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It is shown that the elastic energy far from a point defect in an isotropic solid is mainly shear elastic energy.
The calculation, which is based on a standard dipole expansion, shows that less than 10% of the distant point
defect energy is associated with volume changes, no matter how large or small the bulk modulus is compared
to the shear modulus.
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An isotropic solid just has two independent elastic con-
stants, the shear modulus G and the bulk modulus K. It has
been suggested that when a physical property depends on
both G and K, the dependence on the shear modulus is often
the most important.1 Examples of this “shear dominance”
were given by Granato2 in his profound paper from 1992;
they include the fact that defect energies vary only slightly
with the bulk modulus, but are linearly dependent on the
shear modulus �for Cu, he estimated that only about 3% of
the energy of an interstitial is bulk elastic energy�. In Ref. 1
which dealt with the non-Arrhenius viscosity of viscous liq-
uids and its possible explanation in terms of temperature-
dependent instantaneous elastic constants,3 the following re-
sult was proved: If temperature dependence is quantified in
terms of log-log derivatives, at least 92% of the temperature
dependence of the molecular vibrational mean-square dis-
placement over temperature comes from the instantaneous
shear modulus; at most 8% is due to that of the instantaneous
bulk modulus.

The question is how general shear dominance is: Is it
coincidental or is it a fairly general theme of three-
dimensional elasticity? Of course, a property such as the
Poisson ratio depends equally on the bulk and shear moduli,
so it cannot be a completely general phenomenon. Neverthe-
less, there are so many examples that shear dominance de-
serves to be investigated. As one contribution to shed light
on this question, we calculate below the maximum ratio of
bulk elastic energy to shear elastic energy far from an arbi-
trary point defect in an isotropic solid. Based on a standard
dipole expansion,4 it is shown that less than 10% of the dis-
tant elastic energy is bulk elastic energy, i.e., associated with
density changes.

Although our main objective is to identify the dominant
contribution to the elastic energy far from a point defect, it
should be noted that according to Zener’s “strain energy
model”5 most energy associated with a point defect is elastic.
Elastic energies of point defects fall off rapidly �as r−6� as
evident from Eshelby’s famous solution of the problem of an
ellipsoidal inclusion,6–12 a result which is general. This
means, of course, that most of the elastic energy is located
close to the point defect and that a dipole expansion is not
realistic for calculating the total defect energy. Nevertheless,
our results may be taken as an indication of what contributes
most to the total defect energy, the shear or the bulk elastic
energies in the defect surroundings. Moreover, the nature of
the far-field deformation is important for understanding and

modeling the long-range properties of defect-defect interac-
tions. If, for instance, the displacement field is dominated by
shear displacements, a defect will only interact weakly with
another defect far away if the latter is dilatational close to its
center.

Some time ago, Andreev discussed the unique topological
characteristics of point defects in three dimensions.13 A com-
prehensive review of point defect properties emphasizing the
vacancy was given by Kraftmakher.14 The question of the
nature of the deformation far from a point defect is relevant
also for applications in materials science, e.g., for under-
standing fracture.9 In its macroscopic description, the ques-
tion of the far-field properties of a point defect was studied
because of its importance for understanding the mechanical
properties of polycrystals and composites.4,6,15 In this con-
text, Onaka recently calculated the elastic shear energy due
to a macroscopic point defect �an “inclusion”�,16 but did not
study the general case to find the ratio between shear and
bulk energy �see also Ref. 12�. Garikipati et al.17 recently
discussed the role of continuum elasticity in determining the
formation energy of a point defect utilizing Eshelby’s result
for the work done by an external stress during the transfor-
mation of an inclusion;6 this interesting paper also elucidated
the limitations of this approach as compared to atomistic
calculations. We mention these works also to emphasize the
continuing interest in the far-field properties of point defects
and their macroscopic analogies.

First some preliminaries: We use the standard Einstein
summation convention. The point defect is located at the
origin and is modeled as follows: Imagine a small sphere of
radius R surrounding the point defect with all atoms within
the sphere removed. The effect of the defect on the surround-
ings is represented by a suitable distribution of external
forces Fi applied to the surface of the sphere. We define the
tensor �ij as the following integral over the surface of the
sphere �where dA is the area element�:

�ij = �
�y�=R

Fi�y�yjdA . �1�

Because the force distribution models the effect of the atoms
within the sphere on the surroundings, the angular momen-
tum of the force distribution must be zero. This implies that
� is symmetric: �ij =� ji.
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Sharp brackets � �r, referred to as “averages,” denote inte-
grations over the surface of a sphere with radius r�R cen-
tered at the origin. The following identities become useful
later:

�xixj�r =
r2

3
�ij �2�

and

�xixjxkxl�r =
r4

15
��ij�kl + �ik� jl + �il� jk� . �3�

If ��xx� is an abbreviation of �ijxixj, we find from these
identities that

���xx��r =
r2

3
tr � �4�

and

���xx�2�r =
r4

15
��tr ��2 + 2 tr��2�� . �5�

Moreover, if �x is the vector whose ith component is �ijxj,
we have

���2xx��r = ���x�2�r =
r2

3
tr��2� . �6�

As mentioned, far from the defect both the bulk and the
shear elastic energies vary with the distance from the origin
as r−6. When one averages over a sphere with radius r�R,
the result for both the bulk and the shear elastic energy must
be a scalar varying with distance as r−6 that is of second
order in the forces Fi. It follows from the calculation below
that these two scalars are both uniquely determined by G, K,
and the � matrix. Consequently, because these two scalar
functions are of second order in the forces, the ratio of bulk
to shear elastic energy must have the following general struc-
ture:

Bulk elastic energy

Shear elastic energy
=

A�tr ��2 + B tr��2�
C�tr ��2 + D tr��2�

. �7�

Defining �=tr��2� / �tr ��2, this ratio is �A+B�� / �C+D��.
The quantity � varies between 1/3 and �: By normalizing
we may assume that tr �=1; if the eigenvalues are denoted
by �i, we thus have �1+�2+�3=1 and �=�1

2+�2
2+�3

2.
From this it follows that � varies between 1/3 and �. Since
the energy ratio of Eq. �7� is a monotonous function of � and
since perfect isotropy ��=1/3� implies zero bulk elastic en-
ergy �in this case, the displacement field is radially symmet-
ric varying as r−2, which implies no volume changes�, the
maximum bulk to shear elastic energy ratio arises in the limit
�→�. Thus in the calculation below, we may ignore all
terms with tr � and keep only terms with a tr��2� factor.

Poisson’s ratio � is defined18 by

� =
1

2

3K − 2G

3K + G
. �8�

If a force F is applied at the origin of an isotropic elastic
continuum, the displacement field at the point �x� ,y� ,z�� is
given18 by

u�x�,y�,z�� �
�3 − 4��F + �F · n��n�

r�
, �9�

where r�2=x�2+y�2+z�2 and n�= �x� ,y� ,z�� /r� is the unit
vector pointing from the origin to �x� ,y� ,z��. It is convenient
to introduce the variable

	 	 2 − 4� , �10�

in terms of which Eq. �9� becomes

ui � �	 + 1�
Fi

r�
+

Fjnj�ni�

r�
. �11�

We proceed to perform a standard dipole expansion by
first noting that if y is the coordinate for a point on the small
sphere surrounding the defect ��y � =R� and x is the coordi-
nate for the point of interest far away, to lowest order in
�y � / �x � =R / �x� we have, if r	�x�,

1

�x − y�
= �x2 + y2 − 2x · y�−1/2

= r−1
1 − 2
x · y

r2 �−1/2

= r−1 +
x · y

r3 . �12�

Similarly,

1

�x − y�3
= �x2 + y2 − 2x · y�−3/2

= r−3
1 − 2
x · y

r2 �−3/2

= r−3 + 3
x · y

r5 . �13�

To calculate the displacement field at point x, we first note
that when the force Fi�y� is integrated over the small sphere
radius R, the result is zero. Thus when one integrates over
the small sphere, the first term of Eq. �11� to lowest order in
1/r becomes

�	 + 1��
�y�=R

Fi�y�
�x − y�

dA = �	 + 1��
�y�=R

Fi�y�
x · y

r3 dA

= �	 + 1�r−3�ijxj . �14�

Similarly, to lowest order the second term of Eq. �11� gives
the following contribution to the displacement field:
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�
�y�=R

Fj�y��xj − yj��xi − yi�
�x − y�3

dA

= �
�y�=R

Fj�y�
r−3 + 3
x · y

r5 ��xj − yj��xi − yi�dA

= − r−3� jixj − r−3� j jxi + 3r−5� jlxjxlxi. �15�

Thus, if proportionality is replaced by equality for simplicity
of notation—which is ok because we only wish to calculate
an energy ratio and have already dropped the overall propor-
tionality constant of Eq. �9�—we find

ui = 	r−3�ijxj − r−3 tr �xi + 3r−5� jlxjxlxi. �16�

Next we calculate the stain tensor. First, note that if
�k is the partial derivative with respect to xk, we have
�kr

−n= �−n�r−�n+2�xk. Thus,

�kui = − 3	r−5�ijxjxk + 	r−3�ij� jk + 3r−5 tr �xixk

− r−3 tr ��ik − 15r−7� jlxjxlxixk + 3r−5� jl� jkxlxi

+ 3r−5� jlxj�lkxi + 3r−5� jlxjxl�ik. �17�

All terms in this expression vary with r as r−3. Consequently,
this term is common to the bulk and shear elastic energies
and may be dropped from our calculation of their ratio. The
calculation is simplified notationally by putting r=1 �or,
equivalently, replacing xi by xi /r�. When this convention is
adopted, the strain tensor is given by �ignoring the factor 2 in
the strain tensor definition, uik= ��iuk+�kui� /2�,

uik = 2�− tr � + 3��xx���ik + 2	�ik + 6 tr �xixk − 30��xx�xixk

− 3	��ijxjxk + �kjxjxi� + 6�kjxjxi + 6�ijxjxk

= 2�− tr � + 3��xx���ik + 2	�ik + �6 tr � − 30��xx��xixk

+ �6 − 3	���ijxjxk + �kjxjxi� . �18�

Throwing out terms with tr �, we end with the following
expression for the strain tensor:

uik = 6��xx��ik + 2	�ik − 30��xx�xixk

+ �6 − 3	���ijxjxk + �kjxjxi� . �19�

To calculate the bulk elastic energy, we need the trace of
this which, when again terms with tr � are dropped, is given
as �xixi=r2 is set equal to unity�,

tr u = 18��xx� − 30��xx� + �6 − 3	�2��xx� = − 6	��xx� .

�20�

The bulk elastic energy density18 averaged over the sphere
with radius r �subsequently set equal to unity� is, when use is
made of Eq. �5� and terms with tr � are ignored, given by

Bulk elastic energy =
K

2
��tr�u��2�r

=
K

2
36	2���xx�2�r

=
12

5
K	2 tr��2� . �21�

To find the shear elastic energy, we need the transverse
part of the strain tensor, uik

� �in terms of which the shear
energy density is Guik

�uik
�� defined as:18

uik
� 	 uik −

1

3
tr�u��ik = 2�3 + 	���xx��ik + 2	�ik

− 30��xx�xixk + 3�2 − 	���ijxjxk + �kjxjxi� . �22�

Squaring and summing all elements of the transverse strain
tensor, which is required to calculate the shear elastic energy,
lead to the following �xixi=r2 is again set equal to unity�:

uik
�uik

� = 4�3 + 	�2��xx�23 + 4	2 tr��2� + 900��xx�2

+ 9�2 − 	�2�2��x�2 + 2��xx�2� + 8	�3 + 	���xx�tr �

− 120�3 + 	���xx�2 + 12�3 + 	��2 − 	�2��xx�2

− 120	��xx�2 + 12	�2 − 	�2��2xx� − 180�2 − 	�


��xx�2��xx� . �23�

Averaging this expression �ignoring all tr � terms� leads to

�uik
�uik

��r = �12�3 + 	�2 2

15
+ 4	2 + 900

2

15

+ 18�2 − 	�2
1

3
+

2

15
� − 120�3 + 	�

2

15

+ 24�3 + 	��2 − 	�
2

15
− 120	

2

15
+ 24	�2 − 	�

1

3

− 360�2 − 	�
2

15

tr��2�

=
2

5
�7	2 + 12	 + 108�tr��2� . �24�

Summarizing, we find that

Bulk elastic energy

Shear elastic energy
�

�12/5�K	2

�2/5�G�7	2 + 12	 + 108�

=
K

G

6	2

7	2 + 12	 + 108
. �25�

In terms of the dimensionless variable

k 	
K

G
, �26�

we have 	=6/ �3k+1� which, when substituted into Eq. �25�,
leads to

Bulk elastic energy

Shear elastic energy
�

2k

9k2 + 8k + 4
. �27�

The derivative of the fraction on the right with respect to k is
zero when 2�9k2+8k+4�=2k�18k+8�, implying k=2/3.
Thus the maximum bulk elastic energy is when k=2/3. In
conclusion,
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Bulk elastic energy

Shear elastic energy
�

Bulk elastic energy

Shear elastic energy

k =

2

3
� �

1

10
.

�28�

More typically, k=5/2 leads to a maximum bulk shear ratio
of 20/337, which is roughly 6%.

An important unsolved problem of condensed-matter
physics is the origin of the non-Arrhenius average relaxation
time of glass-forming liquids, where one generally observes
an activation energy that increases quite a lot upon cooling.
One class of theories are the elastic models recently re-
viewed in Ref. 3, according to which the activation energy is
some linear combination of the instantaneous bulk and shear
moduli. As regards the temperature dependence of the acti-
vation energy, the shear modulus completely dominates by
contributing at least 90%1. A so-called flow event—a jump in
configuration space from one to another potential-energy
minumum—is usually localized in real space. Since the sur-
rounding ultraviscous liquid on the short time scale may be
regarded as a solid, the molecular displacements may be re-
garded as those of a point defect �in a disordered solid, al-
beit�. The main result of this Brief Report sheds light on the
nature of flow events, because it once again emphasizes
shear dominance—that the shear properties are much more
important than the bulk.

In an interesting book from 1986, Varotsos and
Alexopoulos �VA� discussed point defect energies in solids,
as well as activation energies for point defect diffusion19.
They concluded that these energies can always be written as
the �isothermal� bulk modulus times a microscopic volume.
Thus, according to VA, point defect energies and activation
energies always scale with the bulk modulus. This result is at
variance with the above calculation. In practical terms, of
course, Poisson’s ratio usually does not vary that much, so
the bulk and shear moduli are roughly proportional. This
means that, in practice, it is not easy to determine whether it
is the bulk or the shear modulus that controls things. VA
explicitly argued in their book that it is the bulk, not the
shear modulus that is important, but they did not base this on
precise calculations similar to the above. We hope the above
calculation may encourage other researchers to look into the
question; perhaps the short-range contribution that was not
taken into account here could be bulk dominated. The idea
that many important physical properties are controlled by
simple quantities like the elastic moduli deserves to be fully
investigated.

This work was supported by the Danish National Re-
search Foundation’s Centre for Viscous Liquid Dynamics
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