach, while requiring a larger number of
calculations, is more widely applicable than the previous
stress-based approach and appears to be more robust for cal-
culations involving lower-symmetry crystals.

IV. SUMMARY AND CONCLUSIONS

A general method has been developed for calculating the
second-order elastic constants �SOEC� and third-order elastic
constants �TOEC� for single crystals of arbitrary symmetry.
In this method, which generalizes previous theoretical
work22 specific to cubic crystals, first-principles total-energy
calculations were performed for crystals under various ho-
mogeneous elastic deformations, the applied strains being
characterized by a single parameter. The elastic constants
were extracted from a polynomial fit to the energy versus
strain data. Using this method, we determined the SOEC and
TOEC for silicon crystals, with our calculations providing
superior agreement with experimental data compared to pre-
vious first-principles results.19 To demonstrate the method
for a noncubic crystal, the SOEC and TOEC of �-quartz
single crystals were determined. With the exception of a few
TOEC, the overall agreement with experimental results for
quartz is good.

Comparing our approach to previous work, we found that
fitting the energy-strain curve results in a more robust proce-
dure compared to fitting the stress-strain curve as was done
previously,19,20 with the energy-strain results being less sen-

sitive to the details of the total-energy calculations. Further-
more, with the energy-strain approach, implementation is
possible using first-principles codes that are unable to di-
rectly determine the stress in the crystal. The theoretical
method presented here is applicable to single crystals of any
symmetry. However, it is expected to be particularly useful
for crystals with low symmetry and/or low yield strength,
where experimental measurement of the complete set of
TOEC is difficult.
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APPENDIX

Below, we list the Lagrangian strain tensors �ij used in
this work. For silicon crystals, the strain tensors �A1�–�A6�
were used, while the strains �A1�–�A4� and �A7�–�A16� were
used for �-quartz crystals:

�ij = 
� 0 0

0 0 0

0 0 0
� , �A1�

�ij = 
� 0 0

0 � 0

0 0 0
� , �A2�

�ij = 
� 0 0

0 � 0

0 0 �
� , �A3�

�ij = 
� 0 0

0 0 �

0 � 0
� , �A4�

�ij = 
� � 0

� 0 0

0 0 0
� , �A5�

�ij = 
0 � �

� 0 �

� � 0
� , �A6�

�ij = 
0 0 0

0 � 0

0 0 0
� , �A7�

�ij = 
0 0 0

0 0 0

0 0 �
� , �A8�
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�ij = 
0 0 0

0 � 0

0 0 �
� , �A9�

�ij = 
0 0 0

0 0 �

0 � 0
� , �A10�

�ij = 
0 � 0

� 0 0

0 0 �
� , �A11�

�ij = 
0 0 0

0 � �

0 � 0
� , �A12�

�ij = 
0 0 �

0 � 0

� 0 0
� , �A13�

�ij = 
0 0 �

0 0 0

� 0 �
� , �A14�

�ij = 
� 0 0
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