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Characteristics and signatures of dipole vortex in ferroelectric nanodots are determined via the use of
first-principles-based simulations and by analytical developments. For instance, the dependency of such vortex
on size, shape, material, and temperature is provided. Moreover, peculiar features associated with such vortex,
such as unique behaviors of the inhomogeneous and homogeneous strains and of the induced electric fields, are
revealed. Finally, energetics of interacting vortices is also discussed.
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I. INTRODUCTION

Recently, first-principles-based simulations predicted the
existence of an unusual phenomena in nanodots of ferroelec-
trics, that is, the formation of a vortex structure for their
electrical dipoles below a critical temperature.1–3 Similar to
magnetic nanostructures that also possess a vortex structure
for their magnetic dipoles �which is usually referred to as the
curling state�,4–6 the possibility of switching the chirality of
the vortex in ferroelectric nanostructures opens exciting
opportunities for designing “wunderbar” nanomemory
devices.2,7 Interestingly, while ab initio studies2,7 suggested
original ways to allow a practical control of the vortex
chirality �namely, by using an inhomogeneous static electric
field7 or a time-dependent magnetic field2�, dipole vortex in
nanoferroelectrics remains to be experimentally found—to
the best of our knowledge. One plausible reason for this lack
of finding may be �in addition to the inherent difficulty in
growing nanoferroelectrics� the current paucity of knowl-
edge about the possible “signatures” of a dipole vortex. For
instance, one may wonder how an electric field produced by
a vortex differs from the one generated by a polarized
sample. Similarly, it may be worthwhile to know if the strain
associated with the vortex structure is dramatically different
than the one associated with a spontaneous polarization.
Other important and related issues that are poorly known �if
not completely unknown� are the dependency of the vortex
structure on the shape of the dot as well as on the material
forming the dot, the energy landscape associated with vorti-
ces, or the energetics of interacting vortices.

The aim of this paper is to provide characteristics and
signatures of dipole vortices in ferroelectric nanodots by per-
forming first-principles-based computations as well as by de-
riving analytical expressions for electric fields generated by a
vortex structure. This paper is organized as follows. Section
II describes the ab initio method we used. In Sec. III, impor-
tant atomistic, elastic, and energetic characteristics of vortex
are revealed. Sections IV and V focus on the electric field
produced by a vortex structure inside and outside a ferroelec-
tric nanodot, respectively. Section VI discusses the energet-
ics of interacting dipole vortices, while a summary is pro-
vided in Sec. VII. An Appendix is also offered for better
understanding the origins of some formula given in Secs. V
and VI.

II. EFFECTIVE HAMILTONIAN APPROACH

Here, we mostly study nanodots made of disordered
PbZr0.4Ti0.6O3 �PZT60�, being Pb-O terminated at all sur-
faces. We also investigate nanodots made of BaTiO3 �BT�,
being Ba-O terminated at all surfaces, for the sake of com-
parison with PZT60 nanodots. The total energy of such sys-
tems is written as

Etot�ui,vi,�H� = EHef f�ui,vi,�H� + ��
i

�Edep� · Z*ui, �1�

where ui is the local soft mode in the unit cell i of the dot,
whose product with the effective charge Z* yields the local
electrical dipole in this cell, while �H and vi are the homo-
geneous strain tensor and inhomogeneous strain-related vari-
ables in unit cell i, respectively.8

EHef f represents the intrinsic �effective Hamiltonian� en-
ergy of ferroelectric nanodots. Its analytical expression is the
one of Ref. 8 for BT bulk and of Ref. 9 for PZT60 bulk
�while its first-principles-derived parameters are those of
Ref. 10 for BT and of Ref. 9 for PZT60�, except for two
main modifications. The first modification consists in adding
energetic terms associated with the direct interaction be-
tween the vacuum surrounding the dot and both the surface
dipoles and inhomogeneous strain near the surface.1,11 The
second modification consists in replacing the �reciprocal-
space-based� matrix associated with long-range dipole-dipole
interactions in the bulk8 by the corresponding �real-space-
based� matrix characterizing dipole-dipole interactions in the
dot, implying that no supercell periodic boundary conditions
are needed to simulate the dot. Such matrix is given in Refs.
3 and 12 and corresponds to ideal open-circuit �OC� condi-
tions. Such electrical boundary conditions naturally lead to
the existence of a maximum depolarizing field �denoted by
�Edep� and determined from the atomistic approach of Ref. 3�
inside the dot. The second term of Eq. �1� mimics a screen-
ing of �Edep� via the � parameter. More precisely, the re-
sidual depolarizing field resulting from the combination of
the first and second terms of Eq. �1� has a magnitude equal to
�1−�� � �Edep��. �=0 thus corresponds to ideal OC condi-
tions, while an increase in � lowers the magnitude of the
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resulting depolarizing field, and �=1 corresponds to ideal
short-circuit �SC� conditions for which the depolarizing field
has vanished.

Technically, we perform 2�104 Monte Carlo sweeps to,
first, equilibrate the system, and then, another 2�104 Monte
Carlo sweeps to obtain the statistical averages for a given
temperature. The strain tensor is allowed to fully relax,
which implies that we mimic stress-free nanodots. Typically,
the temperature is decreased in small steps down to 1 K in
order to get the equilibrium ground-state properties.

III. CHARACTERIZATION OF A DIPOLE VORTEX

A. Dipole patterns

As was indicated in Refs. 1–3 and 7, stress-free ferroelec-
tric nanodots under open-circuit-like conditions exhibit a
ground-state structure consisting of a vortex for their local
dipoles. Such striking ground state is shown in Fig. 1 for 6
�6�6 and 12�12�12 PZT60 dots, i.e., for two cubic nan-
odots of lateral size around 24 and 48 Å, respectively, as
predicted by our effective Hamiltonian method. Figure 1 in-
dicates that no spontaneous polarization exists for the ferro-
electric dots exhibiting the vortex pattern. This contrasts with
magnetic dots for which a dipole vortex also exists but with
a core possessing a magnetization.13 The reason behind such
difference lies in a stronger exchange interaction and weaker
cubic anisotropy in magnets in comparison with
ferroelectrics.1–3,7

Figure 1 also indicates that increasing the size in ferro-
electric dots results in having a larger proportion of dipoles
aligned, or close to be aligned, along four possible �001�
directions with respect to those significantly rotating away
from �001� in this vortex pattern. �Note that �001� directions
are the possible directions for the polarization in the �tetrag-
onal� ground state of bulk PZT60.14� As a result, one can also
think of the vortex structure of large ferroelectric dots as
being made of four different domains, each having dipoles
aligned along a specific �001� direction, with 90° domain
walls between the domains—which is a solution that was
actually proposed many years ago by Kittel.15

We also compare in Fig. 2 the dipole patterns obtained in
a 12�12�12 PZT60 dot and a 12�12�12 BT dot, mainly
to know if the fact that PZT60 and BT bulks have different

ground states with dipoles lying along different directions
�BT bulk has a rhombohedral ground state with dipoles
pointing along a �111� direction� affects the vortex structure
in the corresponding nanodots. Interestingly, Fig. 2 reveals
that the direction of the vortex in the dots is a possible di-
rection of the polarization in the bulk, namely, the direction
of the vortex in the PZT60 nanodots is along a �001� direc-
tion while it is along a �111� direction in the BT dot. This
implies that the direction of the dipoles in the BT nanodot
lies in a 	111
 plane. As a result, dipoles in the ground state
of the BT nanodot are not parallel to any possible direction
of the dipoles in the ground state of BT bulk �these dipoles
are mostly directed along �011� directions in the BT dot, as
indicated in Fig. 2�b��. Another striking difference between
BT bulks and nanodots consists in the number of phase tran-
sitions: the bulk is known to experience three phase transi-
tions �namely, paraelectric cubic-to-ferroelectric tetragonal,
ferroelectric tetragonal to ferroelectric orthorhombic, and
ferroelectric orthorhombic-to-ferroelectric rhombohedral8�
when decreasing the temperature, while we numerically
found that there is a single transition in the investigated BT
nanodot. This single transition is from a paraelectric state to
a state exhibiting the vortex structure shown in Fig. 2�b�.

The dipole vortex can also exist in nanodots of different
shapes. For instance, Fig. 3 shows such vortex for PZT60
dots having rectangular �16�16�8 and 12�24�12�,
spherical �16�16�16�, and pyramidal �16�16�8� shapes.
The rectangular and pyramidal dots have vortices directed
along the shortest �c� axis, while the vortex in the spherical
dot can be oriented along any �001� direction �because of
symmetry considerations�. Interestingly, the dipoles in the
rectangular dots mostly all lie along four possible �001� di-
rections, while larger deviation of some dipoles from �001�
can be seen in a spherical dot. One can also see that the
bigger �12�24�12� rectangular dot has two vortices with
opposite directions, which contrasts with the case of the
shorter �16�16�8� rectangular dot showing only one vor-
tex. In the bigger rectangular dot, the dipole flux between the
vortices is uniform, as in elongated cylinders2 and in arrays
of ferroelectric dots embedded in less polarizable media.16

Short-range and elastic interactions are responsible for such
antiphase orientation, since �as we will see in Sec. VI� the
long-range dipole-dipole interaction favors a parallel orien-
tation of the vortices.

FIG. 1. �Color online� �001� Dipole vortex in a stress-free
6�6�6 �left� and 12�12�12 �right� nanodots of PZT60 at 1 K
under open-circuit conditions.

FIG. 2. �Color online� Cross section of a dipole vortex in a
stress-free 12�12�12 dot �under open-circuit conditions� made of
�a� PZT60 in a 	001
 plane and �b� BaTiO3 in a 	111
 plane at 1 K.
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B. Strain

Figure 4 shows the �1, �2, �3, and �6 components of the
total strain tensor �that is, containing homogeneous and in-
homogeneous parts� in a 12�12�12 nanodot of PZT60 at a
low temperature. The other components, in Voigt notation,
are negligible and thus not shown. One can clearly see that
the component of the strain tensor associated with the direc-
tion of the vortex �i.e., �3� is rather homogeneous and small,
while the other displayed components exhibit significant
changes inside the dot because of the coupling between the
dipoles making the vortex and the strain.8 For instance, we
numerically found that �1 is large in the regions of the dot

having dipoles oriented along x and −x, while it is much
smaller in the domains having the local modes in the y and
−y directions. Interestingly, such coupling implies that the
nanodot having the dipole vortex directed in the z direction is
more elongated in the directions perpendicular to z than
along the z direction. Such feature can be guessed from Fig.
4 and is clearly further revealed by Fig. 5 that shows the 	�H

homogeneous strain versus temperature. One can see that
�H,3 is smaller than �H,2=�H,1, below the temperature at
which the vortex pattern forms �which is around 600 K�. In
other words, the tetragonal axial ratio c /a is lower than 1 for
vortex in dots, which contrasts with the axial ratio in tetrag-
onal systems exhibiting either a spontaneous polarization14

or the condensation of antiferrodistortive motions.17 Such
unique strain feature may be put in use to experimentally
identify the vortex structure in ferroelectrics.

Figure 4 also indicates that the largest magnitudes of the
�1 and �2 total strains are achieved in the area close to the
center of the vortex �because of the elastic elongation of all
four domains constituting the vortex�, and that these magni-
tudes are considerably larger than the corresponding homo-
geneous strain. Such large enhancement of the local strain
may lead to the appearance of cracks in the center of the dot
as proposed by Tikadzumi.18 We have found that one possi-
bility to avoid the large strain at the origin of the dipole
vortex is to cut a hole in the center of the dot, that is, to make
a ring. Figure 6 shows the result of our computation for the
�1 component of the total strain tensor for a cubic nanodot
12�12�12 with a cylindrical hole of 6�6�12 dimension
in the middle. One can see that this strain in such a nanoring
adopts a much smaller maximum value, and has a much
weaker deviation with respect to the homogeneous strain
�equal to 0.01�, than the corresponding strain component of
the cubic nanodot. �It is interesting to realize that making
holes in the middle of nanodots made of magnets has also
been mentioned in the literature.19 However, in that case, it is
to create a perfect vortex structure �rather than to decrease
the local strain magnitude� since the center of a magnetic

FIG. 3. �Color online� The dipole pattern obtained in our Monte
Carlo computation at 1 K for stress-free spherical 16�16�16 �a�,
pyramidal 16�16�8 �b�, rectangular 12�12�24 �c�, and rectan-
gular 16�16�8 �d� nanodots made of PZT60 and under open-
circuit conditions.

FIG. 4. Total strain �in Voigt notation� in the middle �001�
atomic plane in a stress-free cubic 12�12�12 nanodot made of
PZT60 �under open-circuit conditions and having the toroidal mo-
ment oriented along z�, as computed by the Monte Carlo method at
1 K: �a� �1, �b� �2, �c� �3, and �d� �6.

FIG. 5. Homogeneous strain versus temperature in a stress-free
cubic 12�12�12 nanodot made of PZT60 and under open-circuit
conditions. The temperature has been rescaled in order to match the
experimental Curie temperature of bulk PZT.
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nanodot has a magnetized core that works against the vortex
structure, especially in small nanodots.�

Obviously, large local strain “only” occurs if the electros-
triction coefficients are large, or equivalently, if the coupling
between dipoles and strain is significant. Inversely, one may
wonder if neglecting such coupling can lead to the disappear-
ance of the vortex structure. In order to check this possibility,
we switched off the electrostriction interactions during the
simulations, but still obtained the dipole vortex structure al-
beit with a weaker magnitude of the dipoles. This indicates
that the coupling between strain and dipoles favors the vor-
tex structure, but is not the main cause of the existence of
such vortex. Such cause originates from depolarizing field
effects.1–3,7

C. Toroidal moment and potential wells

The vortex patterns in ferroelectric nanoparticles can be
characterized by a G toroidal moment,2,20

G =
1

2N � ri � pi, �2�

where ri and pi are the vector locating the cell i and the
dipole moment of this cell, respectively. N is the number of
B sites. Interestingly, G in ferroelectric dots is an axial vec-
tor, and thus does neither change under the inversion of
space nor is altered under time inversion symmetry. On the
other hand, because of the difference in symmetry between
electric dipoles versus magnetic dipoles, the toroidal moment
of magnetic dots is a polar vector and thus breaks both the
space and time inversion symmetry.20

For the vortices shown in Fig. 1, the direction of G in the
PZT60 dots coincides with one of the �001� axes. Due to the
cubic symmetry of these dots, the toroidal moment can also
be parallel or antiparallel to any other �001� direction with

equal probability. In other words, the ground state is six
times degenerated. To have an idea about the magnitude of
the potential barriers between these six states, we first per-
formed several Monte Carlo �MC� computations for a 12
�12�12 stress-free nanodot of PZT60 under open-circuit
electrical boundary conditions. Such computations provide
us with �at least� three ground states �to be denoted by states
1, 2, and 3� associated with different directions for the toroi-
dal moment. More precisely, the angle made by the toroidal
moments of states 1 and 2 is 90°, while the toroidal moments
of states 1 and 3 are exactly opposite in direction �i.e., their
angle is 180°�. We then construct two new sets of configu-
rations, to be denoted by states 4 and 5, for which

ui
�4� = cos2���ui

�1� + sin2���ui
�2� �3�

and ui
�5� = cos2��/2�ui

�1� + sin2��/2�ui
�3�, �4�

where ui
�1�, ui

�2�, ui
�3�, ui

�4�, and ui
�5� are the local modes at the

B-sites i in states 1, 2, 3, 4, and 5, respectively. � is an angle
that is practically varied by small steps from zero to 90°
�respectively, 180°� to sample all the states 4 �respectively, 5�
continuously connecting state 1 and state 2 �respectively,
state 3�. Note that the toroidal moment of states 4 and 5
makes an angle of � with respect to G of state 1. For each
angle �, we then perform MC simulations at small tempera-
ture, keeping the values of the local modes in state 4 �respec-
tively, 5� as those given by Eq. �3� �respectively, Eq. �4�� but
allowing the homogeneous and inhomogeneous strains to re-
lax in order to minimize the total energy. Figure 7 shows this
latter quantity at the end of the MC procedure, and reveals
that �1� the potential wells are separated by relatively large
barriers, and �2� the 180° barrier �that involves a paraelectric
state located halfway between states 1 and 3� is higher than
the 90° one �located halfway between states 1 and 2�.

FIG. 6. The �1 component of the total strain �in Voigt notation�
in the middle �001� atomic plane in a stress-free cubic 12�12
�12 PZT60 nanodot �under open-circuit conditions� with a 6�6
�6 cylindrical hole in the middle, as computed by the Monte Carlo
method at 1 K.

FIG. 7. Total energy of a stress-free 12�12�12 PZT60 nan-
odot at 1 K �under open-circuit conditions� versus the � angle �see
text�.
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IV. LOCAL FIELD INSIDE CUBIC NANODOTS

The local electric field Ei produced at the i site by all the
dipoles of the dot but the one of site i is shown in Fig. 8 for
a 12�12�12 PZT60 nanodot under open-circuit and stress-
free boundary conditions. One can see that the local field Ei
inside the dot is highly anisotropic and adopts a vortex pat-
tern. Interestingly, we found that this microscopic field Ei is,
on average, close to �1/3�0� Pi, where �0 is the dielectric
permittivity of vacuum and Pi is the local polarization at the
site i. �Practically, Pi is calculated as Z*ui /a3, where ui is the
local mode at that site, Z* is the dynamical charge, and a is
the 0 K cubic lattice constant of the primitive unit cell.� For
instance, the electrostatic energy computed from −�iPi ·Ei,
with Ei= �1/3�0� Pi, differs by less than 10% from the value
directly obtained in our numerical simulations. The local
field Ei is thus rather strong at any site i. This strength, as
well as the overall vortex pattern made by the Ei of all the
different sites, can be thought of as binding the dipole of site
i to the vortex dipole pattern. In other words, this field draws
the ions from their centrosymmetrical positions to adopt po-
sitions associated with a vortex structure. Moreover, the vor-
tex pattern of Ei depicted in Fig. 8 implies that the average
electric field produced by the dipole vortices inside the nan-
odots vanishes, which explains the appearance of the dipole
vortices in nanodots instead of a uniform polarization �that
would lead to an energetically costly depolarizing field�.

Furthermore, it was previously shown3 that the dipole
vortices can occur even if a large amount of the maximum
depolarizing field is screened by, e.g., external short-
circuited metallic plates. Let � be the parameter indicating
the amount of screening of the depolarizing field, see Sec. II.
In other words, � can range between 0 and 1, with �=0
corresponding to no screening at all �ideal open-circuit con-
ditions�, while �=1 corresponds to a full screening �ideal
short-circuit conditions�. Figure 9 shows the total energy of a

PZT60 12�12�12 cubic nanodot as a function of � and
obtained at 1 K. As discovered in Ref. 3, two kinds of dipole
pattern exist: for large �, the dot is polarized, while �
smaller than �0.9 gives rise to the vortex structure. These
two patterns are schematized in the insets of Fig. 9. Interest-
ingly, decreasing � from its ideal short-circuit value of 1 first
results in decreasing the total energy of the polarized dot in
response to the increasing-in-magnitude depolarizing field
�with the dipoles decreasing in magnitude when � de-
creases�. Then, as soon as the vortex structure is created, the
average electric field inside the vortex pattern is null, and
thus no depolarizing field exists. As a result, the total energy
�as well as the magnitude of the dipoles� does not depend on
� anymore.

V. ELECTRIC FIELD PRODUCED BY A LATTICE
DIPOLE VORTEX OUTSIDE THE DOT

Let us now discuss the electric field produced by the di-
pole vortex outside the dot. For that, we first consider the
electric field acting at a position R and produced by dipoles
pi located at ri with respect to a selected point �to be chosen
as the origin�:

E = −
1

4��0�*�
i

Ri
2pi − 3�piRi�Ri

Ri
5 . �5�

Here �piRi� is the dot product of pi and Ri, Ri=R−ri, Ri is
the magnitude of the vector Ri, �0 is the vacuum permittivity,
and �*= ��1+2� /3 �with �1 being the high-frequency �elec-
tronic� dielectric permittivity of the dot�, which technically
corresponds to dots of spherical shape surrounded by
vacuum �see Appendix�.

The expansion of this field with respect to ri, for �ri�
� �R�, gives E=�kE

	k
, where the upper index k
�=1,2 ,3 , . . . � represents the order of ri appearing in E	k
. For
instance, the first-order term is given by

FIG. 8. Local field Ei �see text� in a 	001
 plane of a stress-free
cubic PZT60 12�12�12 nanodot at 1 K and under open-circuit
conditions.

FIG. 9. �Color online� Dependence of the total energy of a
stress-free cubic PZT60 12�12�12 nanodot on the � screening
parameter at 1 K. The insets show the two different kinds of dipole
pattern existing for the possible � values.
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E�1� = −
3

4��0�*R5�
i
���riR�pi + �piR�ri� − �piri�R

+ 5
�piR��riR�R

R2  . �6�

In case of a symmetrical vortex �such as the ones displayed
in Fig. 1� possessing the rotation by 90° �about the axis along
which the toroidal moment lies� as one of its symmetry ele-
ments, this first-order contribution to the electric field is ex-
actly zero. If such symmetry element is absent, Eq. �6� indi-
cates that magnitude of the electric field decreases with the
distance as 1/R4.

Interestingly, the first nonvanishing contribution to the
electric field produced by a symmetrical vortex appears only
in the third order. It is straightforward to prove that the ex-
pression of E	3
 can be written as

E	
�3� =

N

4��0�*R6�15

2 �

�

�M	�

 + M�	

�n�

+ 15�

�

M��
	n
 +
15

2 �

�

M��

n	

−
105

2 �

��

M��
�n
n�n	 −
35

2 �

��

n
n�n��M	
��

+ 3M�
�	� −
105

2 �

��

M��

n�n�n	

+
315

2 �

���

M�
��n
n�n�n�n	� , �7�

where N is the number of B sites in the dot; 	, 
, �, �, and
� denote Cartesian components �=x ,y ,z�; n
=R
 /R with R


being the projection of R along the 
 axis, and where the M
fourth-rank tensor is given by

M	
�� =
1

N
�

i

pi	ri
ri�ri�. �8�

Here, we will consider the case when the toroidal moment is
along the z axis, with the symmetry of the dipole pattern

corresponding to the 4, 4̄, or 4 /m point group. In that case,
the M tensor has the following eight nonzero independent
components:21 M1111=M2222, M1222=−M2111, M1122=M2211,
M1233=−M2133, M1133=M2233, M1211=−M2122, M3333, and
M3311=M3322. It is important to realize that Eq. �8� implies
that the M tensor is invariant by permutation of its last three
indices. As a result, one should also take into account �in the

equalities above� all other components resulting from the
permutation of the last three indices.

Dipole vortices can also possess additional symmetry, be-
yond the symmetry elements of the considered point groups.
For instance, the operation consisting in, first, applying a
mirror element located in a ZX plane and, then, inverting the
direction of each dipole moment leaves the vortex structures
shown in Fig. 1 unchanged. We analytically and numerically
found that, owing to this additional �combined� symmetry,
the following M tensor components vanish: M1111=M1122
=M1133=0. As a result, there are only five independent com-
ponents of M for the considered vortices.

These components of the M tensor are given in Table I for
stress-free 6�6�6 and 12�12�12 nanodots of PZT60 un-
der open-circuit conditions at 1 K, as obtained by our Monte
Carlo computations. For the sake of comparison, Table I also
reports the toroidal moments in these dots. First, one can
notice that the M3333 and M3311 components are much
smaller than the other components, which results from the
small values of the z component of the local modes in the
corresponding vortex. Second, the M1222, M1233, and M1211
components all increase � four times faster than the toroidal
moment when increasing the size of the nanodot, which is
related to the fact that the M tensor involves the third order
in ri �see Eq. �8�� while the toroidal moment involves the
first order in ri �see Eq. �2��.

Figure 10 presents the predicted temperature dependency
of the M1222 and M1211 components for a 12�12�12 stress-

TABLE I. The independent components of the M tensor �in e Å4� and the toroidal moment �in e Å2 and
oriented along the z axis� for two stress-free cubic nanodots of PZT60 at 1 K and under open-circuit
conditions, as obtained in our Monte Carlo computations.

Dot’s size M1222 M1233 M1211 M3333 M3311 M1222−3M1211 Gz

6�6�6 791 459 293 −48 −25 −88 −10.6

12�12�12 8394 4788 2863 −232 −120 −195 −27.0

FIG. 10. �Color online� The temperature dependency of the
M1222 and M1211 components of the M tensor �see text� together
with the toroidal moment in a 12�12�12 stress-free dot of PZT60
under open-circuit conditions, as obtained in our Monte Carlo com-
putations. The temperature has been rescaled in order to match the
experimental Curie temperature of bulk PZT.
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free nanodot of PZT60 under open-circuit conditions. The
behavior of the toroidal moment as a function of temperature
is also shown in this figure. The temperature dependency of
the components of the M tensor is similar to that of the
toroidal moment: the M tensor components and the toroidal
moment both sharply grow in magnitude below a critical
temperature, and the ratio between the components of the M
tensor and the toroidal moment is practically independent of
temperature below the critical temperature.

Moreover, to better appreciate the characteristics of a field
produced by a dipole vortex �such as the ones shown in Fig.
1�, we found convenient to introduce the tangential E

�3� and
radial E�

�3� components of the field �in the cylindrical coordi-
nate system� defined as

E
�3� = − sin Ex

�3� + cos Ey
�3�,

E�
�3� = cos Ex

�3� + sin Ey
�3�, �9�

where  is the polar angle �in cylindrical coordinates� of the
R vector at which the field is acting. Note that we numeri-
cally found that the z component of the field produced by the
dipole vortex in PZT60 is approximately zero, due to the
symmetry of the vortex and due to the fact that the z com-
ponent of the dipole moments is very weak. The analytical
expressions of E

�3� and Er
�3� can be derived from Eq. �7� as

follows:

E
�3� =

35N

8��0�*R6 �M1222 − 3M1211�n�
3 cos 4 ,

E�
�3� =

35N

8��0�*R6 �M1222 − 3M1211�n�
3 sin 4 , �10�

where n�=�nx
2+ny

2.
Figure 11 schematically shows the electric field produced

by a dipole vortex in an XY plane at some fixed distance
from the center of the XY cross section of the dot. �Note that
the displayed pattern of this field does not qualitatively de-
pend on the chosen radius nor on the chosen XY plane.� One
can see from this figure and Eqs. �10� that this field oscillates
�when varying �, and thus leads to a vanishing value when
averaging it over . The tangential component of the field
vanishes at the angles =� /8+n� /4, where n=0,1 , . . . ,8,
while the radial component adopts maximal magnitude at
these angles. Inversely, the tangential component of the field
is maximum �with this maximum magnitude being equal to
the maximum amplitude of the radial component� when the
radial component is annihilated. The peculiar field pattern
schematized in Fig. 11 is a definite signature of the dipole
vortex �and also of its chirality�.

Notice that Eqs. �10� indicate that the radial and tangential
components of the field neither depend on M1233 nor on
M1222 or M1211, separately, but are rather functions of the
M1222−3M1211 difference. Interestingly, Table I further re-
veals that such difference, and thus the maximum amplitude
of the radial and tangential components of the field, increases
by a similar ratio as the toroidal moment when increasing the
size of the nanodot.

Figure 12 displays the result of our Monte Carlo compu-

tation for the electric field produced by a stress-free 12
�12�12 dot of PZT60 under open-circuit boundary condi-
tions, as a function of the distance with respect to the center
of the dot in the z=0 plane and for =0. One can see that,
close to the dot boundary, the magnitude of this field reaches
rather high values �about 108 V/m�. Moreover, the depen-
dence of this field on the distance is numerically found to be
very close to 1/R6 for larger distance, consistent with Eqs.
�10� �which were derived for large enough distances�. Such
dependency strongly differs with the corresponding one of
1/R3 associated with a polarization.

FIG. 11. �Color online� A schematic representation of the angu-
lar dependency of the electric field produced by a stress-free cubic
ferroelectric nanodot under open-circuit conditions. The central
square marks the XY cross section of the dot, while the arrows
inside this dot show the direction of the dipoles in the different
domains. The arrows outside the dot display the direction and rela-
tive magnitude of the electric field produced by the dipole vortex in
an XY plane at some fixed distance from the center of the XY cross
section of the dot.

FIG. 12. �Color online� Dependency of the electric field magni-
tude produced by a 12�12�12 stress-free dot of PZT60 �under
open-circuit conditions� at 1 K on the distance with respect to the
center of the dot �in units of the a lattice constant of the five-atom
unit cell� as obtained in our Monte Carlo computations. The straight
line shows the fit by A /R6 �where A is a constant�.
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VI. INTERACTING DIPOLE VORTICES

Let us now discuss two interacting cases rather than an
isolated vortex. The first case we have in mind is a symmetri-
cal vortex of one dot interacting with a single dipole moment
located outside the dot, while the second case corresponds to
the interaction of two symmetrical vortices, each associated
with its own dot.

The interacting energy EGp for the first case can be evalu-
ated as a dot product between the field produced by the vor-
tex and the dipole moment p located at some distance from
the dot. In other words,

EGp = − E�3� · p , �11�

where E�3� is given by Eqs. �9� and �10�. Equation �10� in-
dicates that this interaction energy decreases with the dis-
tance as 1/R6, since p does not depend on the distance.

The interaction energy between two vortices, EGG, cen-
tered at two different dots, can be extracted from the Appen-
dix:

EGG = −
9�3

4��0��1 + 2�3���2 + 2�3�

��
ij

Rij
2 �pi

�1�p j
�2�� − 3�pi

�1�Rij��p j
�2�Rij�

Rij
5 , �12�

where ri
�1� �respectively, r j

�2�� locates the site i �respectively,
j� of the first �respectively, second� dot with respect to the
center of the first �respectively, second� dot. pi

�1� and p j
�2� are

the dipole moments at these sites i and j, respectively. Rij

=R−ri
�1�+r j

�2�, where R is the vector joining the centers of
the two dots. Finally, �1, �2, and �3 are the high-frequency
�electronic� dielectric constants in the first and second dots
and in the intermediate region, respectively �see Appendix�.

We numerically use the expression given by Eq. �12� as
well as obtain an analytical expression for this interaction
energy �by performing a multipole expansion of Eq. �12�
with respect to ri

�1� and r j
�2�� to determine three interesting

energetic features of two interacting vortices. Such features
are shown in Fig. 13 and are as follows: �1� their interaction
energies decrease with the distance as 1/R9 �this is a rather
weak interaction, which may be useful to avoid the cross-
talking problem between two dots, i.e., one can imagine
switching the chirality of the first vortex without modifying
the chirality of the second vortex2�; �2� the lowest interacting
energy of two vortices corresponds to the case in which the
toroidal moments of the two dots are parallel to each other
and are aligned in a direction perpendicular to the R vector
joining the center of the two dots; and �3� choosing R=z
�where z is the unit vector along the z axis� and forcing the
toroidal moments of the two dots to be aligned either along z
or −z results, via the minimization of EGG, in the toroidal
moments of these two vortices being antiparallel. These three
features dramatically differ with the corresponding results
for two interacting polarizations.

VII. CONCLUSIONS

In summary, we performed first-principles-based simula-
tions to provide atomistic details of the dipole vortex struc-

ture in ferroelectric nanodots, and its dependency on the
dot’s size and shape and on the material from which the dot
is made of. These simulations, as well as analytical develop-
ments, also revealed the energy landscape associated with
toroidal moments or striking features generated by the vortex
structure. Examples of such features are �1� the peculiar spa-
tial distribution of the inhomogeneous strain, �2� the axial
ratio being lower than 1 if the formation of dipole vortex
generates a tetragonal state, �3� the local electric field inside
the dot exhibiting a vortex pattern, and �4� the electric field
produced by a �symmetrical� dipole vortex outside the dot
being described by a fourth-rank tensor and having peculiar
signatures �such as a distance dependency of 1/R6 and oscil-
lating in space when changing the polar angle for a fixed
distance�. Finally, we also determined and discussed the en-
ergetics of a vortex interacting with a dipole moment, and of
two interacting vortices located in two different nanodots.

We hope that our discoveries �i� will help experimentalists
in determining the vortex in ferroelectrics nanodots, �ii� will
lead to a better understanding of �and stimulate further stud-
ies of� dipolar nanostructures, and �iii� will encourage scien-
tists and engineers to use vortex properties in advanced
nanoscale devices.
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FIG. 13. �Color online� Dependency of the interaction energy
between vortices centered at two different 12�12�12 dots at 1 K
on the distance �in units of the lattice constant of the five-atom unit
cell�, as obtained in our Monte Carlo computations. The straight
lines show the fit by A /R9 �where A is a constant�. The lower curve
corresponds to the ground state, for which the toroidal moments of
the two dots are parallel to each other and are aligned in a direction
perpendicular to the R vector joining the center of the two dots. The
upper curve corresponds to the case for which the toroidal moments
of the two dots are opposed to each other and face the other dot.
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APPENDIX: INTERACTION BETWEEN DIPOLES
LOCATED IN DIFFERENT POLARIZABLE SPHERES

Let us consider two polarizable spheres embedded in a
polarizable media. We will denote �1 and �2 the high-
frequency �electronic� dielectric constant of the first and sec-
ond spheres, respectively, while �3 is the high-frequency
�electronic� dielectric constant of the media. Let us further
assume that there are dipole moments d�1� and d�2� in the first
and second spheres, respectively. In the Onsager theory,22 the
field produced by the first sphere at a position r, located in
the intersphere region, is

Emedia = −
1

4��0�*

r2d�1� − 3�d�1�r�r
r5 , �A1�

where �0 is the vacuum’s permittivity, r is the length of r,
and �*= ��1+2�3� /3. Interestingly, Eq. �5� �which was the
starting point to determine the field produced by a dipole
vortex in the vacuum surrounding the dot� can be derived
from Eq. �A1� when choosing a media made of vacuum, i.e.,
for which �3=1 and thus �*= ��1+2� /3.

Moreover, if the two spheres are far from each other, the
field, Esphere2, produced by the d�1� dipole of the first sphere

in the second sphere can be considered to be approximately
uniform. In that case, the Onsager theory22 gives the follow-
ing expression:

Esphere2 = −
9�3

4��0��1 + 2�3���2 + 2�3�
r2d�1� − 3�d�1�r�r

r5 ,

�A2�

and the interacting energy between the two dipoles located in
the two spheres can be simply computed as the dot product
between −Esphere2 and the dipole moment in this second
sphere:

Edip =
9�3

4��0��1 + 2�3���2 + 2�3�

�
r2�d�1� · d�2�� − 3�d�1�r��r · d�2��

r5 . �A3�

Note that this expression coincides with the expression for
the energy of the dipole-dipole interaction in a uniform me-

dia �that is, 1
4��0�

r2�d�1�·d�2��−3�d�1�r��r·d�2��

r5 � when choosing �=�1

=�2=�3.
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