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We investigate electron-phonon couplings, scattering rates, and mean free paths in zigzag-edge graphene
strips with widths of the order of 10 nm. Our calculations for these graphene nanostrips show both the
expected similarity with single-wall carbon nanotubes �SWNTs� and the suppression of the electron-phonon
scattering due to a Dirichlet boundary condition that prohibits one major backscattering channel present in
SWNTs. Low-energy acoustic phonon scattering is exponentially small at room temperature due to the large
phonon wave vector required for backscattering. We find within our model that the electron-phonon mean free
path is proportional to the width of the nanostrip and is approximately 70 �m for an 11-nm-wide nanostrip.
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I. INTRODUCTION

Low-dimensional systems have long attracted attention in
mesoscopic physics. One area of such interest is one-
dimensional conductors. These quantum wires do not obey
the usual macroscopic Ohm’s law. Instead, they exhibit bal-
listic or coherent diffusive electron transport. In the former
transport regime, the conductance is independent of the
length of the quantum wire and is quantized in units of
2e2 /h. The requirement for ballistic transport is that the
length of the quantum wire should be shorter than its char-
acteristic mean free path. In metallic single-wall carbon
nanotubes at room temperature, low-energy mean free paths
of the order of 1 �m have been observed.1,2 These observa-
tions are also confirmed by theory, which assumes that
electron-phonon scattering is the dominant source of
scattering,1,2 as the effects of static disorder are strongly
suppressed.3–6

In this paper, we present electron-phonon calculations of
graphene nanostrips terminated by hydrogen atoms. The in-
terior of the nanostrips consists of an sp2-bonded graphene
honeycomb lattice. Therefore, there is hope that the nanos-
trips will inherit some of the special properties of graphene.
There are several studies of the electron properties of
graphene nanostrips �GNSs�,7–20 and recent experimental
progress21 in fabricating the materials will likely add further
interest. The nanostrips can be made from a sheet of
graphene using lithography. Until recently, it was uncertain
whether graphene would be thermodynamically stable or
would spontaneously curl up into scrolls.22,23 Initial electron-
transport measurements on graphene have demonstrated high
room-temperature mobilities, suggesting that a sheet of
graphene is relatively inert to interface scattering at the sub-
strate surface.23–25 From experiments, the graphene mean
free paths have been estimated to be 400 nm �Ref. 23� and
600 nm �Ref. 21�. The mean free path has not shown signifi-
cant temperature dependence. Therefore, we expect the
electron-phonon mean free path to be even longer.

Unlike in graphene, the carriers in GNSs are confined to
one dimension. The electron energy dispersion is quantized
in the transverse direction, similar to the dispersion in carbon
nanotubes. However, there are two important differences be-
tween carbon nanotubes and nanostrips. First, metallic car-

bon nanotubes exhibit two channels �excluding the spin de-
gree of freedom� at the Fermi level due to a periodic
boundary condition in the transverse direction. Nanostrips,
on the other hand, have a Dirichlet boundary condition and
only a single channel. Second, zigzag-edge nanostrips have
edge states which do not exist in carbon nanotubes.7,8 These
edge states have energies close to the Fermi level �F and can
therefore significantly affect low-bias electron transport. On
the other hand, the edge states are highly localized on the
edges7,8,10 and have only small overlaps with the extended
states, thus leaving the extended states in the dispersion rela-
tively intact. Similar edge localization has been seen in pho-
non energy dispersions.26 An important consequence of the
presence of edge states is that they replace low-energy chan-
nels which would otherwise cause backscattering.

The next section describes the electron-phonon cross-
sections in our model. These results are then used in Sec. III
where Fermi’s golden rule is applied to calculate scattering
rates and the electron-phonon mean free path. Our findings
are finally discussed in the concluding section.

II. ELECTRON-PHONON COUPLINGS

We model the electron using the usual tight-binding
Hamiltonian

Hel = �
�i,j�

�ij�ci
†cj + H.c.� , �1�

where the summation is over all nearest neighbors �i , j�, �ij

are hopping parameters, and ci
† and ci are the fermionic cre-

ation and annihilation operators, respectively, on site i. When
there is no lattice deformation, we use the graphene �-orbital
hopping parameter �ij =�0�−2.7 eV.3 The energy dispersion
for a nanostrip with Nzz=50 interior zigzag lines along the
strip axis is shown in Fig. 1.

Close to the Fermi level, the strip has only a single
channel in each direction, and the channels are separated by
a wave vector approximately q= �4/3��� /a�, where
a�0.246 nm is the lattice spacing. As a consequence, long-
wavelength acoustic phonons cannot cause backscattering in
zigzag-edge nanostrips.

In this study, we restrict ourselves to single-phonon events
with first-order variations in the hopping parameters. We
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limit the calculation to the energy gap �E��25/Nzz� eV in
which there is only a single channel in each direction. In
graphene with a transverse boundary condition, there are
only certain allowed transverse wave vectors, as indicated in
Fig. 2.

Only phonons with the same set of wave vectors can ef-
ficiently scatter electrons due to conservation of crystal mo-
mentum. Furthermore, low-energy intraband electron back-
scattering can only be caused by phonons in the proximity of
the K-point. We will only consider the case where qx=0, as
all other equivalent K-points can be translated onto this band
by a reciprocal-lattice vector. Because of the edge states in
zigzag-edge nanostrips, the quantization of the two-
dimensional Brillouin zone is no longer exact although it still
remains a good approximation in wide nanostrips for
�k�� �2/3��� /a�, as the edge states are primarily located out-
side this wave-vector window.7,8 There are six phonon
branches with qx=0. In two of these branches, the phonon
modes are entirely out-of-plane. These modes do not affect
the bond length to first order and can therefore be neglected.
The remaining four phonon modes are longitudinal-acoustic
�LA�, longitudinal-optical �LO�, transverse-acoustic �TA�,
and transverse-optical �TO� phonons. The LA and TO
phonons cause intraband scattering and the LO and TA
phonons cause interband scattering between the conduction
and valence bands. As we will see below, the interband scat-

tering can be minimized by doping. This leaves the LA and
TO branches with corresponding modes at a K-point shown
in Fig. 3.

We can estimate the electron-phonon coupling in the
nanostrips by introducing a frozen phonon into the lattice.
The frozen phonon perturbs the lattice and causes local
variations in the bond lengths, which in turn affect the
nearest-neighbor hopping parameters. We model this effect
by expanding the Goodwin-Skinner-Pettifor scaling function
for carbon,27 and we obtain hopping parameters of the form

�ij = �0 − �d̂ij · �u� i − u� j� , �2�

where the coupling constant is ��52 eV/nm, d̂ij is the unit
vector in the direction to the nearest neighbor, and u� i−u� j is
the relative lattice displacement. A LA or TO phonon at the
K-point opens up a gap at k= ± �2/3��� /a�. This effect can
be seen in the reduced zone dispersion in Fig. 4�a�, where
k= ± �2/3��� /a� has been folded back to k=0. The gap is
proportional to the electron-phonon coupling responsible for
back scattering. Although it does not reduce the electron-
phonon mean free path, it is also worth looking at the TO
phonon at the 	-point. This phonon, which only causes for-
ward scattering, introduces shifts in the dispersion, as illus-
trated in Fig. 4�b�. Figure 4�c� shows the energy difference
between the conduction bands calculated with and without
the frozen TO phonon. The comparison to an armchair nano-
tube shows that the edge states are essentially unaffected by
the introduction of a frozen phonon in the lattice. This result
is expected since a wave function on an edge state is dra-
matically different from that on an extended state. The figure
also demonstrates that the conduction band is similar to that
in a nanotube for �k�� �2/3��� /a�, which is also expected as

FIG. 1. Electron energy dispersion of a graphene nanostrip
�solid bands�. This particular nanostrip has a width of Nzz=50 inte-
rior zigzag lines, which corresponds to approximately 11 nm. The
dispersion is compared to that of a �25,25� carbon nanotube �dashed
bands�. Due to the edge states, there is only one channel close to the
Fermi level which is located at E=0.

FIG. 2. First Brillouin zone with �a� quantized electronic bands
and �b� phonon branches satisfying qx=0. Phonons at the K-point
can scatter an electron in state K into state K�.

FIG. 3. Lattice vibrations which cause non-negligible intraband
electron-phonon coupling. The two modes represent �a� a LA pho-
non and �b� a TO phonon at a K-point. Note that due to the LA and
LO degeneracy, the LA mode has been obtained in the limit
q→ �4/3��� /a�.
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the eigenstates become identical in the limit Nzz→
. The
transition between the edge and extended states at
�k���2/3��� /a� also becomes sharper for wider nanostrips.
Motivated by Fig. 4�c�, we take the electron-phonon matrix
elements in graphene as an upper bound of those in GNSs,
and from here on we will use the former, which we can
estimate analytically.

The electron-phonon interaction in Fourier space can be
expressed as

Hel-ph = �
�kq

Mkq
� ck+q

† ck�q
�, �3�

where Mkq
� are the coupling matrix elements and �q

� is the
phonon operator of mode �. The latter is given by

�q
� = �1

2
�q

�	1/2

�aq
� + a−q

�†� , �4�

where aq
� and a−q

�† are bosonic creation and annihilation op-
erators and q

� are phonon frequencies. The phonon disper-

sion is calculated numerically using a force constant model28

with the parameters given in Ref. 29 Following the deriva-
tions of matrix elements in armchair carbon nanotubes,30,31

we find the intraband matrix elements appropriate for nanos-
trips,

Mkq
LA =

�i
3� sin
qa

4
cos

�2k + q�a
4


2Nzz�L/a�mcq
LA

�uAL + uBL� ,

Mkq
TO =

±��1 + cos
qa

4
cos

�2k + q�a
4

�

2Nzz�L/a�mcq

TO
�uAT − uBT� , �5�

and the interband matrix elements,

Mkq
LO =

�i
3� cos
qa

4
sin

�2k + q�a
4


2Nzz�L/a�mcq
LO

�uAL − uBL� ,

Mkq
TA =

�� sin
qa

4
sin

�2k + q�a
4


2Nzz�L/a�mcq
TA

�uAT + uBT� , �6�

where L is the length of the strip, mc is the mass of a carbon
atom, and �uAL ,uAT ,uBL ,uBT�T is the polarization vector nor-
malized to 2. The overall sign depends on whether �k� is
smaller or greater than �2/3��� /a�, but this is irrelevant for
our scattering calculations.

III. SCATTERING RATES AND MEAN FREE PATH

The electron-phonon scattering rate for an electron with
wave vector k can be calculated using Fermi’s golden rule,

	 = 	�ab� + 	�em� = �
�q

	�kq
�ab� + 	�kq

�em�� , �7�

where the absorption and emission terms are

	�kq
�ab� =� 2�

�
��k + q,nq

� − 1�Hel-ph�k,nq
���2

� ��Ek+q − Ek − �q
����Ek+q�dEk+q

= ��Mkq
� �2q

�nq
���Ek + �q

�� �8�

and

	�kq
�em� =� 2�

�
��k + q,n−q

� + 1�Hel-ph�k,n−q
� ��2

� ��Ek+q − Ek + �q
����Ek+q�dEk+q

= ��Mkq
� �2q

��1 + nq
����Ek − �q

�� , �9�

where the unoccupied backscattering density of states is

��E� =
L

�
� dk

dE
��1 −

1

e�E−��/kBT + 1
� , �10�

where � is the chemical potential. The phonon occupation is
given by the Bose-Einstein distribution

FIG. 4. Effects due to a frozen TO phonon in a GNS
�Nzz=50� lattice. �a� The electron dispersion of the nanostrip is
calculated with the frozen phonon at the K-point �solid bands� and
is compared to that with no frozen phonon �dashed bands�. Due to
the frozen phonon, there are gaps at k=0, which reflect an electron-
phonon coupling between k=−�2/3��� /a� and k�= �2/3��� /a�. �b�
The same calculation with the frozen phonon at the 	-point. This
phonon has a coupling which causes forward scattering. �c� The
energy difference between the electron dispersions with and without
the frozen phonon at the 	-point. The energy difference in the
nanostrip �solid curve� is compared to that of a �25,25� armchair
nanotube �dashed curve�. At low electron wave vectors, the energy
differences are similar, while at high wave vectors, the energy dif-
ference in the nanostrip is suppressed by its edge states.
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nq
� =

1

e�q
�/kBT − 1

. �11�

From Eqs. �5�–�12�, we find that the scattering rate is in-
versely proportional to the width of the nanostrip.

Backscattering rates of an undoped ��=0� GNS at room
temperature are shown in Fig. 5�a� as a function of the initial
electron energy. Due to the large wave-vector separation be-
tween the initial and final electron states, the absorbed
phonons must have considerable energies to ensure energy
conservation. These energies are similar to the threshold en-
ergies for LA and TO phonon emission. The lowest threshold
energy corresponds to a thermal energy of about Tc
=�K

LA/kB�1800 K. Therefore, phonon absorption is in a
low-temperature regime �T�Tc� where the phonon occupa-
tion is exponentially small, nq

��exp�−�q
� /kBT�. Because

the absorption scattering rates scale with phonon occupation
see Eq. �8��, the backscattering due to phonon absorption is
expected to be small, even at temperatures well above room
temperature. This effect does not occur in carbon nanotubes
where low-energy long-wavelength acoustic phonons cause
backscattering. Backscattering due to phonon emission, on
the other hand, is of the same order as in carbon nanotubes.

The electron-phonon mean free path is estimated by
�= �vi� /	, where vi is the initial electron group velocity. The
mean free path at room temperature is shown in Fig. 5�b� for

a few different chemical potentials. At very small energies,
the electrons move slowly, which effectively shortens the
mean free path. As the electron energy increases, the electron
speed approaches the Fermi velocity in graphene, vF. To-
gether with increasing interband LO emission scattering, the
mean free path forms a maximum. This interband scattering
can be reduced by doping the material to reduce the number
of available states in the opposite band. For �=0.15 eV, the
interband scattering becomes small compared to the intra-
band scattering for all energies. The maximum mean free
path can now be estimated by phonon absorption alone,

��ab��Nzz,T� = �0
�ab� Nzz

Nzz
�0�e

Tc�1/T−1/T0�, �12�

where �0
�ab��70 �m, Nzz

�0�=50, and T0=300 K. Above the
threshold for phonon emission the mean free path ��em� is of
the order of 10 nm which is comparable with that in carbon
nanotubes.32

IV. CONCLUSIONS

Using the graphene sheet model Eq. �1��, we have found
that electron-phonon scattering rates in zigzag-edge
graphene nanostrips are extraordinarily small for kinetic en-
ergies smaller than the phonon emission thresholds. The rea-
son for the small scattering rates is that long-wavelength
acoustic phonons cannot cause backscattering of extended
states in the lowest band. Coupling to the edge states is ex-
pected to be small since overlaps between extended and edge
wave functions are small and the phonons would have to
have a highly exotic symmetry. We have also shown that the
electron-phonon mean free path is proportional to the width
of the nanostrip as long as excited bands cannot energetically
be reached. Wider nanostrips, on the other hand, have the
disadvantage that they reduce the single-channel window
�E��25/Nzz� eV, and for sufficiently wide nanostrips ��E
�kBT�, electrons scattering to the next excited band will be
appreciable, thereby reducing the mean free path. The meth-
odology presented in this paper can also be used to calculate
electron-phonon scattering in armchair-edge nanostrips. The
results are expected to be similar to those for zigzag nano-
tubes, although they might be irrelevant as armchair-edge
nanostrips are highly sensitive to edge disorder.33

Because the electron-phonon mean free path within the
model is found to be extraordinarily long in zigzag-edge
nanostrips, the actual electron mean free path is likely going
to be limited either by the disorder in the material, despite a
recent prediction that zigzag-edge nanostrips are relatively
resistant to short-range, long-range, and edge disorders.33, or
by spin polarization effects7 at the edges which might open
up an additional channel for backscattering.
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FIG. 5. �a� Scattering rates of a Nzz=50 zigzag-edge GNS at
300 K as a function of electron energy. The LA and TO phonons
cause intraband scattering and the LO phonon interband scattering.
Intraband phonon absorption occurs at all electron energies, while
intraband phonon emission requires energies larger than the thresh-
old energy for the particular branch. The threshold energies are
about 0.16 and 0.18 eV for the LA and TO branches, respectively.
�b� The total mean free path at room temperature due to electron-
phonon scattering. The mean free path increases with the chemical
potential since a higher chemical potential reduces the number of
unoccupied electron states.
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