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We study the transport properties of interacting electrons in a disordered quantum wire within the framework
of the Luttinger-liquid model. We demonstrate that the notion of weak localization is applicable to the strongly
correlated one-dimensional electron system. Two alternative approaches to the problem are developed, both
combining fermionic and bosonic treatment of the underlying physics. We calculate the relevant dephasing
rate, which for spinless electrons is governed by the interplay of electron-electron interaction and disorder, thus
vanishing in the clean limit. Our approach provides a framework for a systematic study of mesoscopic effects
in strongly correlated electron systems.
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I. INTRODUCTION

The mesoscopics of strongly correlated electron systems
has emerged as an area of great interest to both experimental
and theoretical communities working in the field of nanos-
cale physics. Recently, progress in the manufacturing of nan-
odevices has paved the way for systematic transport mea-
surements of narrow quantum wires with a few or single
conducting channels. The most prominent examples of these
are single-wall carbon nanotubes,1 cleaved-edge,2 V-groove,3

and crystallized-in-a-matrix4 semiconductor quantum wires,
quantum Hall edges running in opposite directions and inter-
connected by means of tunneling,5,6 polymer nanofibers,7

and metallic nanowires.8,9

Much experimental attention has been focused on the
electrical properties of single-wall nanotubes �Refs. 10–25
and references therein�. In particular, evidence has emerged
pointing towards the existence of Luttinger liquids in metal-
lic single-wall carbon nanotubes, as expected for strongly
interacting electrons in one dimension �1D�. Luttinger-liquid
behavior was observed via the power-law temperature and
bias-voltage dependence of the current through tunneling
contacts attached to the nanotubes. In the past few years,
technological advances have made possible the fabrication of
contacts between nanotubes and metallic leads with a very
low contact resistance, which allows one to observe mesos-
copic effects.19–22 Further, techniques to grow very long �of
the millimeter scale� nanotubes have been developed and the
corresponding transport measurements performed.26

On the theoretical side, the challenge is to expand the
ideas that have been developed for mesoscopic disordered
systems on the one hand and for strongly correlated clean
systems on the other. The situation is particularly interesting
in 1D, where both disorder and electron-electron �e-e� inter-
actions, even if they are weak, modify dramatically the large-
scale, low-energy physics of the problem. In a clean wire,
e-e interaction leads to the formation of a Luttinger-liquid
ground state. The properties of the Luttinger liquid without
impurities and in the presence of a single barrier are known
in great detail; see Refs. 27–32 for a review. Much less is
known about the Luttinger liquid in the presence of many
impurities �disordered Luttinger liquids�. The influential

works by Apel and Rice33 and by Giamarchi and Schulz34

have defined the state of the art in this area for two decades.
Recent years have seen a revival of interest in disordered
Luttinger liquids,35–43 largely motivated by the technological
advances mentioned above. However, the very applicability
of such key notions of the mesoscopic physics as weak lo-
calization �WL� and dephasing to a disordered 1D system,
not to mention a detailed analysis of these effects, remained
an open problem. This problem is the subject of the present
paper. Throughout the paper we study spinless �spin-
polarized� electrons. Spin-related effects will be considered
in Ref. 44.

The structure of the paper is as follows. In Sec. II we
summarize the earlier achievements in the mesoscopics of
higher-dimensional systems on the one hand and in the
theory of strongly correlated 1D systems on the other. Sec-
tion III contains an exact formulation of the problem, as well
as a discussion of our strategy in solving it. In Sec. IV we
present the bosonization method and the renormalization-
group technique that we use to account for the Luttinger-
liquid renormalizations. Having analyzed in Sec. V the e-e
inelastic scattering rate in 1D, we turn to the calculation of a
weak-localization correction to the conductivity and the as-
sociated dephasing rate in Sec. VI. We also compare this
dephasing rate with the one that governs the damping of
Aharonov-Bohm �AB� oscillations. Section VII is devoted to
an analysis of the transport properties of a disorder Luttinger
liquid by using an alternative approach—“functional
bosonization”—which allows one to treat the renormaliza-
tion and the inelastic scattering on an equal footing. Our
results are summarized in Sec. VIII. Technical details of the
calculations are presented in several appendixes. Some of the
results of this paper were published in the form of a brief
letter.45

II. BACKGROUND

In this introductory section, we briefly summarize the
known results for higher-dimensional mesoscopic
systems46–51 �Sec. II A� and for strongly correlated 1D
systems27–32 �Sec. II B�. These will serve as a starting point
for our work.
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A. Mesoscopics of higher-dimensional systems

Quantum localization is the most prominent manifestation
of quantum interference in disordered systems. At not too
low temperatures, the localization effects are cut off by in-
elastic processes, resulting in a WL correction52 ��wl to the
Drude conductivity �D,

��wl

�D
� − �

L�
−1

l−1 �dq�
��0Dq2 � −

1

�0D
�ln���/�� , 2D,

�D���1/2, quasi-1D,

�2.1�

where D is the diffusion constant, �0 the density of states, l
the mean free path, � the transport mean free time, L�
= �D���1/2 and �� the interaction-induced dephasing length
and time, respectively. We use the notation �dq�
=ddq / �2��d. Throughout the paper �=1. Another manifesta-
tion of quantum coherence is mesoscopic fluctuations of the
conductance and of other observables.

As far as the e-e interaction in the WL regime is con-
cerned, it is responsible for two distinctly different main ef-
fects. First, it renormalizes elastic scattering on impurities
through the creation of virtual electron-hole excitations
�screening� with a high-energy transfer 	 larger than the
temperature T, T
 �	 �
�F. Here �F is the Fermi energy. At
sufficiently high T �in the ballistic regime T��1�—i.e.,
when the relevant spatial scales are smaller than l—the
screening can be described in terms of a dressing of impuri-
ties by Friedel oscillations53,54 and yields a T-dependent
Drude conductivity.54 At lower T �in the diffusive regime
T��1�, effects of this type generate the Altshuler-Aronov
correction to the conductivity,46

��AA

�D
� − ��

LT
−1

l−1 �dq�
��0Dq2

�
�

�0D
�ln�T�� , 2D,

− �D/T�1/2, quasi-1D,
�2.2�

where LT��D /T�1/2 is the thermal length. This correction is
perturbative both in the effective interaction constant � and
in the disorder strength. The Coulomb interaction corre-
sponds to ��1. The T dependence of ��AA is determined
by the thermal smearing of the distribution function, which
introduces an infrared cutoff on spatial scales of the order of
LT. Using the renormalization-group �RG� approach within
the replicated � model, Finkel’stein extended this theory to
include the interaction nonperturbatively.55

Effects related to the interaction-induced renormalizations
and screening are also responsible for a zero-bias
anomaly46,55 in the tunneling density of states as a function
of electron energy, ����. It is worth noting that, in the case of
a Coulomb interaction, ���� may become strongly
suppressed,55–57

����
�0

� exp�−
1

8�2�0D
�ln2�D2/���� − ln2�D2��	



 1, 2D, �2.3�

where −1 is the screening radius, while the conductivity can
still remain close to its Drude value ���AA/�D�1�.

The second effect of the interaction is inelastic e-e scat-
tering which breaks the phase coherence.46 A key concept in
the localization theory of a disordered Fermi liquid is that of
the dephasing rate ��

−1. The phase-breaking processes are of
crucial importance in the problem of transport since without
dephasing the conductivity of low-dimensional systems
would be zero at any T. Two qualitatively different sources
of dephasing are possible: �i� scattering of electrons by ex-
ternal excitations �in practice, phonons� and �ii� e-e scatter-
ing �at low T the dephasing is mostly due to e-e interactions�.
In either case, at sufficiently high T, the dephasing rate ��

−1 is
high, so that the localization effects are reduced to the WL
correction to the Drude conductivity.

A characteristic energy transfer in the real inelastic pro-
cesses that determine the phase relaxation is restricted by
temperature: �	 �
T, so that the dephasing rate vanishes at
zero temperature. The infrared divergence characteristic of a
diffusive system makes it necessary to introduce a self-
consistent cutoff in the equation for the dephasing rate:46

��
−1 � �2T�

L�
−1

LT
−1 �dq�
��0Dq2

��
�2T

�0D
ln��0D

�2  , 2D,

��2T

�0D
2/3

D1/3, quasi-1D.�
�2.4�

A rigorous calculation necessitates employing the path-
integral technique.58

The different energy scales relevant to the disorder renor-
malization due to virtual processes with T� �	 ���F and to
the dephasing due to real inelastic scattering with �	 �
T
allow for a straightforward separation of these two effects of
e-e interactions. At sufficiently high T, the conductivity

��T� � �D + ��wl + ��AA �2.5�

is close to the Drude value �D. It is worth mentioning that
for weak interactions ���1� the WL correction �Eq. �2.1�
with �� given by Eq. �2.4�	 is much stronger than the
Altshuler-Aronov correction �Eq. �2.2�	. The WL correction
grows with lowering T and eventually becomes strong
����wl � /�D�1� when L� reaches � or, equivalently, when
��

−1 becomes of order ��. Here � is the localization length and
�� is the corresponding energy level spacing. At this tem-
perature, ���AA � /�D�1 for ��1. This means that in a
weakly interacting system strong localization occurs due to
the growth of the interference-induced WL correction. As far
as the behavior of the conductivity in the strongly localized
regime is concerned, see Refs. 59–61.
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B. Strongly correlated 1D electron systems

1. Noninteracting case: Anderson localization

We now briefly recall the peculiarities of 1D noninteract-
ing disordered systems. In the absence of an interaction,
transport in a disordered single-channel 1D gas has been
studied in great detail.62–70 It is known that arbitrarily weak
disorder leads to a localization of all electronic states in this
system, with the localization length � being the mean free
path. The dc conductivity is then zero, ��T��0 for any T,
since the temperature merely determines the distribution
function over the localized states.

The characteristic spatial and temporal scales of the prob-
lem are probed in the absence of interactions by the ac re-
sponse at external frequency �. The appropriate technique
for the calculation of the response, which exploits the sepa-
ration of fast and slow degrees of freedom in the case of
weak disorder, �F��1, was put forward in a pioneering pa-
per by Berezinskii;64 later, alternative approaches were de-
veloped by Abrikosov and Ryzhkin66 and by Berezinskii and
Gor’kov.68 In the limit of low frequency, ���1, the leading
contribution to the ac conductivity is given by the
Berezinskii-Mott formula64,65

Re ����/�D = 4����2ln2���� . �2.6�

In the opposite �ballistic� limit of high frequency, ���1,
the conductivity ���� is approximately equal to the Drude
formula �D���=�D/ �1− i���, with a quantum interference
�WL� correction arising at fourth order in the expansion in
����−1�1. At ���1, the ballistic regime crosses over di-
rectly to the strongly localized regime, Eq. �2.6�, so that the
diffusive regime is absent in the single-channel quantum
wire without e-e interaction.

2. Clean quantum wires with an interaction: Luttinger liquid

The interest in the role of e-e interactions in quantum
wires is largely inspired by the fact that in 1D the interaction
breaks down the Landau’s Fermi-liquid approach. Owing to
the particular geometry of the Fermi surface, systems of di-
mensionality 1 are unique in that the e-e correlations change
the noninteracting picture completely and lead to the forma-
tion of a strongly correlated state. A remarkable example of
the correlated 1D electron phase is the Luttinger-liquid
model �for a review see, e.g., Refs. 27–32�. The Luttinger-
liquid correlations show up in a power-law singularity of the
tunneling density of states at low energy � counted from the
Fermi surface,

���� � �0����/���. �2.7�

Here �0 is the density of states in the absence of an interac-
tion and � is the ultraviolet cutoff �determined by the band
width, the Fermi energy, or the range of interaction�. The
exponent � is determined by the interaction strength and
depends on the system geometry �tunneling into the bulk of a
wire differs from tunneling into the end of a wire�. The sup-
pression of the tunneling density of states in the Luttinger
liquid is similar to the interaction-induced zero-bias anomaly
in higher dimensions, Eq. �2.3�.

According to common wisdom, electronic excitations do
not exist in a Luttinger liquid and a proper language to de-
scribe the strongly correlated electrons is the language of
bosonic excitations. This notion is based on the fact that the
bosonic density fields in a clean Luttinger liquid do not de-
cay in the linearized-spectrum approximation when a finite
curvature of the electron spectrum is neglected.

3. Renormalization of an impurity in a Luttinger liquid

Interactions between oppositely moving electrons gener-
ate charge- and spin-density-wave correlations that lead to
striking transport properties of Luttinger liquids in the pres-
ence of impurities. The density-wave correlations yield a
strong renormalization of an impurity71–76: if the bare
strength of the impurity is small, the renormalized back-
scattering amplitude U�2kF ,�� seen by an electron with en-
ergy � scales as

U�2kF,�� � ��/����a, �2.8�

where a is determined by the interaction strength. As a result,
a single impurity in an infinite Luttinger liquid with a repul-
sive interaction effectively decouples the wire into two inde-
pendent pieces, thus leading to a vanishing linear conduc-
tance at zero temperature. This conclusion remains valid no
matter how weak the interaction is.

4. Many impurities: Disordered Luttinger liquid

The conductivity of a disordered Luttinger liquid was dis-
cussed for the first time more than 30 years ago in Refs.
71–73 in terms of the renormalization of individual impuri-
ties �see also Refs. 77 and 78 for early attempts to construct
the phase diagram of a disordered Luttinger liquid�. In the
beginning of the 1980s, Apel and Rice33 combined the scal-
ing arguments developed for noninteracting systems67,79,80

with the results of the theory of a clean Luttinger liquid.
Later, the problem of transport in a disordered Luttinger liq-
uid was studied by perturbative-in-disorder methods based
on bosonic field theories in Refs. 34, 81, and 82. A small
correction to the quantized conductance of a short quantum
wire due to a Gaussian disorder was derived in Ref. 82 �for a
multichannel wire see Ref. 83�. A detailed exposition of
these issues can be found in a recent lecture course.84

The RG equations for a disordered Luttinger liquid were
derived by Giamarchi and Schulz.34 Their approach bears a
similarity with the Finkel’stein RG55 developed earlier for
higher-dimensional diffusive systems �both RG schemes
treat disorder perturbatively and e-e interactions exactly�.
The flow equations of Ref. 34 describe, in addition to the
renormalization of impurities by interaction �Sec. II B 3�,
also a renormalization of the interaction by disorder. A suf-
ficiently strong attractive interaction was shown to yield a
metal-insulator transition34 at zero T with changing interac-
tion strength. A repulsive interaction was predicted to en-
hance the disorder-induced localization. In the latter case, the
RG equations show that at a certain temperature �such that
LT��� the renormalized disorder becomes strong. This
means that the disordered interacting 1D system enters a
“strong-coupling regime,” where the Drude-like approach
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breaks down. At higher temperatures, these equations de-
scribe the temperature dependence of an effective scattering
time renormalized by an interaction �which can be viewed as
a screening of impurities by Friedel oscillations�, thus yield-
ing a temperature-dependent Drude conductivity

�D�T� � �T/��2a. �2.9�

Recently, a crossover between Eqs. �2.9� and �2.2� with in-
creasing number of channels was studied in Ref. 43.

It is important to emphasize that the RG approach formal-
izes the renormalization of the Drude conductivity due to the
T-dependent screening but does not capture the essential
physics of the Anderson localization. In particular, the RG
equations of Ref. 34 miss the interference effects �coherent
scattering on several impurities� that lead to the WL correc-
tion to the conductivity. As we demonstrate below, it is the
WL correction that governs the temperature dependence of
the conductivity at moderately high temperatures for the case
of weak interaction and eventually drives the quantum wire
into the strong-localization regime with decreasing tempera-
ture. Another related deficiency of the RG scheme of Ref. 34
is the treatment of the scalings with length and u /T as inter-
changeable. While this approach is justified for the “elastic
renormalization” of disorder �i.e., the screening effects�, it
does not properly account for the dephasing �since the
dephasing length L� is in general different from LT; see Secs.
III B 1 and IV C�.

5. Dephasing and localization in a disordered Luttinger liquid

As already mentioned in Sec. II B 4, a key ingredient of
transport theory as regards the WL and the interaction-
induced dephasing in a strongly correlated 1D system is
missing. Some papers �e.g., Refs. 34 and 76� have suggested
that the dephasing length that controls localization effects in
a disordered Luttinger liquid is LT=u /T, where u is the plas-
mon velocity. According to this approach, the interference
effects get strong with lowering T at LT��. An alternative
approach33 is predicated on the assumption that the dephas-
ing rate is determined by the single-particle properties of a
clean Luttinger liquid. On top of that, one might think that
since in the case of linear dispersion the clean interacting
electron system can be equivalently represented in terms of
noninteracting bosons, the interaction should not induce any
dephasing at all. The conductivity would then be exactly zero
at any T. As we demonstrate below, none of the approaches
captures the essential physics of dephasing in the conductiv-
ity of a disordered 1D system.

As for the strongly localized regime, recently Ref. 37
used bosonization to study the problem and concluded that
transport is of variable-range-hopping character. Subse-
quently, Ref. 38 argued that this result requires a nonzero
coupling to a thermal bath, in agreement with Refs. 59–61.

III. DISORDERED LUTTINGER LIQUID

A. Formulation of the problem

Let us now introduce the model we are going to study. We
consider a single-channel infinite wire at sufficiently low

temperatures, much lower than the bandwidth and the Fermi
energy. The effective low-energy theory can then be de-
scribed by the Luttinger model,27–32 with a linear dispersion
of the electronic spectrum �k=kvF, where vF is the Fermi
velocity. We use the notion of right and left movers corre-
sponding to two Fermi points k� ±kF. The fermionic opera-
tors �� are then labeled by �=± for the right and left mov-
ers.

We consider a finite-range �screened� pairwise e-e inter-
action potential V�x−x��. We need only its Fourier trans-
forms at q=0 and q= ±2kF: Vf and Vb, respectively, which
give the amplitudes of forward and backward scattering. In
terms of the g-ology,27,28,32 the interaction in a homogeneous
system is characterized by three coupling constants g1=Vb
�e-e backscattering�, g2=Vf �forward scattering between
right and left movers�, and g4=Vf �forward scattering of
right/left movers on right/left movers�. In several places be-
low, it will be convenient to treat g2 and g4 as independent
parameters.

Next, we introduce weak ��F�0�1� white-noise disorder,
described by the correlation function

�U�x�U�x��� = ��x − x��/2��0�0, �3.1�

where �0 is the elastic scattering time and �0=1/�vF is the
density of states per spin in the absence of interaction. The
scattering problem in 1D can be formulated in terms of back-
scattering and forward-scattering amplitudes Ub�x� and U f�x�,
respectively. It can be shown32,34 that U f�x� can be gauged
out in the calculation of the conductivity. Therefore, from
now on we set U f �0. The correlation functions for Ub�x�
read

�Ub�x�Ub�x��� = 0, �3.2�

�Ub�x�Ub
*�x��� = �U�x�U�x��� . �3.3�

In this paper, we concentrate on spinless electrons, for
which two essential simplifications occur. First, the
interaction-induced backward scattering and forward scatter-
ing relate to each other as direct and exchange processes.
Therefore, the backscattering Vb only appears in the combi-
nation Vf−Vb and thus merely redefines the parameters of the
Luttinger model, formulated27,28 in terms of forward-
scattering amplitudes only. In other words, we can absorb g1
into g2,

ḡ2 � Vf − Vb = g2 − g1, �3.4�

and start our consideration with the following form of the
Hamiltonian:

H = Hkin + Hee + Hdis, �3.5�

Hkin = �
k,�=±

vF��k − kF���
† �k����k� , �3.6�

Hee =
1

2 �
�=±

� dx�n�ḡ2n−� + n�g4n�� , �3.7�
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Hdis =� dx�Ub
*�x��+

†�− + Ub�x��−
†�+� . �3.8�

Here n��x�=��
† �x����x� is the density of the right and left

movers. In what follows we omit the bar over the shifted
coupling g2.

The second simplification is related to the g4 term in Eq.
�3.7�. Naively, one could think it is simply zero, since it
describes a local interaction between identical fermions. In
fact, the situation is slightly more tricky. While yielding no
genuine interaction, this term generates a shift of the velocity
due to a quantum anomaly, vF→vF

* , where

vF
* = vF + g4/2� . �3.9�

This is also straightforwardly seen in the bosonization ap-
proach; see Sec. IV.

Two more points are worth mentioning here. First, all the
parameters of the above Hamiltonian include, in general,
high-energy renormalization effects �similar to the Fermi-
liquid renormalization in higher dimensionalities� and should
be considered as effective couplings of the low-energy
theory. Second, the low-energy theory is only then well-
defined when supplemented by an ultraviolet energy cutoff
�. The latter is determined by the Fermi energy, the band-
width, or the spatial range of interaction in the original mi-
croscopic theory, whichever gives the smallest cutoff.

Therefore, the complete set of parameters defining the
spinless problem includes vF

* , g2, �0, and �, with the inter-
action characterized by a single coupling g2. It is customary
to define the corresponding dimensionless parameter in the
form

K = �1 − g2/2�vF
*

1 + g2/2�vF
* 1/2

. �3.10�

Note that in a 1D system with g2=g4, Eq. �3.10� is identical
to another conventional representation of K in terms of the
bare velocity vF, K= �1+g2 /�vF�−1/2. For the case of a weak
interaction �considered in the present paper�, K�1−�,
where

� = g2/2�vF
* � g2/2�vF � 1 �3.11�

is the dimensionless strength of the interaction.

B. Qualitative discussion: Luttinger-liquid renormalization
vs Fermi-liquid dephasing

Having formulated the model in Sec. III A, we turn now
to a discussion of our strategy in its analysis. In principle,
one could proceed in a number of alternative ways.

�i� First of all, one can bosonize the action and try to
study the transport properties of interacting electrons in the
bosonic language, Sec. IV. While this approach is very pow-
erful for the problem of 1D interacting fermions, it turns out
to be poorly suited for the analysis of transport problems in
the presence of disorder. For this reason, we develop an al-
ternative “two-step procedure.”

�ii� The two-step procedure combines the language of
bosonization for high energies with a fermionic treatment of

processes with low-energy transfers. This method is dis-
cussed on a qualitative level in the remainder of this subsec-
tion and is implemented in Secs. IV and VI below.

�iii� Finally, one more alternative is the “functional
bosonization” approach.85–89 This method also combines the
languages of fermionic �electrons� and bosonic �plasmons�
excitations, but in contrast to the two-step procedure this is
done in a uniform fashion, so that the processes with high-
and low-energy transfers are treated on the same footing.
This method yields results identical to the two-step approach
and is presented in Sec. VII.

Let us describe now the ideas underlying our two-step
approach. The method is based on the separation of two
types of processes: �i� “elastic renormalization” of disorder,
which is associated with virtual transitions with energy trans-
fers �	 ��T, and �ii� inelastic processes with �	 �
T, which
lead to dephasing in quantum-interference effects and thus to
a destruction of the Anderson localization. This separation of
energy scales is very much similar to that in physics of me-
soscopic phenomena in higher-dimensional case; see Sec.
II A.

1. Step 1: Luttinger-liquid renormalization

We begin by considering the Drude conductivity under
the condition that the dephasing time �� be much shorter
than the transport time of elastic scattering off disorder, �.
The source of the strong dephasing may be external �say,
interaction with phonons or Coulomb interaction with “envi-
ronment”� or intrinsic—that is, the inelastic e-e interaction
within the quantum wire. In the latter case, the limit ���� is
achieved at sufficiently high T, as shown below in Sec. VI.
For ����, Anderson-localization effects are strongly sup-
pressed by dephasing.

To leading order in �� /��1, the conductivity is given by
the Drude formula

�D = e2�vF
2� , �3.12�

where � is the compressibility. The Drude conductivity
�3.12� depends on T through a T-dependent renormalization
of the static disorder34,72–75:

��T� = �0�T/��2a. �3.13�

For spinless electrons, the exponent in Eq. �3.13� reads

a = 1 − K � � . �3.14�

In principle, the interplay of disorder and interaction leads to
the renormalization of both disorder, Eq. �3.13�, and
interaction.34 However, the value of � in Eq. �3.14� is given
by the bare interaction constant �the one in a clean system�;
see Sec. IV for details.

The Luttinger-liquid renormalization �3.13� is similar to
the Altshuler-Aronov corrections46 �Eq. �2.2�	 in higher di-
mensionalities. The underlying physics of the elastic renor-
malization of disorder can be described in terms of the
T-dependent screening of individual impurities and scatter-
ing by slowly decaying in real-space Friedel oscillations,
similarly to higher-dimensional systems.53,54 At this level,
the only peculiarity of the Luttinger liquid as compared to
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higher dimensionalities is that the renormalization of � is
more singular and necessitates going beyond the Hartree-
Fock �HF� approach even for the weak interaction.90

Technically, Eq. �3.13� can be derived by a variety of
methods: either fermionic27,74 or bosonic.34,75 In particular, a
conceptually important framework is based on the bosonic
RG procedure developed by Giamarchi and Schulz.34 This
approach allows one to integrate out all energy scales be-
tween � and T, which are responsible for the elastic
Luttinger-liquid renormalization due to virtual e-e scattering
processes. We will discuss the features of the bosonic RG
approach34 relevant to our analysis in more detail in Sec. IV.

The renormalization of � stops with decreasing T at
T��T��1. Physically, this is due to the fact that the long-
range Friedel oscillation are cut off even at zero T on the
spatial scale of the order of the disorder-induced mean free
path. The condition

T��T� � 1 �3.15�

gives the zero-T localization length

� � �0
1/�1+2a�. �3.16�

It is important to stress, however, that Eq. �3.15� does not
correctly predict the onset of localization, in contrast to the
argument made in Refs. 34 and 76. This can be seen, in
particular, by noting that the temperature T��−1 does not
depend on the strength of interaction for small �, whereas it
is evident that for noninteracting electrons there is no
interaction-induced dephasing �the dephasing length is infi-
nite, L�=�� and hence ��T�=0 for any T due to the Ander-
son localization; see Sec. II B 1. The onset of strong local-
ization occurs at L���, as in the case of higher
dimensionality; see the discussion in Sec. II A. The tempera-
ture T1 below which the Anderson-localization effects be-
come strong is determined in 1D by the condition

��T1� � ���T1� . �3.17�

At this temperature, the quantum-interference effects leading
to the WL correction ��wl to the conductivity are no longer
weak,

���wl�T1�� � �D�T1� . �3.18�

2. Step 2: Fermi-liquid dephasing

It is worth stressing that the Luttinger-liquid physics in
the present problem is fully accounted for by Eq. �3.13�; i.e.,
all the Luttinger-liquid power-law singularities are now in-
corporated in the renormalization of ��T�. At this point, we
are left with a system of interacting electrons with a new
effective “Fermi energy” T. These electrons are scattered by
disorder with renormalized �0→��T�, which is still weak for
T��T��1.

What remains after the renormalization is the e-e scatter-
ing with energy transfers �	 �
T. The interaction is thus still
important and leads to real inelastic processes. The physics
of these processes is in essence equivalent to the Fermi-
liquid physics of dephasing in higher dimensionalities. Hav-
ing integrated out the virtual transition, we have to choose a

controllable method of dealing with the dephasing. The
bosonization approach �whose advantage is that it can be
straightforwardly formulated for an arbitrary strength of in-
teraction� is not particularly beneficial here. Although, in
principle, it contains all effects of the Anderson localization
in 1D, the machinery of bosonization is poorly suited to deal
with such ingredients of the localization theory as the inter-
ference and dephasing. Even for noninteracting electrons, it
is by far not straightforward to derive the Anderson localiza-
tion �for instance, to obtain the Berezinskii-Mott formula
�2.6� for the case of weak disorder	 in the language of
bosonization. For this reason, we refermionize the theory at
this step, Secs. V and VI.

IV. BOSONIZATION APPROACH

A. Bosonized action

As discussed in Sec. III B, the first part of our program—
namely, the renormalization of the model due to high-energy
processes—is done most efficiently in the framework of the
bosonization technique. In this section, we present a calcula-
tion of ��T�, using the RG scheme developed by Giamarchi
and Schulz.34 After a brief description of the derivation of
the RG equations, we will discuss an important subtlety of
the scheme34: namely, a mixing of disorder and interaction.

For simplicity, we consider here the spinless case �in no-
tation of Ref. 34, we set g1�=g2�=0 and hence u�=u�, K�
=K��. As discussed in Sec. III A, for spinless electrons the
backscattering amplitude g1 can be absorbed into g2 and g4
into vF

* , so that only one interaction coupling constant re-
mains �g2�, yielding the dimensionless Luttinger-liquid pa-
rameter K, Eq. �3.10�.

Using the boson representation of the fermionic
operators,32 the Hamiltonian can be expressed in terms of the
boson operators � and � that satisfy the commutation rela-
tion ���x� ,��x��	=−i��x−x��. In a given realization of dis-
order the Hamiltonian reads

H =
1

2�
� dx�uK����2 +

u

K
��x��2


+
1

2��
� dx�Ub

*�x�exp�2i�� + H.c.� , �4.1�

with

u = ��vF
*�2 − g2

2/4�2	1/2. �4.2�

The ultraviolet length scale � is related to the energy cutoff
� as

� = u/�� . �4.3�

We will concentrate on the case of e-e repulsion, implying
that K�1. The disorder-induced forward-scattering ampli-
tude U f�x� is absorbed34 in the quadratic part of H as a shift
of ��x�.

In order to perform the disorder averaging, one introduces
replicas �n. In the resulting action the interaction �Luttinger-
liquid� term SLL is quadratic in fields �n, while disorder gen-
erates a term SD of cos 2� type which breaks the Gaussian
character of the theory:
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S = �
n

SLL��n	 + �
n,m

SD��n,�m	 , �4.4�

SLL =
1

uK
� dxd�

2�
�����n�x,��	2 + u2��x�n�x,��	2� ,

�4.5�

SD = − Db� dxd�d��

�2���2 cos�2��n�x,�� − �m�x,���	� ,

�4.6�

where Db=vF
* /2�0. The integration over the imaginary times

is performed within the interval 0���1/T.
The conductivity is expressed in terms of the current-

current correlation function at zero momentum via the Kubo
formula

���� = −
e2

i��vF

�
− �

0

1/T

d�ei�n�K����
i�n→�+i0

, �4.7�

with

K��� =� dx�T�j�x,��j�0,0�� , �4.8�

where in bosonic language the currents are expressed via the
field ��x ,�� as

j�x,�� =
i

�
����x,�� . �4.9�

The first �diamagnetic� term in Eq. �4.7� is canceled by a
contribution of the singularity at �=0 in the second term. It is
worth noting that, strictly speaking, the correlation function
�T�����x ,������0,0�� is a reducible �with respect to the in-
teraction� correlator, when it is calculated with the use of SLL
as given by Eq. �4.5�. On the contrary, the conductivity is
given by the irreducible current-current correlator. However,
at zero external momentum Q, the two correlators are equal
to each other, since the polarization operator vanishes at Q
=0 for arbitrary nonzero frequency. This should be con-
trasted with a calculation of the conductance of a finite in-
teracting wire: the latter is related to the response at finite Q
and the Kubo formula should be supplemented with an
analysis of the effect of renormalization of the electric field
by e-e interactions.91,92

Note that the authors of Ref. 34 did not calculate the
conductivity using the Kubo formula �4.7�. Instead, they
found the renormalized value of 1 /� and substituted it into
the Drude formula, Eq. �3.12� �which can be represented as a
certain approximation in the framework of the memory-
function formalism; see, e.g., Refs. 73 and 93�. In view of
technical difficulties, in this paper we do not attempt to
evaluate the conductivity, including the localization effects,
by using the Kubo formula in the bosonic language either.
Having used the bosonization for the analysis of the high-
energy renormalizations, we refermionize the theory and cal-
culate the conductivity in the fermionic language, Sec. VI.

B. Giamarchi-Schulz RG

Giamarchi and Schulz34 performed the renormalization of
the coupling constants K, u, and Db in the action �4.4� upon
rescaling the ultraviolet cutoff �→L=� exp���. Their analy-
sis is done to first order in the dimensionless strength of
disorder

D = 2Db�/�u2. �4.10�

To this order, one can omit replica indices in Eq. �4.4�. Be-
fore presenting the RG equations, we discuss a subtle point
of the approach developed in Ref. 34. Specifically, the cou-

pling constant K̃, in terms of which the RG equations are
obtained in a natural way, is not simply K but rather contains
an admixture of disorder. We now briefly reproduce the cor-
responding argument from Ref. 34. To derive the RG equa-
tions, Giamarchi and Schulz singled out the ultraviolet con-
tribution of close times u ��−�� ��� in the disorder-induced
part of the fermionic action:

SD = − Db�
u��−�����

dxd�d��

� �+
†�x,���−�x,���−

†�x,����+�x,��� −
2Db�

u
� dxd�

� �+
†�x,���−�x,���−

†�x,���+�x,�� . �4.11�

The second term in Eq. �4.11� is local in time and thus
equivalent to an interaction term generated by g1 processes.
For this reason, the authors of Ref. 34 redefined the interac-

tion constant, g1̃�g1−2Db� /u. For the case of spinless elec-
trons considered here, this is equivalent to a modification of
the constant g2:

g2̃ = g2 + 2Db�/u . �4.12�

In terms of the modified interaction constants the RG
equations34 �in the spinless case only three equations out of
original six remain� are

dK̃/d � = − K̃2D/2, �4.13�

dũ/d � = − ũK̃D/2, �4.14�

dD/d � = �3 − 2K̃�D , �4.15�

where ũ and K̃ are related to the modified interaction con-
stant

g2̃��� = g2��� + �uD��� �4.16�

according to Eqs. �4.2� and �3.10�, respectively.
The modification of the plasmon velocity u by disorder, as

well as its renormalization, can be neglected in Eq. �4.16�,
since this generates higher powers of D. Then Eq. �4.14�,
which describes the renormalization of u, turns out to have
no influence on the renormalization of disorder and interac-
tion, described by the remaining two equations. �In fact, Eqs.

�4.13� and �4.14� show that K̃ / ũ is the invariant of the flow.	
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Therefore, we will concentrate on the coupled set of flow
equations �4.13� and �4.15�. It follows from Eq. �4.15� that

for K̃�3/2 the strength of disorder D��� increases upon
renormalization. The system flows then to the strong-
coupling regime where D becomes of order 1 and the first-
order treatment of disorder is no longer valid.

The decrease of K̃��� upon renormalization, Eq. �4.13�,
suggests that the initially weak interaction �K close to 1�
becomes strong upon approaching the strong-coupling re-
gime. However, this is not so, as we demonstrate below: the

decrease of K̃ occurs solely due to the admixture of increas-
ing disorder in this quantity.

It is also worth noticing that Eq. �4.13� seems to generate
a finite interaction due to the scattering off disorder in the
noninteracting case. However, as verified in Ref. 34, this is

not the case. The point is that the condition K̃=1 does not
mean that the system is noninteracting, because of the mix-
ing of interaction and disorder in Eq. �4.16�. Therefore, it is
desirable to rewrite Eqs. �4.13� and �4.15� in terms of the true
interaction constant K instead of the one modified by the

admixture of disorder, K̃ �see Fig. 9.6 in Ref. 32�.
From now on we focus on the case of weak interaction,

1−K���1, retaining only the terms of first order in � in
the RG equations. From Eqs. �3.10�, �4.2�, �4.10�, and �4.12�
we get, to first order in �,

K̃ = 1 − � − D/2 + �D/2. �4.17�

Substituting this formula in Eq. �4.15�, we express the flow
equation for the disorder strength in terms of the renormal-
ized true interaction constant ����:

dD/d � = D + 2�D + D2. �4.18�

In this equation, the first term on the right-hand side �RHS�
describes Ohm’s law, while the second term ���� yields the
Luttinger-liquid renormalization of �, Eq. �3.13�.

The last �quadratic-in-disorder� term in Eq. �4.18� is be-
yond the accuracy of the derivation of the RG equations and
should be neglected. We note, however, that this spurious
term is hidden in the RG equations of Ref. 34. Accidentally,
this spurious quadratic term qualitatively mimics the effect
typical for the WL. Clearly, this purely accidental similarity
does not hold on the quantitative level: the true WL—when
included into consideration—would only appear on the RHS
of Eq. �4.18� at D3 order.

Now let us turn to the flow equation �4.13� for the inter-
action strength. We rewrite it using Eqs. �4.17� and �4.18� in
the form

d�/d � = − 3�D/2 − D2. �4.19�

Again, the last �quadratic-in-disorder� term here is beyond
the accuracy of the calculation and has to be neglected �this
unphysical term generates interaction from disorder�. It is
important that the linear-in-disorder term in Eq. �4.19� van-
ishes for �=0. In other words, disorder does not generate
interaction, which was not trivial to see from Eq. �4.13�.

To summarize, for a weak interaction ��1, the set of
two scaling equations for � and D reads

d�/d � = − 3�D/2, �4.20�

dD/d � = �1 + 2��D . �4.21�

One sees that Eq. �4.20� yields decreasing ����: while the
disorder strength grows with increasing L, the interaction
gets weaker �“disorder kills interaction”—Ref. 32, also Ref.
94�, in contrast to a naive expectation based on Eq. �4.13�.
This resembles the behavior of the renormalized interaction
in 2D diffusive systems. Specifically, according to the
Finkel’stein RG equations,55 the combination of the singlet
and triplet amplitudes �an analog of � for the spinful case�,
which determines the interaction-induced correction to the
conductivity ��AA, decreases for weak interaction ���1�
due to the disorder-induced renormalization of interaction.

Let us analyze the RG flow generated by Eqs. �4.20� and
�4.21�. An approximate solution of these equations in the
range of weak disorder, D����1 �which is where they are
valid�, is easily found by an iterative procedure. The result is

D��� � D0�L/��1+2�0, �4.22�

���� � �0�1 − 3D���/2	 , �4.23�

where D0 and �0 are the initial �ultraviolet� values of the
coupling constants at L��.

It is worth emphasizing that whereas the correction to �0
is of the order of �0 itself when D����1, the renormaliza-
tion of disorder is governed by the initial value of the inter-
action constant and not by the running coupling constant
����. The renormalization of the interaction constant is irrel-
evant in the present case, and hence the renormalization of
disorder reduces to the renormalization of an individual im-
purity. As a consequence, the exponent a in Eq. �3.13� for the
renormalized scattering time ��T� is given by the bare inter-
action constant �the one in a clean system�, a=a0��0. Thus,
in the Drude formula �3.12� the exponent of the Luttinger-
liquid power-law function �T /��a is T independent.

C. Bosonization vs localization

As discussed in Sec. IV B, the solution of the RG equa-
tions flows to the strong-coupling regime, where D�1 and
the perturbative-in-disorder RG equations are no longer
valid. Since in the absence of interaction the strong-coupling
fixed point D /L→� corresponds to the complete Anderson
localization, Giamarchi and Schulz identified the regime
D�1 as the localized phase.

It should be stressed, however, that the notion of Ander-
son localization does not follow from the RG equations of
Ref. 34. Indeed, Eq. �4.21� does not account for the renor-
malization of disorder D /L in the absence of interaction: the
effects of Anderson localization �arising due to interference
terms which involve higher powers of D� are not included in
this RG scheme. In the weak-coupling regime D�1, the
Anderson localization would show up in an additional
�-independent term, fwl�D��D3, on the RHS of Eq. �4.21�,
which is beyond the accuracy of the derivation of these equa-
tions. It is also worth noting that in the presence of an inter-
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action all the RG trajectories for D /L tend to saturate at
finite values of D /L, in contrast to what one expects for the
Anderson-localization behavior. The strong-coupling fixed
point D→� is therefore a manifestation of Ohm’s law,
rather than of the Anderson localization.

In order to study the temperature behavior of ��T�, the
renormalization procedure in Ref. 34 was stopped at L=LT
�u /T, with the argument that the coherence effects disap-
pear on length scales greater than LT due to inelastic pro-
cesses. Although this is perfectly correct for the interaction-
induced renormalization of disorder which is cut off by the
thermal smearing of the electron distribution function �simi-
larly to the Altshuler-Aronov correction to the conductivity;
see Eq. �2.2�	, the coherence effects relevant to the Anderson
localization are governed by the dephasing length, L�. The
condition LT�� yielding the temperature �u /� for the onset
of the Anderson localization is in general not correct.

Indeed, the additional term fwl�D� responsible for the WL
�quantum-interference� effects is cut off not by LT but rather
by the dephasing length L�, which is parametrically different
from LT. For a weak interaction L��LT and, hence, there
exists an intermediate range of length scales, LT
L
L�, in
which only the WL term fwl�D� contributes to the renormal-
ization of D. Thus, it turns out that the scalings with T and L
are not interchangeable, when ��T� is considered. For ��1,
the onset of strong localization is determined by the condi-
tion

L� � � , �4.24�

which in 1D is equivalent to

�� � � . �4.25�

After the RG transformation, the bosonization action re-
tains its original form �4.4�–�4.6�, but with a renormalized
ultraviolet cutoff, �→T, and a renormalized scattering rate,
�0

−1→�−1�T�. Performing a transformation from the bosons
back to fermions, we thus return to the original fermionic
theory with a corresponding renormalization of its param-
eters. This theory is analyzed in the following sections.

V. GOLDEN RULE IN A LUTTINGER LIQUID

In order to analyze the effects of dephasing, we will fol-
low the route suggested by earlier works on higher-
dimensional �in particular, diffusive� systems.46 Since the
physics of dephasing is governed by electronic inelastic scat-
tering processes, a natural first step is to calculate the e-e
scattering rate �ee

−1. Indeed, for higher-dimensional systems in
the high-temperature �ballistic� regime, T��1, the dephas-
ing rate ��

−1 to leading order is given by �ee
−1; see Ref. 95. For

quasi-1D and 2D systems in the diffusive regime the scatter-
ing kernel acquires an infrared singularity leading to a diver-
gent �ee

−1. However, even in this case the calculation of the
e-e collision rate turns out to be instructive: a parametrically
correct result for the dephasing rate can be obtained from the
expression for �ee

−1 supplemented with an appropriate infrared
cutoff. It is thus useful to begin by analyzing �ee

−1. We will
show that this quantity is finite and meaningful in the inter-

acting 1D system �contrary to what one might expect based
on the famous non-Fermi-liquid character of the Luttinger
liquid�. On the other hand, we will demonstrate that, while
governing the dephasing of Aharonov-Bohm oscillations, �ee

−1

does not give the dephasing rate for the WL of spin-polarized
electrons.

The golden rule expression for the e-e collision rate fol-
lowing from the Boltzmann kinetic equation reads

1

�ee���
=� d	� d��K�	��f�−	

h f��f��+	
h + f�−	f��

h f��+	� ,

�5.1�

where K�	� is the kernel of the e-e collision integral:

St�f�� =� d	� d��K�	��− f�f�−	
h f��f��+	

h + f�
hf�−	f��

h f��+	�

= −
f�

�ee���
+� d	� d��K�	�f�−	f��

h f��+	.

Here f� is the Fermi distribution function, f�
h=1− f�.

It is instructive to temporarily restore the amplitude g4. To
leading �second� order in the interaction, the scattering ker-
nel K�	� in a clean Luttinger liquid has the form

K�	� = K++
H �	� + K+−

H �	� + KF�	� , �5.2�

where

K++
H =

g4
2

�3�
� dq

2�
�Re D+�	,q�	2, �5.3�

K+−
H =

g2
2

�3�
� dq

2�
Re D+�	,q�Re D−�	,q� , �5.4�

and KF=−K++
H . The terms K++

H and K+−
H are related to scat-

tering of two electrons from the same or different chiral
spectral branches, respectively, KF is the exchange counter-
part of K++

H , and D±�	 ,q� are the two-particle propagators,
given by Eq. �A4� with i�n→	+ i0.

Substituting Eqs. �5.2�–�5.4� into Eq. �5.1�, we obtain the
lowest-order result for the e-e scattering rate at the Fermi
level ��=0� in terms of the corresponding contributions to
the retarded electronic self-energy �+

R defined by G+
R�� , p�

= ��−vFp−�+
R�� , p�	−1, where G+

R is the retarded Green’s
function for right movers:

1/2�ee = − Im �+
R�0,0� , �5.5�

�+
R�0,0� = �++

H + �+−
H + �F. �5.6�

The diagrams for �+−
H , �++

H , and �F are shown in Figs.
1�a�–1�c�, respectively. The contribution of the diagram in
Fig. 1�b� �Hartree term� is canceled by the diagram in Fig.
1�c� �Fock term� due to the Pauli principle,

�F = − �++
H . �5.7�

We refer to this cancellation as the “Hartree-Fock cancella-
tion.”
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Let us now calculate the imaginary parts of the perturba-
tive self-energies. Using Eq. �A4� to get the retarded propa-
gators D±�	 ,q� by analytically continuing i�n→	+ i0 and
putting g2=g4=2�vF� we find

Im �++
H = − 2�2�2vF

3 � d	

2�
	�coth

	

2T
− tanh

	

2T


�� dq

2�
�Re D+�	,q�	2

� − ��2vFT�
�	�
T

d	� dq��	 − vFq���	 − vFq� ,

�5.8�

Im �+−
H = − 2�2�2vF

3 � d	

2�
	�coth

	

2T
− tanh

	

2T


�� dq

2�
Re D+�	,q�Re D−�	,q�

� − ��2vFT�
�	�
T

d	� dq��	 − vFq���	 + vFq� .

�5.9�

One sees that the contribution of �++
H is diverging. For the

spin-polarized electrons it is, however, exactly canceled by
the exchange interaction, Eq. �5.7�. Indeed, as we have dis-
cussed in Sec. III A, the g4 interaction drops out of the prob-
lem in this case, inducing only a shift of the velocity, Eq.
�3.9�. The remaining term �+−

H is determined by 	 ,q→0 and
is given by

Im �+−
H = − ��2T/2. �5.10�

The characteristic frequencies in Eqs. �5.8� and �5.9� sat-
isfy �	 �
T, because of the factor coth�	 /2T�−tanh�	 /2T�,
even if we would perform this calculation in the original
theory with the ultraviolet cutoff �. For the sake of compari-

son, we present also the corresponding contribution to the
real part of the self-energy:

Re �+��,p� = − 2�2�2vF
2 � d	

2�
� dq

2�

��coth
	

2T

q

� + 	 − vF�p + q�
��	 + vFq�

+ tanh
	 + �

2T

q

	 + vFq
��� + 	 − vF�p + q�	
 ,

which for T� ��±vFp� gives

Re �+��,p� � −
1

2
�2�� − vFp�ln

�

T
. �5.11�

In contrast to the imaginary part of the self-energy, the real
part is determined by energy transfers �	 ��T, which is char-
acteristic of the elastic virtual processes. Furthermore, Re �+
is logarithmically divergent in the ultraviolet and is cut off
by �: this behavior is specific to 1D.

It is worth stressing that in the considered case of a weak
interaction, ��1, the lowest-order contribution to the in-
elastic scattering rate obtained from Eqs. �5.5� and �5.10�,

�ee
−1 = ��2T , �5.12�

is much smaller than the temperature:

T�ee � 1. �5.13�

In higher dimensionalities, this fact is commonly referred to
as one of the conditions for the existence of a Fermi liquid:
the inverse lifetime of a quasiparticle is smaller than its char-
acteristic energy. In this respect, the weakly interacting Lut-
tinger liquid, while being a canonical example of a non-
Fermi liquid, reveals the typical Fermi-liquid property. The
Luttinger-liquid physics is in fact encoded in the singular
real part of the perturbative self-energy, Eq. �5.11�. For
�2ln�� /T��1, the Green’s function can be written as
G+

R�� , p��Z / ��−vFp+ i��2T /2�, where the single-particle
weight Z�1− ��2 /2�ln�� /T� is suppressed by the interac-
tion. It is in fact the product �2ln�� /T�, coming from the real
part of the self-energy, that after resummation of all orders
gets exponentiated and leads to the Luttinger-liquid power-
law singularities. Those singularities have been accounted
for by the renormalization at step 1 in the present approach.

It is instructive to compare the perturbative collision rate
in a clean Luttinger liquid, Eq. �5.12�, with the damping96 of
the exact retarded single-particle Green’s function in the
coordinate-time �x , t� representation,

g±
R�x,t� = 2i �t�Im ḡ±�x,t� . �5.14�

Considering right movers for definiteness, we have

ḡ+�x,t� = ��/2�u�A1+�b/2�x/u − t + i/��

� A�b/2�x/u + t − i/�� , �5.15�

where

A�z� = �T/� sinh��Tz� �5.16�

and �b= �K+K−1−2� /2, which becomes �b��2 /2 for ��1.

FIG. 1. Second-order �“golden rule”� diagrams for the self-
energy of a right mover. Wavy lines: interaction of the right-mover
with left �g2� or right �g4� movers. �a� �+−

H , the Hartree contribution
due to the interaction with a left mover; �b� �++

H , the Hartree con-
tribution due to the interaction with a right mover; �c� �F, the Fock
�exchange� contribution.
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The Green’s function is peaked at the “classical trajec-
tory”x=ut. In the limit of large t→� we have an exponential
decay96

ḡ+�x = ut,t� �
− i�

2�u
�2�T

i�
�b/2

exp�− ��bTt� , �5.17�

which should be contrasted with a power-law t dependence
at zero temperature,

ḡ+�ut,t� =
− i�

2�u

1

�2i�t��b/2 . �5.18�

The large factor � in the numerator of Eq. �5.17� is reminis-
cent of the pole in the noninteracting Green’s function. It is
worth stressing that, since �A�i /�� � →1, the nonanalytical
singularity of the factor sinh−�b/2��T�x /u− t+ i /��	 in the
main peak at x=ut is exactly canceled by the Luttinger-liquid
renormalization factor �T /���b/2 which arises due to the re-
summation of the real part of the self-energy. Thus the expo-
nential decay in Eq. �5.17� comes solely from the factor
�A�2t− i /��	�b/2 which describes the tail of the “left-moving
peak” centered at x=−ut. The decay exp�−��bTt� of the
“residue”

�x − u�t − i/��	g+
R�x,t��x→ut � sinh−�b/2�2�Tt� �5.19�

for t→� agrees with the golden rule expression �5.12� to
order �2: ��bT�1/2�ee. Therefore, the temporal decay of
the Green’s function is determined by the processes of in-
elastic scattering of right movers on left movers.

We see that the perturbative result for the scattering rate
yields the asymptotic behavior of the exact Green’s function.
This means that the golden rule calculation of the inelastic
scattering time is meaningful in a Luttinger liquid. However,
the golden rule time �ee does not cut off the WL correction in
the spinless case, as we demonstrate below in Sec. VI.

VI. WEAK LOCALIZATION AND DEPHASING:
FERMIONIC PATH–INTEGRAL APPROACH

A. WL dephasing vs the golden rule

The notion of dephasing associated with the behavior of
the single-particle Green’s function �5.19� makes sense in a
clean Luttinger liquid in the ring geometry; see Sec. VI E.
However, as we are going to show in this section, the WL
dephasing time ��

wl that governs the cutoff of the WL correc-
tion ��wl is parametrically different from the golden rule
time �ee, Eq. �5.12�.

This difference can in fact be anticipated based on the
following observation. The integral �5.9� for the golden rule
rate is determined by the energy and momentum transfer
q ,	=0. On the other hand, in the spirit of Ref. 58, soft
inelastic scattering with qvF ,	�1/��

wl is not expected to
contribute to the WL dephasing. This suggests that the
dephasing rate 1 /��

wl requires a self-consistent cutoff on Eq.
�5.1� at qvF ,	�1/��

wl, similarly to Eq. �2.4� for higher-
dimensional systems, and so is parametrically different from
the one in Eq. �5.12�. In particular, if one introduces, simi-
larly to higher dimensionalities, a sharp low-frequency cutoff

on the RHS of Eq. �5.9�, one immediately gets zero instead
of Eq. �5.12�. On the other hand, introducing disorder in D+
and �− in Eq. �5.9�, one effectively broadens the � functions
by 1/�, and the self-consistent equation can be solved.

Such a self-consistent equation should be treated with the
utmost caution, in view of the singular character of the bal-
listic propagators. In particular, when transformed to space-
time representation, the integral in Eq. �5.9� is determined by
a single point x , t=0, so that one could be drawn to the
erroneous conclusion that it is high—rather than low—
frequencies that matter. In any case, this equation is at most
qualitative. However, the message that we learn from this
consideration is correct: �i� the WL dephasing rate differs
from the golden rule result, and �ii� to evaluate it, we have to
include disorder in the interaction propagators. To perform a
controllable quantitative analysis, we employ the path-
integral technique, which is a natural tool in the situation
when the diagrammatic calculation suffers from the infrared
problems.

B. Weak localization in 1D

We begin by identifying the leading contribution to the
WL correction to the conductivity in the regime of strong
dephasing, ��

wl/��1. This regime takes place at sufficiently
high temperatures—the precise condition is found below in
Sec. III C, where we evaluate ��

wl. The diagrams that give the
main contribution to ��wl are shown in Fig. 2.

The “three-impurity Cooperon” in Fig. 2�a� describes the
propagation of two electron waves along the path connecting
three impurities �“minimal loop”� in time-reversed direc-
tions, Fig. 3�a�. Indeed, one can easily check that the inter-
ference paths involving only two backscattering impurities
are impossible merely due to geometrical reasons. This
means that the Cooperon with two backscattering impurity
lines97 yields a zero contribution to the conductivity to lead-
ing order in ��F��−1. If one retains the forward scattering and
does not gauge it out, the two-impurity Cooperon diagram
�Fig. 4�a�	 is canceled by the contribution of two other non-
Drude diagrams with two-impurity lines �Figs. 4�b� and

FIG. 2. Diagrams describing the leading WL correction to the
conductivity of a Luttinger liquid for ��

wl��. The dashed lines rep-
resent backscattering off impurities. The current vertices are dressed
by impurity ladders. The solid lines are Green’s functions with
disorder-induced self-energies. The diagrams are understood as
fully dressed by e–e interactions.
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4�c�	. The diagrams represented in Figs. 2�b� and 2�c� �the
corresponding trajectories are shown in Fig. 3�b�	 are of the
same order as the Cooperon diagram.

In the absence of interaction, all higher-order diagrams
�including non-Cooperon diagrams� which describe
quantum-interference processes involving a larger number of
impurities �4,5 , . . . � are equally important and together with
the diagrams in Fig. 2 sum up to exactly cancel �D, which
spells a complete localization.64 In the WL regime, they only
yield subleading corrections through a systematic expansion
in powers of the small parameter ��

wl/�. Thus, the WL in 1D
is governed by the “shortest possible Cooperon”: namely, the
Cooperon with three-impurity lines. In essence, this is due to
the fact that the WL condition 1/��

wl��� reduces in 1D to
the condition of “ballistic dephasing,” ��

wl/��1. In turn, this
means that the contribution to ��wl of typical configurations
of three impurities separated by a distance of order vF� is
strongly suppressed by dephasing. In the compact configura-
tions that do contribute the three impurities are anomalously
close to each other, with a characteristic distance between
them being much smaller than the mean free path.

C. WL dephasing in 1D: Qualitative discussion
of the leading-order cancellation

Before turning to the path-integral evaluation of the WL
dephasing rate in a spinless 1D system, we present a simple
argument demonstrating the cancellation of the leading con-
tribution 1/�ee to 1 /��

wl. For the purpose of a qualitative dis-
cussion, we can consider inelastic scattering within the pic-
ture of a classical thermal noise with characteristic
frequencies �	 � �T. Let U0

±�x� be a given realization of the
fluctuating scalar potential U±�x , t=0� created by right/left
movers at time t=0. The peculiarity of the 1D geometry is
that in the clean case the initial density profiles of right and
left movers, whose dispersion relation is linear, remain un-
changed: they move with the plasmon velocity either to the
left or to the right as a whole, and so does the fluctuating
potential:

U±�x,t� = U0
±�x! ut� . �6.1�

We now demonstrate that the phases acquired by the time-
reversed waves propagating along a closed three-impurity
loop are equal for arbitrary U0

±�x� and hence cancel each
other in the interference contribution even before the averag-
ing over fluctuations of U0

±�x�. As we show in Appendix F,
the velocity of electrons moving along the “Cooperon path”
is renormalized by the interaction and coincides with u. Re-
ferring to the paths shown in Fig. 3�a�, we first follow the
“forward” trajectory xc=0→xa→xb→0 for a particle which
starts moving to the right at t=0 and is backscattered at these
points at times ta, tb, and tc, respectively; see Fig. 5. It is
important to recall that the scattering amplitude g4 has been

FIG. 3. �a� Interference paths described by the Cooperon dia-
gram, Fig. 2�a�. Black dots: the backscattering off impurities. The
one-dimensional graphs are stretched vertically for ease of visual-
ization. The two waves start at point i and interfere at point f after
traversing the closed loop in opposite directions. �b� Interfering
paths for the diagram in Fig. 2�c�. The dashed circle denotes the
absence of backscattering off the impurity at point xc. The paths
corresponding to the diagram in Fig. 2�b� are obtained by inter-
changing the upper and lower plots in �b�. Note that similar paths
describe the WL in the ballistic regime in higher dimensionalities
�Ref. 98�.

FIG. 4. Two-impurity non-Drude diagrams.

FIG. 5. Illustration of the quasiclassical electron dynamics in the
presence of three impurities �whose positions are denoted by the
dashed lines� and a right-moving component of the fluctuating sca-
lar potential U+�x , t�. Top: the forward path corresponds to that in
Fig. 3�a�. The position �black dots� and the direction of the velocity
�arrows� of the particle, as well as the profile of the fluctuating
potential, are shown at different times: �a� t=0, �b� t= ta+0, �c� t
= tb+0, and �d� t= tc+0. The phase �−

F of the electronic wave is
accumulated when the particle moves to the left—that is, between
the snapshots �b� and �c�. The segment of the fluctuating potential
that contributes to the phase shift is marked in bold.
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eliminated through the renormalization of the Fermi velocity.
Therefore, on the right-moving parts of the forward trajec-
tory �segments 0→xa and xb→0� the phase changes by �+

F

only due to the scattering off U−�x , t�, while on the left-
moving parts �segment xa→xb� only the scattering off
U+�x , t� matters and yields the phase shift �−

F. Similarly,
there are phase shifts for the backward path �±

B due to the
scattering off U!�x , t�.

The phase �−
F acquired on the forward path between

points xa and xb is given by

�−
F = −

1

u
�

−utc

0

U0
+�x�dx . �6.2�

Here we use tb− ta= tc /2. Electrons moving on the backward
path interact with the same right-moving potential U+�x , t�
on the segments 0→xb and xa→0; see Fig. 6. The phase �−

B

is written as

�−
B = −

1

u
�

−2u�tc−tb+ta�

0

U0
+�x�dx = �−

F. �6.3�

Similarly, �+
F=�+

B. This is clearly seen in Figs. 5�d� and 6�c�,
where the regions of the potential profile that contribute to
the phase shifts are identical at time tc for the forward and
backward paths. As a result, the interaction-induced phase
shifts cancel out in the total Cooperon phase ��+

F+�−
F�

− ��+
B+�−

B� for an arbitrary profile U0�x�. This means, in par-
ticular, that in a calculation of the conductance through a
short piece of Luttinger liquid to third order in the impurity
strength, which is the order at which the interference term
arises, the latter would remain unaffected by inelastic e-e
collisions. In the calculation of the WL correction to the
conductivity of an infinite quantum wire, we have, indeed, to
include disorder in the interaction propagator, despite the
ballistic character of dephasing in the WL regime and in
accordance with the argument made in Sec. VI A. This is

done systematically within the path-integral approach in the
next subsection.

D. WL dephasing in 1D: Path-integral calculation

The dephasing-induced action S�tc , ta� acquired by the
Cooperon is accumulated on the classical �saddle-point�
path, whose geometry for three impurities is fixed by two
length scales: the total length of the path vFtc and the dis-
tance between two rightmost impurities vFta�vFtc /2 �Fig.
7�. As shown in Appendix B, the WL correction can then be
represented as

��wl = − 2�D�
0

�

dtc�
0

�

dtaP2�tc,ta�exp�− S�tc,ta�	 ,

�6.4�

where

P2�tc,ta� = �1/8�2�exp�− tc/2�� �tc − 2ta� �6.5�

is the probability density of return to point x=0 after two
reflections at points x=vFta and x=−vF�tc /2− ta� �in this sub-
section, we ignore the difference between vF and u�. The
contribution Sij to the dephasing action associated with an
inelastic interaction between electrons propagating along the
paths xi�t� and xj�t� is obtained similarly to higher
dimensionalities46,58:

Sij = − T� d	

2�
� dq

2�
�

0

tc

dt1�
0

tc

dt2
1

	
Im V���	,q�

�exp�iq�xi�t1� − xj�t2�	 − i	�t1 − t2�� , �6.6�

where V���	 ,q� is the dynamically screened retarded inter-
action. Because of the HF cancellation of the bare interaction
between electrons from the same chiral branch �g4 pro-
cesses�, the screened interaction V�	 ,q� acquires the indices
� ,� denoting the direction of motion of the interacting elec-

FIG. 6. Same as in Fig. 5 but for the backward part, Fig. 3�a�.
�a� t=0, �b� t= tc− tb+0, �c� t= tc− ta+0, and �d� t= tc+0. The phase
�−

B of the electronic wave is accumulated when the particle moves
between snapshots �a� and �b� and between snapshots �c� and �d�.

FIG. 7. Illustration of the electron dynamics governing the WL
and dephasing: time-reversed paths xf�t� �solid line� and xb�t�
=xf�tc− t� �dashed line� on which the interaction-induced action S
that yields dephasing of the Cooperon is accumulated. Dotted lines:
the propagation of dynamically screened interaction. The interac-
tion may change the direction of propagation upon scattering off
disorder �as marked by a cross�. Each interaction line gives a con-
tribution to S proportional to �Nf −Nb�2, where Nf ,b is the number of
its intersections with the forward �f� and backward �b� paths. One
sees that Nf �Nb only due to impurity scattering in the interaction
propagator. The interaction and electron lines lying on top of each
other do not yield dephasing because of the HF cancellation.
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trons, �=sgn ẋi, �=sgn ẋj. More specifically, the g4 pro-
cesses have been incorporated in the renormalization of the
bare Fermi velocity. It is worth stressing that if we would
keep both g2 and g4 processes in V�	 ,q�, the dephasing ac-
tion in 1D could not be written in the form of Eq. �6.6�.
Indeed, in that case the dephasing action would generate the
contribution of the diagrams of type �b� in Fig. 1, which is
actually absent due to the HF cancellation �5.7�.

The main steps in the derivation of Eq. �6.6� are as fol-
lows. First, the interaction is treated within the random-phase
approximation �RPA�, neglecting closed electronic bubbles
with more than two interaction legs, which is justified for the
weak interaction, ��1. Second, we perform an independent
averaging of the RPA bubble and the electronic trajectories
over the disorder. This is justified if the characteristic energy
transfer 	�1/��

wl is much larger than 1/�. Further, we treat
the thermal electromagnetic fluctuations through which elec-
trons interact with each other as a classical field, which is a
valid approximation provided that 	 is much smaller than T.
As will be seen from the results of our calculation, the char-
acteristic energy transfer 	�1/��

wl does satisfy both these
requirements for the considered case of a weak interaction,
��1. Finally, we will neglect the influence of the interac-
tion on the velocity �u vs vF�, which is again justified to
leading order in the interaction strength.

Expanding V�� to second order in �, we have

Im V���	,q� = − ��2vF	F���	,q� , �6.7�

where the functions F�� Fourier-transformed to �x ,�� space
are given by Eqs. �C2� and �C3� with "=1/�. The action Sij
can then be written in a simple form

Sij = ��2vFT�
0

tc

dt1�
0

tc

dt2F���xi�t1� − xj�t2�,t1 − t2	 ,

�6.8�

where, to first order in �−1, F���x , t� read

F++�x,t� � ��x + vFt��1 − �t�/2�� , �6.9�

F+−�x,t� � �vF
2 t2 − x2�/4vF� , �6.10�

and F−−�x , t�=F++�−x , t� and F−+�x , t�=F+−�x , t�. The total
action is given by S=2�Sff−Sfb�, where f and b stand for
“forward” and “backward” time-reversed paths �Fig. 7�.

Let us first calculate S for the case when the disorder in
interaction propagators �6.9� and �6.10� is neglected, �−1=0.
We get straightforwardly

Sff = Sfb = ��2Ttc/2. �6.11�

One sees that Sff reproduces the golden rule result, Eqs.
�5.12� and �5.19�. As we explain in Sec. VI E, this rate is
relevant for the AB dephasing in the multiple-connected
�ring� geometry. However, in the present case of dephasing
in a wire the self-energy processes �Sff+Sbb� are exactly can-
celed in the action by the vertex corrections �Sfb+Sbf�, yield-
ing S=0. This confirms the conclusion of Sec. VI C: for
clean-system interaction propagators, the WL dephasing is
absent.

Therefore, the dephasing in Eq. �6.4� is only due to the
dressing of the dynamically screened interaction by impuri-
ties. A calculation of the dephasing action S to order O��−1�
is presented in Appendix C, with the result

S�tc,ta� = 2��2Tta�tc − 2ta�/� . �6.12�

The dephasing vanishes for ta=0 and tc /2, since in these
cases the two paths f and b are identical.

Substituting Eq. �6.12� into Eq. �6.4� we find for ��
wl��

��wl = −
1

4
�D�

0

�

dtc
1

�2 exp�− tc/2��

��
0

tc/2

dtaexp�− 4��2Tta�tc/2 − ta�/�	

=−
1

4
�D� ��wl

�
2

ln
�

��
wl �

1

�2T
ln��2T� ,

�6.13�

where

1

��
wl = ���T

�
1/2

, T � T1 =
1

�2�
. �6.14�

In agreement with the above findings, 1 /��
wl vanishes in the

clean limit,99 in contrast to the total e-e scattering rate, Eq.
�5.12�. The logarithmic factor in Eq. �6.13� is related to the
contribution of rare configurations of disorder in which two
of the three impurities are anomalously close to each other
�ta→0 or ta→ tc /2�: in these configurations the dephasing is
strongly suppressed. As a result, the characteristic t in the
integral �6.13� is spread over the whole range between ��

wl

and �.
The scale T1 defined in Eq. �6.14� marks the temperature

below which the localization effects become strong. It is
worth mentioning that the T dependence of ��T�=�D�T�
+��wl�T� starts to be dominated, with decreasing T, by the
WL term rather than by �D�T� at T�T1 /�—i.e., well above
T1 for ��1. These results are illustrated in Fig. 8.

FIG. 8. Schematic behavior of ��T� on a log-log scale. Dotted
line: the T-dependent Drude conductivity. Below T1 /� the WL cor-
rection, Eq. �6.13�, dominates d ln � /d ln T. Below T1 the localiza-
tion becomes strong.
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Let us briefly mention what happens below T1. In the
strongly localized phase, the only peculiarity of the Luttinger
liquid is the T dependence of the scattering rate �−1�T� and
the related T dependence of the localization length ��T�, per-
sisting down to T��T��1 �see Sec. III B 1�; otherwise, the
picture is similar to that in many-channel quantum wires or
2D systems. If ��1, there exists a wide range of T where
the localization is strong but the conductivity is a power-law
function of T. We call this transport regime in a weakly
disordered system, associated with interaction-induced diffu-
sion over localized states, power-law hopping �PLH�; see
Refs. 60, 65, 67, 100, and 101 for details. An important point
is that the lifetime of localized states due to inelastic e-e
scattering can be calculated in the PLH regime at the golden
rule level. At still lower T, the lifetime becomes infinite, so
that the e-e interaction can no longer support hopping via
localized states and the conductivity vanishes at a certain
critical Tc.

60,61

E. Weak localization vs Aharonov-Bohm dephasing

As shown in Sec. VI D, the dephasing rate that cuts off
the WL correction is much smaller than the golden rule result
from Sec. V, which governs the damping of the single-
particle Green’s function, Eq. �5.19�. One may ask if the
golden rule rate 1 /�ee is observable at all. The answer is yes:
this type of dephasing makes sense in a clean Luttinger liq-
uid in the ring geometry, where it governs the decay rate
���

AB�−1 of AB oscillations.45,96,102 Indeed, the amplitude GAB

of the first harmonic of the AB conductance is proportional
to the product of the Green’s functions in two arms of the
interferometer:

GAB � � 1

�n
�

0

1/T

d�ei�n�g+�L1,��g+�− L2,− ��

�n→+0

,

�6.15�

where L1,2 are the lengths of the arms of the ring. In the case
of L1=L2�L, the damping is solely due to the dephasing and
is given by

GAB � exp�− L/u�ee� � exp�− L/u��
AB� , �6.16�

i.e., ��
AB=�ee. The difference from the WL correction is in the

absence of the vertex parts of the dephasing action. Specifi-
cally, S12=S21=0 in the AB setup �where Sij is given by Eq.
�6.6� with i , j equal to 1 or 2 for trajectories in arms 1 or 2,
correspondingly	, because of the absence of interaction be-
tween the arms; see Fig. 9. On the other hand, the self-energy
part S11=S22 �analog of Sff and Sbb in the WL problem� is
given by Eq. �6.11� with tc=L /u. An analogous T−1 depen-
dence of ��

AB was also obtained in Ref. 103 for a quantum
wire coupled capacitively to metallic gates. The preexponen-
tial factor in Eq. �6.15� depends on details of how the AB
ring is connected to the leads. A particular AB setup—two
Luttinger liquids weakly coupled to each other at two points
by tunneling—was thoroughly studied in Ref. 102. To sum-
marize, the WL and AB dephasing rates in a Luttinger liquid
are parametrically different in the spinless case studied in

this paper; specifically, ��
AB���

wl. In diffusive many-channel
wires, an analogous difference was shown in Ref. 104.

VII. FUNCTIONAL BOSONIZATION: ALL-IN-ONE
APPROACH

Equations �6.13� and �6.14� have been derived in two
steps, emphasizing two key ingredients of the theory: the
Luttinger-liquid renormalization of disorder and the Fermi-
liquid-like dephasing of electrons scattered by the renormal-
ized disorder. Alternatively, one can develop a unified ap-
proach where the virtual and real transitions are treated on an
equal footing, which is what we do below. A fully bosonized
approach, as well as a purely fermionic one, turns out to be
not particularly advantageous for this purpose. Instead, in
this paper we employ the method of so-called “functional
bosonization,” adjusted to deal with the particulars of e-e
scattering in one spatial dimension. The method was intro-
duced for a clean Luttinger liquid by Fogedby85 and by Lee
and Chen.86 A transparent exposition and further develop-
ment of the method in 1D can be found in recent reviews by
Yurkevich88 and Lerner and Yurkevich.89 For recent applica-
tions to single-impurity problems see Refs. 105 and 106.

In essence, the functional bosonization is a technique
based on the conventional Hubbard-Stratonovich transforma-
tion that decouples the density-density interaction term in the
fermionic action. Bosonic fields appear in this approach as
auxiliary fields of the Hubbard-Stratonovich transformation,

FIG. 9. Illustration of the electron dynamics governing the
dephasing of the first harmonics GAB of the AB oscillations in the
ring geometry with two arms of equal length L. The position of a
particle on the ring is parametrized by the angle ��t�: �=0 corre-
sponds to the point at which the ring is connected to one lead, �
= ±� to the point at which it is connected to the other lead. The
paths �1�t� �solid line� and �2�t� �dashed line� traveling along arm
1 and arm 2, respectively, interfere at the second contact at time t
=L /u. Dotted lines: the propagation of the dynamically screened
interaction. The interaction may change the direction of propagation
upon scattering off the contact �as marked by a cross�. Similarly to
Fig. 8, each interaction line gives a contribution to the AB-
dephasing action proportional to �N1−N2�2, where N1,2 is the num-
ber of its intersections with the trajectory in arm 1 or arm 2. One
sees that for any dotted line the number of possible intersections in
the time domain 0� t�L /u is strictly 1, yielding only the “self-
energy” contribution to the action and no “vertex part.” The inter-
action and electron lines lying on top of each other do not contrib-
ute to the dephasing because of the HF cancellation.
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whose fluctuations mediate the dynamically screened inter-
action between electrons. The peculiarity of a clean Luttinger
liquid is that the RPA for the dynamically screened interac-
tion is exact.107 This is a drastic simplification, so that the
ease in which an arbitrary strong interaction in the clean case
can be incorporated via the fully bosonized method is also a
property of the functional-bosonization approach. In the dis-
ordered case, the functional-bosonization method has a tech-
nical advantage, especially useful for weak interactions, in
that the conductivity is represented �in contrast to the fully
bosonized approach� as a fermionic loop, albeit dressed by
interactions in all possible ways.

A. Functional bosonization: Background

Our purpose here is to develop the functional-
bosonization scheme in the presence of disorder and to apply
it for the calculation of the weak-localization term �6.13� in
the conductivity. The quantity to begin with is the fermionic
Green’s function. In the absence of disorder, we write it in
the Matsubara representation for an electron moving to the
right �+� or to the left �−� as

g��x,�� = g�
�0��x,��e−B���x,��, � = ± , �7.1�

where

g±
�0��x,�� = !

iT

2vF

1

sinh��T�x/vF ± i��	
�7.2�

is the free Green’s function and the factor exp�−B��� ac-
counts for interactions between electrons. The function B��
can be found by using the fact that, in the absence of back-
scattering due to e-e interactions, the Hubbard-Stratonovich
transformation characterized by a decoupling field #�x ,�� re-
sults in an identical representation of g��x ,�� as the average
over #�x ,�� of a function g̃��x ,��,86,88,89

g��x,�� = �g̃��x,��� , �7.3�

where g̃��x ,�� describes the propagation of a particle of the
same chirality in the field #�x ,��:

��� − i�vF�x − i#�x,��	g̃��x,�� = ��x����� . �7.4�

The angular brackets in Eq. �7.3� and throughout Sec. VII
below denote functional averaging over the field #�x ,��. The
representation �7.3� is equivalent to a local gauge transfor-
mation for the fermionic field of the right and left movers,89

���x,�� → ���x,��exp�i$��x,��	 , �7.5�

where the bosonic field $��x ,�� is related to the decoupling
field #�x ,�� by

��� − i�vF�x�$��x,�� = #�x,�� . �7.6�

The Gaussian character of the Luttinger-liquid theory in the
clean case means that the averaging in Eq. �7.3� is performed
with an action in which all terms containing powers of
#�x ,�� higher than second vanish to zero. The correlator
�#�x ,��#�0,0��=V�x ,�� then gives the dynamically screened
RPA interaction.

As a result, the functions B���x ,�� are represented as
propagators of the fields $��x ,��:

B���x,�� = ��$��0,0� − $��x,��	$��0,0�� , �7.7�

where for later use we also introduce the correlator of fields
$� of different chirality, � ,�=±. It is convenient to put the
bare coupling constant g4=0, shift the Fermi velocity accord-
ingly �as discussed in Sec. III A�, and deal with two different
interaction propagators V++�V+− �see Appendix A�. Then
the correlators B���x ,�� read

B+±�x,�� = T�
n
� dq

2�
�eiqx−i�n� − 1�

�
V+±�i�n,q�

�i�n − qvF��i�n! qvF�
, �7.8�

where �n=2�nT is the bosonic frequency, B−−�x ,��
=B++�−x ,��, and B−+�x ,��=B+−�x ,��. The integration with
V�� given by Eqs. �A5� and �A6� yields �see Appendix D�

B���x,�� = − ln %��x,�� −
�b

2
L�x,�� , �7.9�

B�,−��x,�� = −
�r

2
L�x,�� , �7.10�

where

�b = �1 − K�2/2K, �r = �1 − K2�/2K �7.11�

and

L�x,�� = ln
��T/��2

sinh��T�x/u + i��	sinh��T�x/u − i��	
.

�7.12�

The functions

%±�x,�� =
vF

u

sinh��T�x/vF ± i��	
sinh��T�x/u ± i��	

�7.13�

replace vF→u in the free Green’s functions g±
�0��x ,�� in Eq.

�7.1�.

B. Functional bosonization: Diagrammatic technique

The exactness of the RPA in 1D suggests the following
diagrammatic technique. The Green’s function �7.1� for a
right-mover propagating from point 1= �x1 ,�1� to point 2
= �x2 ,�2� can be represented by the diagram in Fig. 10, where
the solid line is g+

�0��x2−x1 ,�2−�1� and the wavy line con-
necting the end points denotes the pairing of two fluctuating
factors exp�i$+�2�	 and exp�−i$+�1�	 with the Gaussian fields
$+�2� and $+�1�:

�exp�i�$+�2� − $+�1�	�� = exp�− B++�x2 − x1,�2 − �1�	 .

�7.14�

The fields $+�2� and $+�1� enter the exponent of Eq. �7.14�
with different signs, according to the direction of the arrow
on the solid line.
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Consider now a backscattering vertex which describes re-
flection of the right mover from an impurity �Figs. 11 and 12,
before and after averaging over the fluctuations of $�, re-
spectively�. The Green’s function propagating from point 1
to point 3 upon backscattering on the static potential Ub�x� at
point 2 is given by

�g�x3,x1,�3 − �1� = �
0

1/T

d�2� dx2Ub�x2�

�g+
�0��x2 − x1,�2 − �1�g−

�0��x3 − x2,�3 − �2�

� �exp�i�$+�2� − $+�1� + $−�3� − $−�2�	�� .

�7.15�

A direct consequence of Eq. �7.5� is that the vertex at
point 2 is dressed by the local fluctuating factor
exp�i�$+�2�−$−�2�	�. The correlations of the fields $� at dif-
ferent points in x space in the last factor of Eq. �7.15� ac-
count for the e-e interaction. Apart from the averages �7.14�
of the fields of the same chirality, there appear averages of
the type

�exp�i�$+�2� − $−�1�	�� = exp�− B+−�x2 − x1,�2 − �1� − M0	 ,

�7.16�

where

M0 = �$+
2�0,0�� − �$+�0,0�$−�0,0�� . �7.17�

Note that the factors exp�±M0� cancel out in any closed fer-
mionic loop, so that in the diagrammatic technique for ob-
servables one can omit them from the very beginning. The
Gaussian character of the correlations means that the expo-
nent of the last factor in Eq. �7.15� is represented as a sum of
the correlators B��:

�exp�i�$+�2� − $+�1� + $−�3� − $−�2�	��

= exp�− B++�x2 − x1,�2 − �1� + B+−�x2 − x1,�2 − �1�

− B−−�x3 − x2,�3 − �2� + B+−�x3 − x2,�3 − �2�

− B+−�x3 − x1,�3 − �1�	 , �7.18�

as illustrated in Fig. 12 �we used in Eq. �7.18� the fact that
B+−�2,2�=0	.

The appearance of the combination $+�2�−$−�2� for back-
scattering at point 2 in Eq. �7.15� and the factorization of the
correlations �7.18� in the simplest case of a single back-
scattering vertex suggests a way to proceed to two or more
vertices. In effect, the e-e interaction can be completely
gauged out to the impurity vertices, as emphasized in Ref.
89. Specifically, one can, in principle, calculate observables
�given by closed fermionic loops� perturbatively to any order
in the strength of disorder and exactly in the strength of the
e-e interaction by attaching a factor

exp�±i�$+�N� − $−�N�	� �7.19�

to each backscattering vertex, where N labels the vertex, and
pairing all the fields $��N� with each other. The averaging
over the fluctuations of $��N� is then performed with the
correlators �7.9� and �7.10� calculated for a homogeneous
system. The sign ± in Eq. �7.19� should be chosen to corre-
spond to the chirality with which an electron is incident on
the impurity.

The WL correction to the conductivity is given by the
fermionic loop with six backscattering vertices �Fig. 2�, each
of which should be dressed with the factors �7.19�. However,
taking disorder into account at this level would not be suffi-
cient. As we showed in Sec. VI, in order to calculate the
effect of dephasing for spinless electrons, disorder should
also be included, to first order in the strength of disorder ",
in the loops that make up the RPA series for the effective
interaction. We recall that in the RPA, substantiated in Sec.
VI, no more than two external interaction lines connect to
each of the fermionic loops that constitute the interaction

FIG. 10. �a� The Green’s function of a right mover propagating
between points 1= �x1 ,�1� and 2= �x2 ,�2� in a given field #�x ,��
acquires two phase factors exp�i$+�2�	 and exp�−i$+�1�	 �denoted
as wavy lines� at the end points. Solid line: the free Green’s func-
tion g+

�0��x2−x1 ,�2−�1�. �b� The wavy line connecting points 1 and
2 denotes averaging of the phase factors over fluctuations of $+�1�
and $+�2�.

FIG. 11. The Green’s function with a backscattering vertex
�marked by a cross� between the end points. The vertex is dressed
by a local fluctuating factor exp�i�$+�2�−$−�2�	�.

FIG. 12. Illustration of the diagrammatic technique with the
propagators B��: the correction �g�x3 ,x1 ,�3−�1� �Eq. �7.15�	 to the
Green’s function due to the backscattering at point 2. The wavy
lines denote averaging of the fluctuating factors exp�±$�� shown in
Fig. 11. The pairing of all the fields $� with each other according to
Eq. �7.7� yields the corresponding contributions B�� to the factor
�7.18�. For ease of visualization, the ends of the free Green’s func-
tions are split off from the backscattering vertex at point 2.
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propagator and the averaging of the interaction propagator
over disorder is performed in such a way that no impurity
lines connect different fermionic loops. As we show in Ap-
pendix E, in the language of the functional bosonization, the
RPA in the presence of disorder translates into a disorder-
induced renormalization of the correlators B���x ,��. Specifi-
cally, the renormalization consists in adding a disorder-
induced damping to the propagators V++ and V+− in Eq. �7.8�.
The renormalized interaction propagators are derived in Ap-
pendix A �see Eqs. �A21� and �A22�	 and are given in the
Matsubara representation by

V++�i�n,q� = −
g2

2

2�vF

q2vF
2 − iqvF�n + ��n�"/2

q2u2 +�n
2 + ��n��" + �"�

,

�7.20�

V+−�i�n,q� = g2
q2vF

2 +�n
2 + ��n��" + �"/2�

q2u2 +�n
2 + ��n��" + �"�

, �7.21�

where " denotes the transport scattering rate, Eq. �A11�, and
�" is given by Eq. �A23� �at variance with the preceding part
of the paper, in this section we do not use the notation � for
the transport scattering time in order to avoid a possible con-
fusion with the Matsubara time�.

Thus, our strategy in deriving Eq. �6.13� via the functional
bosonization is this: find the disorder-renormalized correla-
tors B���x ,�� to order O�"g2

2� and use them to average over
fluctuations of the fields $� “attached” to six impurity verti-
ces of the three-impurity Cooperon �Fig. 13�. The diagrams
�b� and �c� in Fig. 2 are calculated in the same way.

C. Functional bosonization with a disorder-renormalized RPA

We now turn to the calculation of the effective �disorder-
renormalized� propagators B���x ,�� to order O�"g2

2� by using
Eq. �7.8� and the interaction propagators V++ and V+− given
by Eqs. �7.20� and �7.21�. At second order in the interaction,
B++�x ,�� reads

B++�x,�� � −
g2

2

2�vF
T�

n
� dq

2�
�eiqx−i�n� − 1�

�
q2vF

2 − iqvF�n + ��n�"/2

�− i�n + qvF�2�q2vF
2 +�n

2 + ��n�"�
.

�7.22�

Let us represent B++ as a sum B++=B0+B�+B�, where
B0�x� is the contribution of �n=0, B��x ,�� and B��x ,��
=B��−x ,−�� are the contributions of �n�0 and �n�0, re-
spectively. In turn, B��x ,�� is a sum of two terms:

B� = B�dp + B�sp, �7.23�

where B�dp is the contribution of the double pole at qvF
= i�n and B�sp is the contribution of the single poles at qvF
= ± i��n

2+�n"�1/2.
The term coming from zero frequency does not depend on

":

B0�x� = −
g2

2

2�vF
T� dq

2�

eiqx − 1

q2vF
2 = �2�T�x�

vF
, �7.24�

where �=g2 /2�vF, as before. The contribution of the double
pole does not depend on " either,

B�dp�x,�� = �2�Tx

vF
 �x�

1

exp�2�T�x/vF + i��	 − 1
,

�7.25�

and is an expansion of ln %+, Eq. �7.13�, in powers of �.
Expanding the single-pole contribution to first order in ", we
have

B�sp�x,�� � −
�2

4
�ln

2�T/�

1 − exp�− 2�T��x�/vF + i��	

−
"�x�
2vF

ln
1

1 − exp�− 2�T��x�/vF + i��	

−
"

4�T
F�2�T� �x�

vF
+ i��
 , �7.26�

where

F�z� = �
n=1

�
exp�− nz� − 1

n2 . �7.27�

The sum �7.27� is defined for Re z�0. At small �z � �1, it
behaves as F�z��z ln �z�, which cancels the second term in
Eq. �7.26� at the ultraviolet cutoff �→0, �x � →1/vF�. Be-
low, we will need an analytical continuation of B���x ,�� in
the complex plane of �. In particular, an important contribu-
tion to the dephasing will come from the analytical continu-
ation of F�z� to large negative Re z�0. The latter can be
done, e.g., by means of the integral representation

F�z� = �
0

z

dz�ln�1 − exp�− z��	 . �7.28�

Piecing all the terms together, B++�x ,�� with a disorder-
induced correction of order O�"g2

2� is written as

FIG. 13. The three-impurity Cooperon diagram with interaction
effects encoded in the fluctuating factors exp�±$�� �denoted by the
wavy lines� attached to the backscattering vertices. Each impurity
vertex N= �xN ,�N� is characterized by two fluctuating fields $±�N�
and similarly for N̄= �xN , �̄N�. Pairing of all the fields with each
other �similarly to Figs. 11 and 12� describes both the elastic renor-
malization of the three impurities and the dephasing of the
Cooperon.
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B++ = B++�"=0 + b , �7.29�

where B++�"=0 is given by Eq. �7.9�, b=b1+b2, and

b1�x,�� � �2 "

16�T
��2�Tx

vF
2

+
2�T�x�

vF

�ln
1

4 sinh��T�x/vF + i��	sinh��T�x/vF − i��	
 ,

�7.30a�

b2�x,�� � �2 "

16�T
�F�2�T� �x�

vF
+ i��

+ F�2�T� �x�
vF

− i��
 . �7.30b�

Note that the second term in Eq. �7.30a� can be viewed as an
x-dependent renormalization of � induced by disorder, ��=
−�" �x � /4vF, as follows from a comparison with Eq. �7.9�.
This is consistent with the RG flow of the interaction con-
stant �4.23�. However, Eqs. �7.30� contain more information
and allow us to study the dephasing missed in the RG equa-
tions.

Consider now the disorder-renormalized propagator
B+−�x ,��. To second order in g2,

B+−�x,�� � − T�
n
� dq

2�

eiqx−i�n� − 1

�n
2 + q2vF

2

��g2 +
g2

2

4�vF

��n�"
q2vF

2 +�n
2 + ��n�"

 .

�7.31�

Expanding Eq. �7.31� to linear order in ", we readily obtain
a correction to B+−�x ,�� �Eq.�7.10�	 which is again given by
Eqs. �7.30� but with the opposite sign, so that finally

B+± = B+±�"=0 ± b . �7.32�

D. Cooperon in a dynamic environment

Now that we have found the propagators B���x ,��, let us
turn to the calculation of the WL correction to the conduc-
tivity. The interaction induces the factor

exp�− SC� = �exp�i�$ f − $b�	� �7.33�

to the Cooperon loop, where $ f and $b are the phases accu-
mulated by an electron propagating along the “forward” and
“backward” paths and the averaging is performed with the
disorder-renormalized correlators �7.32�. Again, SC accounts
for both the dephasing and the elastic renormalization of
impurities. The factor �7.33� is the same for all three dia-
grams for ��wl in Fig. 2.

The phases $ f ,b are given by

$ f = �
N=1

3

�− 1�N+1�$+�N� − $−�N�	 , �7.34�

$b = �
N̄=1

3

�− 1�N̄+1�$+�N̄� − $−�N̄�	 , �7.35�

where N and N̄ are the impurity-vertex numbers for the for-
ward and backward paths, respectively, as shown in Fig. 3.
The exponent in Eq. �7.33� is represented as

SC = − 2�Mf f − Mfb� , �7.36�

where

Mf f = −
1

2
�$ f

2� =
1

2 �
NN�

�− 1�N+N�M�N,N�� − M0,

�7.37�

Mfb = −
1

2
�$ f$b� =

1

2�
NN̄

�− 1�N+N̄M�N,N̄� − M0,

�7.38�

and all the pairings between the phases associated with im-
purities N and N� are given by the combination

M�N,N�� = B++�xN − xN�,�N − �N�� + B−−�xN − xN�,�N − �N��

− 2B+−�xN − xN�,�N − �N�� , �7.39�

and similarly for the pairings between N and N̄. The constant
M0 given by Eq. �7.17� cancels out in SC. Note that on the
closed contour �$ f

2�= �$b
2�, which is accounted for by the fac-

tor of 2 in Eq. �7.36�.

E. Diffuson ladder and renormalization of disorder

Before calculating the three-impurity Cooperon, it is in-
structive to look at the diffuson diagrams. More specifically,
let us consider first the ladder diagrams without including
self-energy corrections.

1. One-impurity line

The simplest diagram for the density-density correlator of
order O�"� is shown in Fig. 14 and written as

d1 =
vF"0

2
�

0

1/T

d�1�
0

1/T

d�̄1g+
�0��x1,�1�g−

�0��x − x1,� − �1�

�exp�− M�1,1̄�	g+
�0��− x1,− �̄1�g−

�0��x1 − x, �̄1 − �� .

�7.40�

The dashed line gives the bare strength of the backscattering
vF"0 /2. In Eq. �7.40� we only integrate over internal time
variables, keeping other coordinates in �x ,�� space fixed. The

factor exp�−M�1, 1̄�	, which is taken at the same spatial
point, depends on �1− �̄1 only:

exp�− M�1,1̄�	 = �� �
�T

2

sin��T��1 − �̄1 +
i

�
�

�sin��T��1 − �̄1 −
i

�
�
�e

, �7.41�

where we used the ultraviolet cutoff from Eq. �D7� and
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�e = �r − �b = 1 − K . �7.42�

Note that the interaction-induced phase factors cancel out at
the external vertices which do not change chirality. In par-
ticular, this means that in Eq. �7.40� there is no renormaliza-
tion of the velocity by the factors �7.13�. The latter is a
general property of fermionic loops with a larger number of
impurities: the Green’s functions connecting to the external
vertices with a small momentum transfer are characterized
by the bare Fermi velocity vF.

In the absence of e-e interaction, d1 is equal to

d1
�0� =

vF"0

2
I2, �7.43�

where

I = �
0

1/T

d�1g+
�0��x1,�1�g−

�0��x − x1,� − �1�

= −
T

2vF
2

1

sinh��T��2x1 − x�/vF + i�	�

� � �x1� �x1 − x� − �− x1� �x − x1�	 . �7.44�

What is important to us here is that I is given by the pole on
the classical trajectory t1=x1 /vF of a right-moving electron
�for x1�0� or a left-moving hole �for x1�0�, where t1=
−i�1 �Fig. 15�. If we proceed to the � representation, the
diagram for nonzero x and x1 is written as

�
0

1/T

d�ei�n�d1
�0� =

"0

4�vF
3 ��n�e−��n�2x1−x��� �x1� �x1 − x�

� ��n� + �− x1� �x − x1� �−�n�	

and again is given by the �double� pole on the classical tra-
jectory t= �2x1−x� /vF, where t=−i� and �2x1−x� is the total
length of the trajectory from point x=0 to point x with back-
scattering at point x1. This simple consideration suggests that
the two-particle correlators in the presence of a weak e-e
interaction should still be determined by a close vicinity of
the classical trajectory.

To evaluate the integrals �7.40� at �e�0, we assume for
definiteness that x1�0 and x�x1. The singularities of the

integrand of Eq. �7.40� in the upper half-plane of �̄1 for −0
�Re �̄1�1/T−0 are then a pole at �̄1= ix1 /vF and a branch
cut which comes from the factor �7.41�. The branch cut starts
at �̄1=�1+ i /� and is sent upwards, as shown in Fig. 16�a�.
The contour of integration over �̄1 can be closed upwards, so
that the integral over �̄1 along the real axis from �̄1=0 to
�̄1=1/T is given exactly by the contributions of the pole and
the branch cut. The contribution of the latter is proportional
to �e and can be omitted in the limit of weak interaction,
after which the remaining integral over �1 reads

d1 �
"0

2
� T

2vF
3 ��/�T�2�e

sinh��T��2x1 − x�/vF + i�	�

� �
C

d�1
sin−1+2�e��T��1 − ix1/vF�	

sin��T��1 − � + i�x1 − x�/vF	�
. �7.45�

Here the contour of integration C in the complex plane of �1
runs anticlockwise around the branch cut along the imagi-
nary axis of �1, Fig. 16�b�. For ��e � �1 the singularity in Eq.
�7.45� is almost a pole on the classical trajectory t1=x1 /vF
with t1=−i�1, so that, indeed, the system dynamics is deter-
mined by a close vicinity of the classical trajectory. We ob-
serve, however, that taking the interaction-dependent factor
in the integrand straight at t1→x1 /vF yields an ultraviolet
singularity that exactly cancels the factor �� /�T�2�e in front
of the integral in Eq. �7.45�, which returns us to the nonin-
teracting result. It is thus the integration in a close vicinity
t1−x1 /vF
1/T of the classical trajectory along the branch

FIG. 14. Density-density correlator of first order in the impurity
strength. The backscattering vertices are marked by the crosses.
Pairing of the fluctuating factors exp�±$�� �denoted by the wavy

lines� with each other yields the factor exp�−M�1, 1̄�	 in Eq. �7.40�,
which describes the renormalization of the impurity strength by the
interaction.

FIG. 15. Analytical structure of the integrand in Eq. �7.44�, with
a pole at �1= ix1 /vF, for x1�0 and x�x1. Closing the contour of
integration upwards, the integral along the real axis of the Matsub-
ara time is represented as a sum of two integrals along the imagi-
nary axis at �1= +0 and �1=1/T−0. Using the periodicity with
respect to the shift �1→�1±1/T, the sum gives a residue at the pole.

FIG. 16. Analytical structure of the integrand in Eq. �7.40�. �a�
The contour of integration over �̄1 is closed upwards where the
singularities of the integrand for x1�0 and x�x1 are a pole at �̄1

= ix1 /vF and a branch cut which starts at �̄1=�1+ i /� and runs up-
wards. �b� The integral over �1 of the contribution of the pole in Fig.
16�a� is given exactly by the branch cut starting at �1= ix1 /vF and
running upwards along the imaginary axis of �1.
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cut that gives the renormalization of disorder by interaction.
If ��e � �1, Eq. �7.45� reduces to

d1 � d1
�0���/�T�2�e. �7.46�

The difference between Eq. �7.46� and the noninteracting
result consists solely in the last factor which describes the
renormalization of the disorder strength "0→", where

" = "0��/�T�2�e. �7.47�

2. “Two-impurity diffuson”

Before generalizing to the Cooperon diagram, it is useful
to consider a diagram of order O�"2� with two parallel im-
purity lines, Fig. 17. What is new in this “two-impurity dif-
fuson” as compared to Eq. �7.40� is that now there are factors
exp�±M� which connect different impurities. Specifically, the
interaction-induced factor is

exp�− M�1,1̄� − M�2,2̄� − M�1,2� − M�1̄, 2̄� + M�1,2̄�

+ M�1̄,2�	 . �7.48�

Each of the cross terms �the last four terms above�, when
taken on the classical trajectory, may give a large contribu-
tion to the exponent of Eq. �7.48�. An important observation,
however, is that on the classical trajectory they cancel each
other exactly. This can be seen immediately since on the

classical trajectory �1= �̄1 and at this point M�1,2�=M�1̄ ,2�
and M�1̄ , 2̄�=M�1, 2̄�. The cancellation can be verified for
diffuson diagrams of higher order in " and is a manifestation
of the mere fact that for the density-density correlator there is
no dephasing in the diffuson channel. No dephasing is gen-
erated both for the bare correlators B���x ,�� and for those
renormalized by disorder at the level of the RPA.

As far as the integration around the classical trajectory of
the two-impurity diffuson is concerned, it suffices for our
purposes here to analyze the case of weak interaction. The
analytical structure of the integral over four time variables
�1, �2, �̄1, and �̄2 can be simplified by selecting the singulari-
ties that are strongest in the limit ��e � �1. Let us assume for
definiteness that x1�0 and x2�x1. In the plane of �1 we
have, for Im �1&0; a pole at �1= ix1 /vF and three branch
cuts starting at �1= �̄1+ i /�, �2+ i�x1−x2� /u, and �̄2+ i�x1

−x2� /u, as shown in Fig. 18. For weak interactions, these
branch cuts are “weak” in the sense that they are character-
ized by a small exponent �e. The approximation we make
consists in neglecting all weak cuts and keeping only

“strong” cuts characterized by exponents close to 1. Taking
into account the weak cuts yields corrections small in �e�1.

Picking up �1 at the pole �1= ix1 /vF yields the following
singularities in the plane of �̄1 for Im �̄1&0: a strong branch
cut at �̄1= ix1 /vF and two weak branch cuts at �̄1=�2+ i�x1

−x2� /u and �̄2+ i�x1−x2� /u. Neglecting the weak cuts and
integrating along the strong one similarly to Eq. �7.45� gives
the renormalization of the impurity at point x1. During the
integration along the strong cut, we pick up other factors in
the integrand at the classical trajectory—i.e., at the starting
point of the strong cut—which yields a cancellation of the
cross terms connecting two impurities. The remaining double

integral over �2 and �̄2 with the factor exp�−M�2, 2̄�	 has the
same structure as in the case of a single impurity and gives
the renormalization of the impurity at point x2. The net result
is that the two-impurity diffuson d2 for ��e � �1 simply ac-
quires two identical factors �� /�T�2�e which renormalize the
impurities:

d2 � d2
�0���/�T�4�e, �7.49�

where

d2
�0� = � "0

2vF
2 �T/2vF�2

sinh2��T��x + 2x1 − 2x2�/vF + i�	�

� � �x1� �x1 − x2� �x − x2� + �− x1� �x2 − x1�

� �x2 − x�	 . �7.50�

Self-energy corrections are incorporated in the same way
leading to an additional factor d2→d2 exp�−" �x+2x1

−2x2 � /vF�, where " is given by Eq. �7.47�. This procedure is
straightforwardly extended to the diffuson ladder with three
or more impurity legs, so that the difference of the full dif-
fuson ladder in the presence of e-e interactions from that in
the absence of interaction is only in the change "0→" �Eq.
�7.47�	.

F. Dephasing action and weak-localization correction

Let us now return to the three-impurity Cooperon whose
interaction-induced factor is given by Eqs. �7.33� and �7.36�–
�7.39�. As the analysis of the two-impurity diffuson demon-
strated, the analytical structure of the diagrams with increas-
ing number of factors exp�±M� rapidly gets quite

FIG. 17. “Two-impurity” diffuson with the fluctuating factors
exp�±$��N�	 �denoted by the wavy lines� attached to the back-
scattering vertices �marked by the crosses�.

FIG. 18. Integration over the internal times in the two-impurity
diffuson shown in Fig. 17. �a� The analytical structure of the inte-
gral in the complex plane of �1: the contour of integration runs
around a pole and three vertical branch cuts. �b� The contour of
integration in the complex plane of �̄1 runs around three vertical
branch cuts.
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complicated. The same example suggested, however, a sys-
tematic way to deal with the limit of weak interaction by
ignoring in the first approximation all weak branch cuts. The
integration around strong cuts then leads to a renormalization
of impurities, while picking up nonsingular factors at the
classical trajectory �the starting points of the strong cuts�
generates the dephasing action. At this level, calculation of
the Cooperon is similar to that of the diffuson, with one
essential difference: in contrast to the diffuson, the Cooperon
factor exp�−SC�, Eq. �7.33�, does not vanish on the classical
trajectory and hence leads to dephasing.

Another important issue is related to the definition of the
classical trajectory for the Cooperon; more specifically, to
the question of what is the velocity that characterizes this
trajectory. To answer this question, one has to carefully treat
the factors %±, Eq. �7.13�, in the integration over the internal
times of the Cooperon. As shown in Appendix F, the classi-
cal Cooperon trajectory is characterized by a single velocity
and this is u. Having established the fact that there is a
unique velocity on the whole classical trajectory of the
Cooperon, we can, in the leading approximation, ignore be-
low the difference between u and vF in the functions
M�N ,N��.

Neglecting first the disorder-induced corrections b�x ,�� in
Eq. �7.32� and summing up according to Eqs. �7.37� and
�7.38� all 12 terms each of which is given by Eq. �7.39�, we
observe that the difference Mf f −Mfb in this approximation
“miraculously” cancels out to zero on the classical trajectory.
This is in agreement with Eq. �6.14� saying that the dephas-
ing rate for the Cooperon vanishes in the limit "→0.

Combining Eqs. �7.32� and �7.39�, the disorder-
renormalized correlators M are represented as

M = M�"=0 + 4b , �7.51�

where b=b1+b2 is given by Eqs. �7.30�. In order to evaluate
the dephasing action on the classical trajectory, we analyti-
cally continue b1,2�x ,�� in the complex plane of �. The ana-
lytical continuation of b2�x ,�� is effected via Eq. �7.28�. On
the imaginary axis of �, the functions b1,2 at order O�"�2�
read

b1�x,it� �
�

4

�2T

vF
2 "�x����x� − vFt� �− �x� + vFt�

+ ��x� + vFt� �− �x�− vFt�	 , �7.52�

b2�x,it� � −
�

8

�2T

vF
2 " ���x� − vFt�2 �− �x� + vFt�

+ ��x� + vFt�2 �− �x� − vFt�	 �7.53�

for both �x � /vF and �t � �1/T. Taking this limit is justified for
the calculation of the dephasing rate since upon averaging
over the positions of impurities in Eq. �6.4� the characteristic
distance between impurities is vF��

wl or larger �in fact it is
spread over the range between vF��

wl and vF� because of the
logarithmic factor in Eq. �6.13�	, which in turn is much
larger than vF /T according to Eq. �6.14�. The sum of Eqs.
�7.52� and �7.53� gives

b�x,it� �
�

8

�2T

vF
2 "�x2 − vF

2 t2�� �− �x� + vFt�

+ �− �x� − vFt�	 . �7.54�

Introducing a shorthand notation

��N,N�� =
8

��2T"
b�xN − xN�,i�tN − tN��	 , �7.55�

where b is given by the asymptote �7.54�, we see that
��N ,N��=0 on the classical trajectory of the Cooperon for
all N ,N� except for

��1,2̄� = ��2,3̄� = − 2ta�tc − 2ta� . �7.56�

Summing up the terms �7.56� with the signs prescribed by
Eqs. �7.38� and �7.51� we obtain the dephasing action

SC
deph � 2��2T"ta�tc − 2ta� . �7.57�

This result coincides with Eq. �6.12� for the dephasing action
derived via the path-integral calculation in Sec. VI D. The
integration along the cuts around the classical trajectory
yields the renormalization of disorder on short spacial scales
of order vF /T around impurities, similarly to the renormal-
ization of the diffuson ladder in Eqs. �7.46� and �7.49�. The
three-impurity Cooperon with both the renormalization of
disorder and the dephasing included is thus given by

c3 � c3
�0���/�T�6�exp�− 2��2T"ta�tc − 2ta�	 , �7.58�

where

c3
�0� = � "0

2vF
3 �T/2vF�2

sinh2��T�x�/vF + i��	
� �x1� �x1 − x2�

� �x3 − x2� �x3 − x� �x3� �x1 − x� + �− x1�

� �x2 − x1� �x2 − x3� �x − x3� �− x3� �x − x1�	
�7.59�

is the three-impurity Cooperon bubble without interaction,

x� = 2�x1 + x3 − x2� − x , �7.60�

and �x�� is the total length of the classical trajectory along
which the density fluctuations propagate from point x=0 to
point x. The length of the Cooperon loop vFtc and the dis-
tance between two rightmost impurities vFta are related to
the positions of impurities by vFtc /2=max�x3 ,x1�−x2 and
vFta= �x3−x1�. Equation �7.58� describes the Cooperon
bubble with scalar vertices—the current vertices are straight-
forwardly incorporated below.

To calculate the conductivity, one has to add also self-
energy corrections to the Green’s functions constituting the
Cooperon bubble. In the presence of e-e interaction, this is
done in essentially the same way as the renormalization of
impurities in Sec. VII E and results in the additional factor
exp�−" �x� � /vF�, where " is the renormalized rate of back-
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scattering, which the Cooperon acquires on the length �x��.
The WL correction ��wl is then expressed in terms of c3
from Eq. �7.58� as

��wl = − 2�1

2
2� e2vF

2

�n
�

0

1/T

d�� dx ei�n�

�� dx1� dx2� dx3c3e−"�x��/vF

�n→+0

,

�7.61�

where the factor of 2 accounts for the contribution of the
diagrams �b� and �c� in Fig. 2, which give exactly the same
contribution as the Cooperon, and the factor of �1/2�2 comes
from the dressing of the current vertices by the diffuson lad-
ders, similarly to Eq. �B1�. The current vertices in Eq. �7.61�
are simply given by ±vF, since we formulate our model in
terms of a linear electron spectrum from the very
beginning.108 Integrating Eq. �7.61� we reproduce Eq. �6.13�
which was obtained in Sec. VI D in two distinct steps by
treating the renormalization of disorder and dephasing sepa-
rately. Here, we have demonstrated how these two effects
arise “side by side” from the technical point of view in the
framework of functional bosonization. Specifically, the ana-
lytical structure of the density-density correlator in the time
domain is such that the dephasing comes from the classical
trajectory, whereas the renormalization of impurities is asso-
ciated with the integration along strong branch cuts around
the classical trajectory.

VIII. SUMMARY

In this paper, we have studied the transport properties of
interacting spinless electrons in a disordered quantum wire
within the framework of the Luttinger-liquid model. Our
main result is the weak-localization correction �6.13�, gov-
erned by the dephasing rate �6.14�.

We have developed two alternative approaches for a sys-
tematic analytic treatment of the problem. One is a two-step
procedure which combines the bosonic-RG treatment of
high-energy renormalization processes at the first step with
the subsequent analysis of low-energy real processes in the
fermionic language. The other approach is based on the
method of “functional bosonization” which makes it possible
to treat both types of effects simultaneously.

We have demonstrated that the notion of weak localiza-
tion is applicable to the strongly correlated one-dimensional
electron system. This finding is of conceptual importance,
showing that the famous non-Fermi-liquid character of the
Luttinger liquid does not prevent this system from exhibiting
features characteristic of conventional mesoscopic electron
structures. Our approach thus provides a framework for sys-
tematically studying mesoscopic phenomena in strongly cor-
related electron systems. Further directions of research in-
clude mesoscopic fluctuations and noise in a disordered
Luttinger liquid, spin-related effects �in particular, the mag-
netoresistance�, several-channel quantum wires, transport in
a disordered system in the limit of strong interaction, and
transport in a “granular Luttinger liquid” �strong impurities�.
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APPENDIX A: POLARIZATION OPERATOR
AND SCREENING IN DISORDERED WIRES

In this appendix, we derive the polarization operator and
the dynamically screened RPA interaction for a disordered
1D electron system. As everywhere in the paper, we consider
spinless electrons. The Luttinger-liquid power-law singulari-
ties only show up in the renormalized strength of disorder "
and do not make any other difference in the derivation be-
low.

We begin by considering the clean case. According to the
Dzyaloshinskii-Larkin theorem,107 the RPA equations for a
screened interaction are then exact. The propagators of the
interaction between right movers �V++� and between right
and left movers �V+−� obey

V++ = g4 − g4�+V++ − g2�−V+−, �A1�

V+− = g2 − g2�+V++ − g4�−V+−, �A2�

where

�±�i�n,q� =
1

2�

q

qvF! i�n

are the chiral polarization operators for right �'�/left �−�
movers and �n=2�nT is the bosonic Matsubara frequency.
The total polarization operator is a sum of the chiral terms:

��i�n,q� = �
q2vF

2

q2vF
2 +�n

2 , �A3�

where �=1/�vF is the thermodynamic density of states, so
that ��0,q�=�. For later use we also introduce the two-
particle propagator
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D±�i�n,q� =
i�n

��n�
��

i�n! qvF
, �A4�

which satisfies

� dp

2�
G±

�0��i�m + i�n,p + q�G±
�0��i�m,p�

= D±�i�n,q�� �− �m� ��m +�n� + ��m�

� �− �m −�n�	 ,

where G±
�0��i�m , p�= �i�m!vFp�−1 are the free Green’s func-

tions for a given chirality and the ultraviolet momentum cut-
off is sent to infinity. The polarization operator and the two-
particle propagator are related to each other via

�±�i�n,q� =
�

2
−

��n�
2�

D±�i�n,q� .

The solution to Eqs. �A1� and �A2� for arbitrary g2 and g4
reads27

V++ = �g4 + �g4
2 − g2

2�
1

2�vF

qvF

i�n + qvF
�

���n
2 + q2vF

2�/��n
2 + q2u2� ,

V+− = g2 ��n
2 + q2vF

2�/��n
2 + q2u2� ,

where

u = vF��1 + g4/2�vF�2 − �g2/2�vF�2	1/2.

For g4=0 we have

V++ =
g2

2

2�vF

qvF�i�n − qvF�
�n

2 + u2q2 , �A5�

V+− = g2
�n

2 + q2vF
2

�n
2 + u2q2 , �A6�

u = vF�1 − �g2/2�vF�2	1/2. �A7�

The interaction between left movers is given by V++ with
q→−q.

Let us now turn to the disordered case. We only take into
account the backward scattering induced by disorder, since
the forward scattering can be completely gauged out in the
calculation of the conductivity. We average the RPA bubbles
over disorder separately by using the ladder approximation;
see Sec. VI D. The backscattering off disorder makes it nec-
essary to introduce two indices � ,�=± in the polarization
bubble ���, corresponding to the chirality of the vertices of
the bubble. The RPA equations for the interaction propaga-
tors in the presence of disorder read

V++ = g4 − �g4�++ + g2�−+�V++ − �g2�−− + g4�+−�V+−,

�A8�

V+− = g2 − �g2�++ + g4�−+�V+− − �g4�−− + g2�+−�V++,

�A9�

where

����i�n,q� =
�

2
��� −

��n�
2�

D���i�n,q� .

We now calculate the two-particle propagators D�� in the
RPA. Performing the analytical continuation to real frequen-
cies i�n→	+ i0, we introduce the retarded two-particle
propagator �D��

R �	 ,q�	�0� with only self-energy impurity
lines included,

�D++
R �	,q�	�0� =

i��

	 − qvF + i"/2
, �A10�

where

" = 1/� �A11�

and � is the transport scattering time. Note the factor of 1 /2
in front of " in Eq. �A10�, which reflects the fact that only
backscattering off impurities is considered—i.e., �q=2�,
where �q is the quantum scattering time, in contrast to the
case of isotropic scattering, where �q=�. The propagator
�D−−

R �	 ,q�	�0� is given by Eq. �A10� with the change q→
−q, whereas the nondiagonal propagators �D�,−�

R �	 ,q�	�0�

=0.
The equations for dressed two-particle retarded propaga-

tors read

D−−
R �	,q� = �D−−

R �	,q�	�0��1 +
"

2��
D+−

R �	,q�� ,

�A12�

D+−
R �	,q� = �D++

R �	,q�	�0� "

2��
D−−

R �	,q� �A13�

and

D++
R �	,q� = D−−

R �	,− q� , �A14�

D+−
R �	,q� = D−+

R �	,q� . �A15�

Solving Eqs. �A12�–�A15�, we get

D−−
R �	,q� = i��

	 − q + i"/2

	2 − q2vF
2 + i	"

, �A16�

D+−
R �	,q� = − ��

"

2

1

	2 − q2vF
2 + i	"

�A17�

and

�−−�	,q� =�++�	,− q� =
�

2

q2vF
2 − qvF	 − i	"/2

q2vF
2 − 	2 − i	"

,

�A18�
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�+−�	,q� =�−+�	,q� =
�

2

i	"/2

q2vF
2 − 	2 − i	"

, �A19�

��	,q� = ���
��� = �

q2vF
2

q2vF
2 − 	2 − i	"

. �A20�

Equation �A20� reduces to Eq. �A3� in the clean limit
"→0 and acquires the conventional diffusive form

�diff�	,q� = �Dq2/�Dq2 − i	�

in the limit 	�" ,qvF, where the 1D diffusion constant D
=vF

2 /".
From Eqs. �A8�, �A9�, �A18�, and �A19�, we obtain the

retarded interaction propagators for g4=0:

V++
R = − g2

2 �−−

�1 + g2�+−�2 − g2
2�−−�++

= −
g2

2

2�vF

q2vF
2 − qvF	 − i	"/2

q2u2 − 	2 − i	�" + �"�
, �A21�

V+−
R = g2

1 + g2�+−

�1 + g2�+−�2 − g2
2�−−�++

= g2
q2vF

2 − 	2 − i	�" + �"/2�
q2u2 − 	2 − i	�" + �"�

, �A22�

where u is given by Eq. �A7� and

�" = − "g2/2�vF. �A23�

APPENDIX B: WEAK-LOCALIZATION CORRECTION
TO THE CONDUCTIVITY IN 1D

In this appendix, we calculate the WL correction to the
conductivity in a noninteracting 1D system, assuming that
the phase coherence is broken by an external source of
dephasing and the dephasing time is small; specifically,
����. Under this condition, the conductivity can be ex-
panded in powers of �� /�. The lowest-order diagrams are
depicted in Fig. 2. The sum of the diagrams with two impu-
rity lines, shown in Fig. 4, yields a zero contribution to order
��F��−1.

We formally consider only backward scattering; i.e., the
impurity line corresponds to the correlation function of the
backscattering random potential

L−1��Ub�q��2� = 1/2���

�L is the system size� and changes chirality at every impurity
vertices. For the anisotropic scattering, we have �=�q /2,
where � is the transport time and �q is the quantum lifetime.
The retarded single-particle Green’s function expressed in
terms of � reads

G±
R��,p� = �� ! vFp + i/2�q�−1 = �� ! vFp + i/4��−1.

The anisotropic scattering also introduces the current vertex
renormalization: each current vertex is multiplied by a factor
� /�q=1/2.

The sum of the diagrams �b� and �c� in Fig. 2 with an
impurity line covering the two-impurity Cooperon �two
crossed impurity lines� is equal to the contribution �C3 of the
diagram with the three-impurity Cooperon. The total three-
impurity WL correction is thus given by

��wl = 2�C3.

The expression for �C3 reads

�C3 = − 2� �
�q
2

e2vF
2 � d�

2�
�−

� f�
��

 � dQ

2�
J�Q� , �B1�

where f� is the Fermi distribution function, the overall minus
sign reflects the fact that the product of the current vertices is
negative in the Cooperon with three backscattering lines, and
the factor of 2 is related to two possibilities of setting chirali-
ties at the vertices: �+−� and �−+ �. The function J�Q� de-
scribes the fermionic loop:

J�Q� =
1

�2����3 � dp

2�
� dp1

2�
� dp2

2�

� G+
R�p�G−

R�p1�G+
R�p2�G−

R�− p + Q�G+
A�p�

�G−
A�− p2 + Q�G+

A�− p1 + Q�G−
A�− p + Q� . �B2�

Using the equality

G±
R�p�G±

A�p� = 2i��G±
R�p� − G±

A�p�	 ,

we simplify Eq. �B2�:

J�Q� = 4�2�P�Q��2�P�Q� + P*�Q�	 ,

where

P�Q� =
1

2���
� dp

2�
G+

R�p�G−
A�− p + Q� .

Now we introduce a phenomenological dephasing time ��
through an additional decay of the Green’s function:

G±
R��,p� → �� ! vFq + i/4� + i/2���−1,

which yields

P�Q� =
1

2�

1

ivFQ + 1/2� + 1/��
, �B3�

J�Q� =
1

�
� 1

2�
+

1

��
 1

��vFQ�2 + �1/2� + 1/���2	2 . �B4�

Substituting Eq. �B4� into Eq. �B1�, we find for ����

��wl = −
1

8
�D� ��

�
2

, �B5�

where �D=e2vF� /� is the Drude conductivity.
Equation �B5� for the weak-localization correction can be

cast in the form of an integral over the time needed for a
particle to return to the starting point after two backscatter-
ings:
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��wl = − 2�D�
0

�

dtcP2�tc�exp�− tc/��� . �B6�

Here

P2�t� � t/16�2, t � � ,

is the return probability after two reflections �hence the sub-
script 2� for a particle which starts moving either to the right
or to the left and the overall factor of 2 in Eq. �B6� comes
from the summation over the sign of the velocity at the start-
ing point.

Let us now turn from the phenomenological factor
exp�−tc /��� to the actual dephasing factor. The latter de-
pends not only on the total time tc but also on the geometry
of the Cooperon path. We thus have to perform averaging
over the geometry of the path at given tc. For this purpose we
need the probability density of return, P2�tc , ta�, for a particle
which starts moving to the right at point x=0 under the con-
dition that the total length be vFtc and the first reflection
occur at point x=vFta. This function is written as

P2�tc,ta� = vF�
0

�

dtbP1�ta�P1�tb − ta� �tb − ta�

�exp�− �tc − tb�/2�	 �tc − tb���x�tc�	 . �B7�

Here

P1�t� =
d

dt
�1 − e−t/2��

is the probability density of being reflected at point vFt
�again, note that � is the transport scattering time and only
the backscattering is taken into account�. The factor
exp�−�tc− tb� /2�	 in Eq. �B7� describes the probability of
avoiding the backscattering on the last segment of the path
and

x�tc� = 2vF�ta − tb� + vFtc

for tc� tb. We obtain

P2�tc,ta� =
1

4�2e−tc/2�

��
0

�

dtb �tb − ta� �tc − tb���2�ta − tb� + tc	

=
1

8�2e−tc/2� �tc − 2ta� .

For the dephasing action which depends on tc and ta we have

��wl = − 2�D�
0

�

dtc�
0

�

dtaP2�tc,ta�exp�− S�tc,ta�	 ,

which reduces to Eq. �B6� for the phenomenological action
S�tc , ta�= tc /��.

APPENDIX C: DEPHASING ACTION
IN THE PATH-INTEGRAL APPROACH

In this appendix, we present details of the calculation of
the dephasing action defined by Eq. �6.6� and given in the
final form by Eq. �6.12�. For the imaginary parts of the re-
tarded interaction propagators �A21� and �A22� which enter
Eq. �6.6�, we have, retaining only the terms of order O�g2

2�,

Im V+±
R �	,q� � −

g2
2

4�vF
	"

�qvF − 	��qvF!	�
�q2vF

2 − 	2�2 + 	2"2 .

Next, we introduce functions F+±�	 ,q� which obey

Im V+±
R �	,q� = −

g2
2

4�vF
	F+±�	,q� . �C1�

Putting g2=0 in F+± and doing the Fourier transform to �x , t�
space, we get

F++�x,t� = e−"�t�/2���x+� +
"2�x−�
16vF

2 f++�−
"2

16vF
2 x+x−� ,

�C2�

F+−�x,t� =
"

4vF
e−"�t�/2f+−�−

"2

16vF
2 x+x− . �C3�

Here x±=x±vFt,

f++�z� =
1
�z

I1�2�z� �z� ,

f+−�z� = I0�2z� �z� ,

and I0�z� and I1�z� are modified Bessel functions. Since the
dephasing action becomes of order unity at times t
���

wl��, we expand F++�x , t� and F+−�x , t� to the first order
in the disorder strength ", which yields Eqs. �6.9� and �6.10�.

Let us now turn to the calculation of the dephasing action
S�t , ta� which can be represented as

S�t,ta� = Sff + Sbb − Sfb − Sbf = 2�Sff − Sfb� ,

where Sij are given by Eq. �6.6�. We split the forward path
into three segments corresponding to the right- �R� and left-
�L� moving parts, where the coordinate xf�t� behaves as

If, R: 0� t� ta; xf�t� = vFt ,

IIf, L: ta� t� ta +
tc

2
; xf�t� = vF�2ta − t� ,

IIIf, R: ta +
tc

2
� t� tc; xf�t� = vF�t − tc� .

Similarly, for the backward �time-reversed� path we have
xb�t�=xf�tc− t�:
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Ib, L: 0� t�
tc

2
− ta; xb�t� = − vFt ,

IIb, R:
tc

2
− ta� t� tc − ta;

xb�t� = vF�2ta − tc + t� ,

IIIb, L: tc − ta� t� tc; xb�t� = vF�tc − t� .

The “self-energy” part Sff of the action is written as

Sff =
g2

2

4�vF
2 TJff, Jff = �

n=1

3

Jn + 2�
n=4

6

Jn, �C4�

where each of the terms Jn corresponds to the integration
over a certain pair of the forward-path segments �for brevity,
we set vF=1 in the arguments of F�� below�:

If-If: J1 = vF�
0

ta

dt1�
0

ta

dt2F++�t1 − t2,t1 − t2� ,

IIf-IIf: J2 = vF�
ta

ta+tc/2

dt1�
ta

ta+tc/2

dt2F−−�− t1 + t2,t1 − t2� ,

IIIf-IIIf: J3 = vF�
ta+tc/2

tc

dt1�
ta+tc/2

tc

dt2F++�t1 − t2,t1 − t2� ,

If-IIf: 2J4 = vF�
0

ta

dt1�
ta

ta+tc/2

dt2�F+−�t1 + t2 − 2ta,t1 − t2�

+ F−+�− t1 − t2 + 2ta,t1 − t2�	 ,

If-IIIf: 2J5 = vF�
0

ta

dt1�
ta+tc/2

tc

dt2�F++�t1 − t2 + tc,t1 − t2�

+ F++�− t1 + t2 − tc,t1 − t2�	 ,

IIf-IIIf: 2J6 = vF�
ta

ta+tc/2

dt1�
ta+tc/2

tc

dt2�F−+�− t1 − t2 + 2ta

+ tc,t1 − t2� + F+−�t1 + t2 − 2ta − tc,t1 − t2�	 .

The “vertex” part Sfb of the action is given by

Sfb =
g2

2

4�vF
2 TJfb, Jfb = �

n=7

15

Jn, �C5�

where

If-Ib: J7 = vF�
0

ta

dt1�
0

tc/2−ta

dt2F+−�t1 + t2,t1 − t2� ,

If-IIb: J8 = vF�
0

ta

dt1�
tc/2−ta

tc−ta

dt2F++�t1 − t2 − 2ta + tc,t1 − t2� ,

If-IIIb: J9 = vF�
0

ta

dt1�
tc−ta

tc

dt2F+−�t1 + t2 − tc,t1 − t2� ,

IIf-Ib: J10 = vF�
ta

ta+tc/2

dt1�
0

tc/2−ta

dt2

�F−−�− t1 + t2 + 2ta,t1 − t2� ,

IIf-IIb: J11 = vF�
ta

ta+tc/2

dt1�
tc/2−ta

tc−ta

dt2

�F−+�− t1 − t2 + tc,t1 − t2� ,

IIf-IIIb: J12 = vF�
ta

ta+tc/2

dt1�
0

tc/2−ta

dt2

�F−−�− t1 + t2 + 2ta,t1 − t2� ,

IIIf-Ib: J13 = vF�
tc/2+ta

tc

dt1�
0

tc/2−ta

dt2F+−�t1 + t2 − tc,t1 − t2� ,

IIIf-IIb: J14 = vF�
tc/2+ta

tc

dt1�
tc/2−ta

tc−ta

dt2

�F++�t1 − t2 − 2ta,t1 − t2� ,

IIIf-IIIb: J15 = vF�
ta+tc/2

tc

dt1�
tc−ta

tc/2−ta

dt2

�F+−�t1 + t2 − 2tc,t1 − t2� .

Carrying out the integration yields

J1 =
ta

2
,

J2 =
tc

4
,

J3 =
1

2
� tc

2
− ta ,

J4 = "
tatc

8
,

J6 = "
tc

8
� tc

2
− ta ,
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J8 =
ta

2
− "

ta

4
� tc

2
− ta ,

J9 = "
ta
2

4
,

J10 =
1

2
� tc

2
− ta − "

ta

4
� tc

2
− ta ,

J11 =
"

4
�� tc

2
− ta2

+ ta
2� ,

J12 =
ta

2
− "

ta

4
� tc

2
− ta ,

J13 =
"

4
� tc

2
− ta2

,

J14 =
1

2
� tc

2
− ta − "

ta

4
� tc

2
− ta ,

J5 = J7 = J15 = 0

and

Jff =
tc

2
+ "

tc
2

8
, �C6�

Jfb =
tc

2
+
"

4
� tc

2

2
− 8ta� tc

2
− ta� , �C7�

Jff − Jfb = 2"ta� tc

2
− ta . �C8�

We see that the difference Jff−Jfb vanishes at "→0—i.e., in
the absence of disorder in the interaction propagators. Fi-
nally, we arrive at an expression for the total action:

S�t,ta� = 2
g2

2

4�vF
2 T�Jff − Jfb� =

g2
2

�vF
2 T"ta� tc

2
− ta . �C9�

Using �=g2 /2�vF, we obtain Eq. �6.12�.

APPENDIX D: FUNCTIONAL BOSONIZATION
IN THE CLEAN CASE

In this appendix, we calculate the correlators B���x ,�� in
a clean Luttinger liquid for an arbitrary strength of interac-
tion. Following the discussion in Sec. III A, we consider only
the g2 interaction, while the g4 interaction is accounted for in
the shift of the Fermi velocity, Eq. �3.9�. Substituting the
interaction propagator V++�i�n ,q� given by Eq. �A5� �with
vF understood here and below as the renormalized velocity
�3.9�	 in Eq. �7.8�, we have

B++�x,�� = − T�
n
� dq

2�

g2
2

2�vF

qvF

�n
2 + q2u2

eiqx−i�n� − 1

− i�n + qvF

= B0 + B� + B�, �D1�

where B0�x�, B��x ,��, and B��x ,�� are the contributions of
terms with �n=0, �n�0, and �n�0 in the Matsubara sum
over the bosonic frequency �n=2�nT, respectively. The
sums over �n�0 and �n�0 are related to each other as

B��x,�� = B��− x,− �� . �D2�

To accurately treat the ultraviolet cutoff for an arbitrary
ratio u /vF, we introduce a finite range of interaction d, so
that g2�q� depends on the transferred momentum q and van-
ishes for qd�1. The RPA, leading to Eq. �D1�, is exact in
the Luttinger-liquid model for arbitrary g2�q�. In the inte-
grand of Eq. �D1�, g2�q�, vF�q�, and u�q� are related to each
other at a given q in precisely the same way, Eq. �4.2�, as in
the case of g2�q�=const. Everywhere below in this appendix,
except for Eq. �D6�, when writing g2, vF, or u, we understand
them as taken at q=0.

The term in Eq. �D1� with �n=0 at �x � �d reads

B0�x� =
vF

2 − u2

2u2

2�T

vF
�x� . �D3�

In the integration over q at �n�0, there are poles at q
= i�n /vF and q= ± i�n /u. The first only contributes to the
integral if �n
vF /d, whereas the latter only if �n
u /d,
which sets the limits of summation over n:

B��x,�� = 2�T �x��
n=1

�
e−�n/�v�e−�n�x/vF+i�� − 1	

�n

− �T�vF

u
+ sgn x�

n=1

�
e−�n/��e−�n��x�/u+i�� − 1	

�n
,

�D4�

where there appear two ultraviolet scales �v=vF /d and �
=u /d and we approximate the cutoffs by the exponential
factors exp�−�n /�v� and exp�−�n /�� �the exact shape of
the cutoffs plays no role in the infrared physics we deal with
in this paper�.

Using for N�1 and Re z�1/N the formula

�
n=1

N
e−nz − 1

n
� − ln�1 − e−z� − ln N ,

we write B��x ,�� for �x � �d as

B��x,�� = �x�ln� �
�v

1 − exp�− 2�T�x/u + i��	
1 − exp�− 2�T�x/vF + i��	


−
vF − u

2u
ln

2�T/�

1 − exp �− 2�T��x�/u + i��	
.

�D5�
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Combining Eqs. �D3�, �D5�, and �D2�, we obtain B++�x ,��
given by Eq. �7.9�. Note that the factor vF /u in %+�x ,��
�Eq.�7.13�	 comes from the ratio � /�v in Eq. �D5�. The

remaining cutoff in L�x ,�� is given by �.
The Green’s function �Eq. �7.1�	 of a right mover then

reads for �x � �d

g+�x,�� = g+
�0��x,��exp�− B++�x,�� 	

= −
iT

2u

1

sinh��T�x/u + i��	
��T/���b

�sinh��T�x/u + i��	sinh��T�x/u − i��	��b/2 .

Note that the Fermi velocity vF drops out completely in
the product g+

�0��x ,��%+�x ,��. The Green’s function in the
real-time domain, Eq. �5.15�, is obtained by means of the
Wick rotation �→ it+sgn t /�.

The calculation of B+−�x ,�� is performed in a similar way:
substituting Eq. �A6� into Eq. �7.8�, we get

B+−�x,�� = − T�
n
� dq

2�
g2

eiqx−i�n� − 1

q2u2 +�n
2 . �D6�

Note that the denominator �n
2+q2vF

2 in Eq. �7.8� is canceled
by the numerator in Eq. �A6�, so that vF disappears from the
problem right away and the integration over q in Eq. �D6� is
determined at �n�0 solely by the plasmon poles q
= ± i�n /u. For �x � �d, we arrive at Eq. �7.10�.

In Sec. VIII and in Appendix E, we do contour integrals
in the complex plane of the Matsubara time � and should be
careful about the behavior of B���x ,�� at x→0 for �→0.
When integrating in the complex plane of �, it is convenient
to have ultraviolet cutoffs in B���x ,�� that are independent of
�. Our choice is to use Eq. �D4�, which yields a cutoff which
depends on x:

x → x +
u

�
sgn x = x + d sgn x; �D7�

i.e., �x � → �x � +d in the propagators B���x ,�� in Eqs. �7.9�
and �7.10�, and similarly in the disorder-induced corrections
to them in Eqs. �7.30�.

APPENDIX E: “DIRTY RPA” IN THE FUNCTIONAL
BOSONIZATION

In this appendix, we demonstrate that the correlators �7.7�
in the presence of disorder are modified according to Eq.
�7.8� with the effective RPA interaction V��, Eqs. �7.20� and
�7.21�, whose dynamical properties reflect the disorder-
induced backscattering �“dirty RPA”�. For this purpose, we
directly calculate the disorder-induced correction to the av-
erages of the type �exp�i�$��x ,��−$��0,0�	�� in the frame-
work of the diagrammatic technique formulated in Sec.
VII B. In the expansion in powers of ", the rules of the
technique prescribe that impurity vertices be connected with
each other via the correlators B���x ,���"=0 in a spatially ho-
mogeneous system. To obey Wick’s theorem, multiple fermi-

onic loops can only be present in this technique if each of
them contains backscattering vertices, since all fermionic
loops without impurities have been accounted for by the
“clean RPA” propagators. We show below that the result for
B�� obtained this way coincides for ��1 with the result of
the “dirty RPA,” Eq. �7.32�.

Let us consider the average of first order in ",

�ei�$+�x,��−$+�0,0�	� − �ei�$+�x,��−$+�0,0�	�"=0 �� dx1I�x,�,x1� ,

�E1�

given by the diagram in Fig. 19. We are interested in the
pairings between the fields $+�0,0� and $+�x ,�� that connect
up the points �0,0� and �x ,�� via the fermionic bubble that
contains two backscatterings at point x1:

I�x,�,x1� =
vF"0

2
e−B++�x,���

0

1/T

d�1�
0

1/T

d�1�

�g+
�0��0,�1� − �1�g−

�0��0,�1 − �1��

� e−B++�0,�1−�1��−B−−�0,�1−�1��+2B+−�0,�1−�1��

� �e−B++�x1,�1��+B+−�x1,�1��+B++�x1,�1�−B+−�x1,�1� − 1	

� �eB++�x−x1,�−�1��−B+−�x−x1,�−�1��	�

� e−B++�x−x1,�−�1�+B+−�x−x1,�−�1� − 1	 . �E2�

FIG. 19. Diagram in the functional-bosonization technique,
which describes the addition of disorder in the RPA interaction
propagator. Two backscattering vertices �0,0� and �x ,�� are con-
nected to each other via the fermionic bubble with a single impurity
at point x1.
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All functions B�� in Eq. �E2� are understood as taken at zero
disorder. The analytical structure of the integrand in the com-
plex plane of �1 and �1� is similar to that in the integrals
analyzed in Secs. VII E and VII F. Specifically, in the plane
of �1� we have six vertical branch cuts starting at �1�
= ± i �x1 � /u, �1�= ± i �x−x1 � /u, and �1�=�1± i /� and going to
Im �1�= ± i�, Fig. 20�a�. On top of that, there are singularities
associated with the functions %� Eq. �7.13�. Note that the
strong singularity �a double pole if �→0� at �1�=�1 �if � is
sent to infinity� that comes from the product of two free
Green’s functions g±

�0��0, ± ��1�−�1�	 is largely canceled by
the vanishing of the rest of the integrand at this same point.
Evaluation of the integrals �E2� at arbitrary � leads to rather
cumbersome expressions which are not particularly interest-
ing for our purposes. Let us extract the factor that renormal-
izes the impurity strength,

I�x,�,x1� = −
vF"0

2u2 � ��T
2�e

e−B++�x,���"=0J�x,�,x1� ,

and analyze the behavior of the factor J�x ,� ,x1� at small �.
By introducing a shorthand notation s�z�=sinh��Tz�,
J�x ,� ,x1� is written as

J�x,�,x1� = − �T

2
2�

0

1/T

d�1�
0

1/T

d�1�

�
1

s1−�e�i��1� − �1�	s1−�e�− i��1� − �1�	

� �� s��x1�/u + i�1��s��x1�/u − i�1��
s��x1�/u + i�1�s��x1�/u − i�1���e/2

(1 − 1

� �� s��x − x1�/u + i� − i�1�

s��x − x1�/u + i� − i�1��
��e/2

� � s��x − x1�/u − i� + i�1�
s��x − x1�/u − i� + i�1��

��e/2

(2 − 1
 , �E3�

where

(1 =
s�x1/vF + i�1��s�x1/u + i�1�
s�x1/u + i�1��s�x1/vF + i�1�

,

(2 =
s��x − x1�/vF + i�� − �1�	
s��x − x1�/u + i�� − �1�	

s��x − x1�/u + i�� − �1��	
s��x − x1�/vF + i�� − �1��	

.

In Sec. VII C, while calculating the disorder-induced cor-
rection to B�� to order O�"�2�, we neglected the difference
between vF and u in the interaction propagators. To compare
with the result of Sec. VII C, we neglect the difference be-
tween the two velocities here as well, in particular by putting
(1=(2=1. We discuss the role of such factors in the calcu-
lation of the dephasing rate in Appendix F.

The integral over �1� in Eq. �E3� can be represented as a
sum of three terms,

J = −
T

2
�

0

1/T

d�1�J1 + J2 + J3� , �E4�

each of which is the integral around a branch cut in the
complex plane of �1�, Fig. 20�a�. Inspection of Eq. �E3�
shows that J3, the term related to the branch cut starting at
�1�=�1+ i /�, can be omitted for �e�1, since J3�O��e

3�,
which gives a subleading contribution to J �one power of �e
comes from the difference of the integrand on two sides of
the cut and two more come from the expansion of the ex-
pressions in the curly brackets in Eq. �E3� in �1�−�1	. The
integrals J1,2 are written for �e�1 as

J1 � �e
�T

2
�

0

�

dt1�
1

s2�1−�e��t1� +
�x1�
vF

+ i�1� s�t1��s�t1� + 2
�x1�
vF


s� �x1�

vF
+ i�1s� �x1�

vF
− i�1�

�e/2

��� s� �x − x1�
vF

+ i� − i�1s� �x − x1�
vF

− i� + i�1
s�t1� +

�x − x1�
vF

+
�x1�
vF

+ i�s�t1� −
�x − x1�

vF
+

�x1�
vF

+ i��
�e/2

ei��e/2 − 1� ,

FIG. 20. Analytical structure of the integrand in Eq. �E2� in the
complex plane of �1� and �1. �a� The contour of integration over �1� is
closed upwards and runs around three branch cuts �J1,2,3 are the
corresponding terms in Eq. �E4�	. �b� The contour of integration
over �1 for the first two terms in Eq. �E4� is closed downwards and
runs around two branch cuts.
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J2 � − �e
�T

2
�

0

�

dt1�
1

s2�1−�e��t1� +
�x − x1�

vF
+ i�1 − i�� s� �x − x1�

vF
+ i� − i�1s� �x − x1�

vF
− i� + i�1

s�t1��s�t1� + 2
�x − x1�

vF
 �

�e/2

��� s�t1� +
�x − x1�

vF
−

�x1�
vF

− i�s�t1� +
�x − x1�

vF
+

�x1�
vF

− i�
s� �x1�

vF
+ i�1s� �x1�

vF
− i�1 �

�e/2

e−i��e/2 − 1� .

In turn, each of the integrals of J1 and J2 over �1 can be split into a sum of two integrals along branch cuts in the complex plane
of �1 �Fig. 20�b�	, so that in total we have J��J1a+J1b�+ �J2a+J2b�, where for �e�1

J1a � − �e
2��T

2
2�

0

�

dt1�
0

�

dt1�
1

s2�1−�e��t1 + t1� + 2
�x1�
vF

� s�t1��s�t1� + 2
�x1�
vF


s�t1�s�t1 + 2

�x1�
vF

�
�e/2

��� s�t1 +
�x − x1�

vF
+

�x1�
vF

− i�s�t1 −
�x − x1�

vF
+

�x1�
vF

− i�
s�t1� +

�x − x1�
vF

+
�x1�
vF

+ i�s�t1� −
�x − x1�

vF
+

�x1�
vF

+ i��
�e/2

− 1� , �E5�

J1b � �e
2��T

2
2�

0

�

dt1�
0

�

dt1�
1

s2�1−�e��t1 + t1� +
�x1�
vF

+
�x − x1�

vF
+ i�� s�t1��

s�t1 +
�x1�
vF

+
�x − x1�

vF
+ i��

�e/2

�� s�t1� + 2
�x1�
vF

s�t1�s�t1 + 2
�x − x1�

vF


s�t1 −
�x1�
vF

+
�x − x1�

vF
+ i�s�t1� +

�x − x1�
vF

+
�x1�
vF

+ i�s�t1� −
�x − x1�

vF
+

�x1�
vF

+ i��
�e/2

, �E6�

J2a � �e
2��T

2
2�

0

�

dt1�
0

�

dt1�
1

s2�1−�e��t1 + t1� +
�x1�
vF

+
�x − x1�

vF
− i��

s�t1� +
�x − x1�

vF
−

�x1�
vF

− i�
s�t1�

�
�e/2

�� s�t1� +
�x − x1�

vF
+

�x1�
vF

− i�s�t1 +
�x1�
vF

+
�x − x1�

vF
− i�s�t1 +

�x1�
vF

−
�x − x1�

vF
− i�

s�t1 + 2
�x1�
vF

s�t1��s�t1� + 2
�x − x1�

vF
 �

�e/2

, �E7�

and J2b is obtained from J1a by interchanging x1↔x−x1. The
terms J1a and J2b on the one hand and J1b and J2a on the
other give essentially different contributions to J�x ,� ,x1�.
The integrals J1a and J2b, as a function of the position of the
impurity x1, are not exponentially small only in a close vi-
cinity of width �u /T around x1=0 and x1=x, respectively.
After averaging over x1, these “local” terms yield a contri-

bution of order O��e
2� which does not depend, in the leading

approximation, on x and �. On the contrary, J1b and J2a for
small �e do not depend on x1 for x1 between points x1=0 and
x1=x. The integration over x1 for �x � /vF�1/T yields then
the leading contribution to Eq. �E1�.Only the latter terms are
thus of importance to us. In the limit of small �e, their con-
tribution to J is represented as
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J�x,�,x1� � �e
2��T

2
2�

0

�

dt1�
0

�

dt1��sinh−2��T�t1 + t1�

+
�x1�
vF

+
�x − x1�

vF
+ i�� + ��→ − ��
 . �E8�

Analytically continuing J�x ,� ,x1� onto the imaginary axis of
�, we observe that J�x , it ,x1� is exponentially small for large
positive values of �T /vF���x1 � + �x−x1 � ±vFt� and is a linear
function of this sum when it is large and negative. Since we
are interested in the limit of �x � /vF , �t � �1/T, we can ap-
proximate J�x , it ,x1� as

J�x,it,x1� � −
�

2
�e

2T�t −
�x1�
vF

−
�x − x1�

vF
 �− �x1� − �x − x1�

+ vFt� + �t → − t� . �E9�

Integrating over x1 we obtain

� dx1I�x,it,x1� = − e−B++�x,it��"=0b�x,it� , �E10�

where b�x , it� is given by Eq. �7.54�. We thus provided a
direct verification of the RPA form of Eq. �7.8� by deriving
the first term in the expansion of exp�−B++� in powers of "
without using the disorder-renormalized effective interaction
�7.20�. This procedure can be extended to higher powers of "
and to the correlator B+−.

An important point concerns the factors sinh±�e/2��Tz�,
where z denotes the arguments of the functions s�z� in Eqs.
�E6� and �E7�. These were omitted in the limit of small �e in

Eq. �E8�. However, even for �e�1, this step cannot be jus-
tified for arbitrary x, x1, and �, e.g., if �e �x �T /vF�1. What
is important to us is that all these factors actually cancel each
other after the analytical continuation onto the imaginary
axis of �→ it for large positive values of −�x1 �−�x−x1 � ±ut.
As Eq. �E9� shows, only this range of t is relevant to
J�x , it ,x1�, which is the quantity used in the calculation of the
dephasing rate. The RPA for pairing of all four fields at
points �0,0�and �x ,��, shown in Fig. 20—namely, of the
combinations $+�x ,��−$−�x ,�� and $+�0,0�−$−�0,0� with
each other—via the fermionic bubble with two backscatter-
ings at x=x1 can be reproduced in a similar way.

APPENDIX F: CLASSICAL TRAJECTORY FOR THE
COOPERON

In this appendix, we substantiate an important step in our
derivation of the interaction-induced action SC of the Coop-
eron within the functional-bosonization scheme. Specifically,
we analyze the role of the factors %±�x ,��, Eq. �7.13�, which
contain both the Fermi velocity vF and the plasmon velocity
u. We demonstrate that in the spinless case, considered in
this paper, the velocity of electrons on the “Cooperon path”
which contributes to ��wl is given by u and not by vF. Put
another way, the velocity of the interfering quasiclassical tra-
jectories is renormalized by the interaction and coincides
with that of the RPA propagators. As a result, one can omit
the potentially dangerous factors %±�x ,�� in the calculation
of the WL dephasing.

The function c3 in Eq. �7.61�, which gives the three-
impurity Cooperon loop, is explicitly written as

c3�x,� f − �i,x1,x2,x3� = �vF"0

2
3�

0

1/T

d�1�
0

1/T

d�̄1�
0

1/T

d�2�
0

1/T

d�̄2�
0

1/T

d�3�
0

1/T

d�̄3�g+
�0��x1,�1 − �i�ei�$+�x1,�1�−$−�x1,�1�	�

�g−
�0��x2 − x1,�2 − �1�e−i�$+�x2,�2�−$−�x2,�2�	g+

�0��x3 − x2,�3 − �2�ei�$+�x3,�3�−$−�x3,�3�	g−
�0��x − x3,� f − �3�

�g−
�0��x1 − x, �̄1 − � f�e−i�$+�x1,�̄1�−$−�x1,�̄1�	g+

�0��x2 − x1, �̄2 − �̄1�ei�$+�x2,�̄2�−$−�x2,�̄2�	g−
�0��x3 − x2, �̄3 − �̄2�

�e−i�$+�x3,�̄3�−$−�x3,�̄3�	�g+
�0��− x3,�i − �̄3�� , �F1�

where we write the external times of the bubble as �i and � f
�in Eq. �7.61�, � f −�i=�	. To examine the role of the factors
%±, it is convenient to introduce the function

C3 = �
0

1/T

d�i�
0

1/T

d� fc3ei�n��f−�i�

by integrating first over the external times.
The averaging �¯� over the fluctuating fields $±�x ,��

yields the factor

exp�− 2�Mf f − Mfb�	 ,

defined in Eqs. �7.37�–�7.39�, in the integrand of Eq. �F1�. In
the absence of an interaction �Mf f =Mfb=0�, the integrals
over the internal times are determined by the poles of the
free Green’s functions �specified by Eq. �F4� below with u
→vF	. For given coordinates x1, x2, x3, and x, we refer to this
set of times as the “classical trajectory” of the Cooperon with
velocity vF.

Each interaction-induced term M�N ,N�� in Eqs. �7.37�
and �7.38� contains the combination B+++B−− and hence de-
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pends on both u and vF. If one neglects disorder in the RPA
propagators �“clean RPA”�, the factor exp�−M�N ,N��	 is
represented as

e−M�N,N�� = e−�eL�xN−xN�,�N−�N��)�xN − xN�,�N − �N�� , �F2�

where )�x ,��=%+�x ,��%−�x ,��, �e=1−K, and the functions
L�x ,�� and %±�x ,�� are given by Eqs. �7.12� and �7.13�. The
dependence on vF comes from the factors %±. The “dirty
RPA” does not affect the latter. We thus see that each pair of
impurities N and N� in Eq. �F1� generates two poles associ-
ated with the functions %±:

)�x,�� = �vF

u
2sinh��T�x/vF + i��	sinh��T�x/vF − i��	

sinh��T�x/u + i��	sinh��T�x/u − i��	
.

The singularities in Eq. �F1� coming from the functions
)�x ,�� are analogous to those in the bare Green’s functions
g±

�0��x ,��. However, they can appear either as “u poles” at
i�= ±x /u or as “vF poles” at i�= ±x /vF, depending on the
sign of the factor �−1�N+N� or �−1�N+N̄ in Eqs. �7.37� and
�7.38�.

We can readily integrate over �i and � f the free Green’s
functions that connect to the external vertices. Since there are
no interaction-induced factors at the external vertices, the
integration yields again the free Green’s functions. The func-
tion C3 then becomes

C3 = �vF"0

2
3 1

vF
2�

0

1/T

d�1�
0

1/T

d�̄1�
0

1/T

d�2�
0

1/T

d�̄2�
0

1/T

d�3�
0

1/T

d�̄3g+
�0��x1 − x3,�1 − �̄3�)�x1 − x3,�1 − �̄3�

�g−
�0��x2 − x1,�2 − �1�)�x2 − x1,�2 − �1�g+

�0��x3 − x2,�3 − �2�)�x3 − x2,�3 − �2�g−
�0��x1 − x3, �̄1 − �3�)�x1 − x3, �̄1 − �3�

�g+
�0��x2 − x1, �̄2 − �̄1�)�x2 − x1, �̄2 − �̄1�g−

�0��x3 − x2, �̄3 − �̄2�)�x3 − x2, �̄3 − �̄2�)−1�x1 − x3,�1 − �3�)−1�x1 − x3, �̄1 − �̄3�

�)−1�x1 − x2,�1 − �̄2�)−1�x3 − x2,�3 − �̄2�)−1�x2 − x1,�2 − �̄1�)−1�x2 − x3,�2 − �̄3�)�0,�1 − �̄1�)�0,�2 − �̄2�)�0,�3 − �̄3�

�R�x1,x2,x3,�1,�2,�3, �̄1, �̄2, �̄3�W�x1,�1,x3, �̄3,�n�W�x − x3,�3,x − x1, �̄1,−�n� , �F3�

where )�0,��= �vF /u�2, the function R combines all the fac-
tors coming from the first factor in Eq. �F2�, and

W�x1,�1,x3, �̄3,�n�

= e−��nx1�−i�n�1� ��n� �x1� − �−�n� �− x1�	

+ e−��nx3�−i�n�̄1� ��n� �x3� − �−�n� �− x3�	 .

In the single-particle Green’s function, the Fermi velocity vF

drops out completely in the product g±
�0��x ,��%±�x ,��. One

can see that each free Green’s function in Eq. �F3� is multi-
plied by a corresponding factor %±, so that all the vF poles
associated with the free Green’s functions in Eq. �F3� are
replaced by u poles. One might think that vF disappears com-
pletely from the problem, and hence the integration over the
internal times in Eq. �F3� straightforwardly yields a new
classical trajectory defined by

i�1 = − x1/u ,

i�2 = �x2 − 2x1�/u ,

i�3 = �2x2 − 2x1 − x3�/u ,

i�̄3 = − x3/u ,

i�̄2 = �x2 − 2x3�/u ,

i�̄1 = �2x2 − 2x3 − x1�/u . �F4�

However, the impurity vertices are all interconnected by the
interaction propagators. Among the latter, there are propaga-
tors that connect vertices which are not connected by the
single-particle Green’s functions �e.g., points �x1 ,�1� and

�x2 ,�2̄�	. As a result, the vF poles in the corresponding func-
tions %± remain uncompensated.

In the noninteracting case, the sequence of points in real
space,

1 → 2 → 3 → 1 → 2 → 3 → 1, �F5�

forms a closed loop with segments given by the Green’s
functions g±

�0�. Now that we have the interaction-induced
functions %± that connect every pair of impurities, other tra-
jectories can contribute to C3, whose segments are given
either by the Green’s function or by the function %±. In view
of this, the notion of a single classical trajectory contributing
to ��wl requires a more accurate justification. As we show
below, the interaction itself “chooses” a unique classical tra-
jectory which is defined in Eq. �F4�—i.e., the one that is
determined by a combination of the Green’s functions with
the renormalized velocity vF→u. The contributions of all
other trajectories are exponentially suppressed. Note that
within the fermionic path-integral approach used in Sec. VI,
the “correct” velocity is chosen automatically on the saddle-
point trajectory of the total action.
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When analyzing the role of the factors %±, we can, in the
first approximation, neglect other interaction-induced factors
in Eq. �F1� by setting the exponent �e=0 in Eq. �F2�—i.e.,
by putting R=1 in Eq. �F3� while keeping the difference
between vF and u in the functions ). This simplifies the ana-
lytical structure of the integrand in Eq. �F3� by reducing the
integration along branch cuts to the integration around
simple poles only. The integration around all the poles then
yields C3 represented as a sum over a whole set of trajecto-
ries, not only the one given by Eq. �F5�.

The integrand of Eq. �F3� contains products of the type
g±

�0��x , it�)�x , it� which, as a function of t, have poles on the
classical trajectory �F4� at t= ±x /u with a residue equal to

�ut! �x + u sgn x/��	g±
�0��x,it�)�x,it�� t→±x/u

� −
1

2�i

vF

u
exp�u − vF

uvF
�T�x� �F6�

for �x � /u�1/T. Writing the remaining factors ) which are
not singular at this pole as

)�x,it� � �vF

u
2

exp��T��t+
v� + �t−

v� − �t+
u� − �t−

u��	

� sgn t+
vsgn t−

vsgn t+
usgn t−

u �F7�

for �t±
v,u � �1/T, where t±

v = t±x /v and t±
u = t±x /u, we observe

that all the exponential factors coming from Eqs. �F6� and
�F7� cancel out on the classical trajectory �F4�.

On the contrary, any other sequence of poles has at least
some of the segments of the trajectory passed with velocity
vF and no such compensation occurs, which leads to an ex-
ponential decay of the contribution to C3. The exponent de-
pends on a particular sequence of poles but for any sequence
is at least of the order of ��u−vF � /vF�Ttc. One sees that the
contribution of any of the “nonclassical” trajectories is expo-
nentially suppressed either by the “golden rule dephasing” or
simply by the thermal smearing. The role of the factors %± is
thus two fold: they renormalize the velocity on the “classi-
cal” Cooperon trajectory �vF→u� and suppress the contribu-
tion of all nonclassical trajectories. Taking into account the
factor R in Eq. �F3� within the “clean RPA” does not give
any decay on this classical trajectory either. Including disor-
der within the “dirty RPA” �Sec. VII C and Appendix E� in
the factor R yields an exponential decay on the classical
trajectory as well, as discussed in Sec. VII F, but this decay
is much weaker than on the nonclassical trajectories, so that
the latter can indeed be neglected in the calculation of ��wl.
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