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I study numerically the problem of delamination of a thin film elastically attached to a rigid substrate. A
nominally flat elastic thin film is modeled using a two-dimensional triangular mesh. Both compression and
bending rigidities are included to simulate compression and bending of the film. The film can buckle �i.e.,
abandon its flat configuration� when enough compressive strain is applied. The buckled configurations of a
piece of film with stripe geometry are investigated as a function of the compressive strain. It is found that the
stable configuration depends strongly on the applied strain and the Poisson ratio of the film. Next, the film is
considered to be attached to a rigid substrate by springs that can break when the detaching force exceeds a
threshold value, producing partial delamination of the film. Delamination is induced by a mismatch of the
relaxed configurations of film and substrate. The morphology of the delaminated film can be followed and
compared with available experimental results as a function of model parameters. “Telephone-cord,” polygonal,
and “brainlike” patterns qualitatively similar to experimentally observed configurations are obtained in differ-
ent parameter regions. The main control parameters that select the different patterns are the strain mismatch
between film and substrate and the degree of in-plane relaxation within the unbuckled regions.
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I. INTRODUCTION

The use of a variety of coatings to enhance the perfor-
mance of materials is widespread in many areas of science
and technology. The deposition of the coating usually occurs
at conditions �such as temperature, humidity of the environ-
ment, etc.� very different from those to be found under work
conditions. Due to this fact and to the different nature of
substrate and coating, typically large mismatch stresses ap-
pear between the film and the substrate.1 When the stresses
are tensile on the film, this may fail due the nucleation of
cracks that split the film to reduce to the total mechanical
energy of the system. A familiar example of this phenom-
enon is the cracking observed sometimes in paints and in the
surface of mud.2 When mismatch stresses are compressive
within the film, the most common mode of failure is called
delamination:1,3,4 the film partially detaches from the sub-
strate to relieve the accumulated stress. Experimentally, dif-
ferent morphologies of the delaminated regions have been
observed. In many cases delaminated regions of characteris-
tic undulated geometries �referred to as “telephone cords”�
appear.

Delamination can be understood on the basis of the well-
known phenomenon of buckling of elastic structures.5 The
first quantitative description of the buckling of a one-
dimensional elastic rod goes back to Euler. Upon compres-
sion, an elastic rod can reach a state in which the straight
configuration is no longer the minimum-energy configura-
tion. At that point the rod acquires a nonstraight configura-
tion; namely, it buckles. For two-dimensional elastic mem-
branes the same kind of instability exists, but the problem
becomes mathematically much more involved. The equilib-
rium equations of a membrane were obtained by Foppl and
von Karman �FvK�.6 The FvK equations are two nonlinear,
coupled differential equations for the separation of a given
point with respect to the flat configuration and for the Airy
potential for the in-plane displacement. The in-plane dis-

placement can be reconstructed from auxiliary �linear� differ-
ential equations once the Airy potential is known.

Delamination of a film that is elastically attached to a
rigid substrate involves the interplay of two main ingredi-
ents. For a given initial form of a delaminated region �in
which the interaction with the substrate is assumed to be
absent� the FvK equations determine the profile of the buck-
led configuration. The buckled film produces forces on the
border that tend to detach the film further. In this way the
film can continue its detaching by this mechanism, with the
configuration of the buckled film adapting to the instanta-
neous form of the buckled region. Thus, in general, buckling
and delamination of the film must be solved self-consistently,
and this is possible only numerically.

A direct numerical solution of the FvK equations is rather
difficult, because of its nonlinear nature. This is why some
scientists have considered the simulation of a more-or-less
realistic film, consisting of atoms interacting via interatomic
forces. The problem with this approach is that in order to be
able to model the bending of the film, a few layers of atoms
are necessary, making the simulations rather inefficient and
suffering from important spurious effects associated with the
anisotropy of the numerical lattice.7 Here, to simulate the
film I use the following strategy, which to a large extent
eliminates the previously mentioned drawbacks.8 The film is
modeled on a physical basis as a two-dimensional triangular
lattice formed by springs that account for the compression
and stretching behavior of the material. In addition, bending
springs are introduced at the nodes of the triangular lattice to
account for the bending rigidity of the film. The model can
be shown to be elastically isotropic �in linear approxima-
tion�, describing a material with Poisson ratio �=1/3. Addi-
tional bending springs are added to change the value of � in
a controlled manner, keeping the system isotropic. By refer-
ring to the sketch in Fig. 1�a�, each node i of the triangular
lattice contributes with an elastic energy Hi of the form
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where uij is the vector joining sites i and j, the index j labels
the six neighbors of site i, in sequential order, j� in the sec-
ond term is j+3 �i.e., the neighbor opposite to neighbor j�,
and j� in the last term is j�= j+1 for j from 1 to 5 and j�
=1 for j=6. The three terms of this expression are, respec-
tively, the stretching energy, the bending energy, and the cor-
rective term that is introduced if a film with ��1/3 is re-
quired. They are characterized by three different elastic
constants: namely, ks, kb, and k�. The equilibrium configura-
tion of a system described by the energy �1� is a flat triangu-
lar lattice with lattice parameter l0.

From this atomistic expression for the energy of the sys-
tem, the relation with averaged macroscopic quantities can
be evaluated. The result for the bending rigidity D, the two-
dimensional compressibility B, and the Poisson ratio � of the
bulk material of the film �which is assumed to have a thick-
ness d� is9

B =
	3

d
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D =
3	3

4
kb,

� =
2l0

2ks − 9k�

6l0
2ks + 9k�

. �2�

The attaching �and eventual detaching� of the film to the
substrate is the second crucial ingredient to be included in
order to obtain a realistic behavior of the system. Experimen-
tally, it has been emphasized that detaching by perpendicular
separation has usually a much lower threshold than detach-
ing by shear.1 This suggests that an appropriate situation is to
consider that detach occurs when the perpendicular force be-
tween film and substrate exceeds some maximum value fmax.
This is implemented as follows. Let us consider the substrate
to be located at z=0. For each node to be simulated in the
film there is an anchoring point on the substrate to which this
is attached to, prior to detaching. Let us suppose the coordi-
nates of the anchoring point are �x0, y0, 0� and those of the

corresponding point in the film are �ux, uy, uz�. An elastic
contribution to the energy of the form 1

2 �kh�ux−x0�2+kh�uy

−y0�2+kzuz
2� is then included. The vertical force between the

node and its anchoring point is thus kzuz. If this force ex-
ceeds the maximum value fmax during the simulation, then
the interaction of that node with the substrate is set irrevers-
ibly to zero, by putting kh=kz=0. The present scheme has
been applied, for instance, in the simulations in Ref. 7, in the
particular case of a stiff interaction with the substrate:
namely, kh→�, kz→� �in this limit the position of the node
coincides with that of the anchoring point up to the rupture
point�. I have seen that this prescription does not suffice to
reproduce the large phenomenology that is observed experi-
mentally and think that the main lacking ingredient is the
possibility of in-plane relaxation of the film in the case it is
still attached to the substrate. Thus, I consider the possibility
of finite values of kh, which allow the film to relax horizon-
tally, while it is still attached. The value of kz is set to be
infinitely large �additional simulations with a finite value of
kz indicate that this is not a very restrictive situation�. Mac-
roscopically, the attaching to the substrate can be quantified
by an elastic coefficient I call Es, which is defined as the
ratio between the applied horizontal force per unit area of the
film and the horizontal displacement this force produces. The
relation between kh and Es is easily found to be

Es =
2kh

	3l0
2

. �3�

The anchoring points in the substrate form a triangular
lattice, corresponding to that of the film. However, the lattice
parameter of the anchoring-point lattice l0

s is assumed to be
smaller than the one l0 in the film. This is the way in which
a mismatch between film and substrate is introduced, and it
is the origin of the tendency of the film to delaminate. The
mismatch strain between film and substrate � is defined as
�
�l0 / l0

s −1�. All simulations presented below were made in
systems with periodic boundary conditions in the x-y direc-
tions. To be more precise in the present case, the periodicity
of the system is given by the lattice of anchoring points in
the substrate, which has a lattice parameter l0

s . The relaxed
size of the film is a factor of l0 / l0

s larger than this; this means
that the film is compressed due to the boundary conditions,
even if it is completely detached from the substrate.

In addition to the energetics, the time evolution of the
system must be defined. This evolution will be assumed to be
overdamped; namely, it is assumed that kinetic energy plays

FIG. 1. �a� Detail of the triangular lattice that
simulates the film, where the numbering of neigh-
bors of site i and the equilibrium distance l0 are
highlighted. �b� A sketch of part of a partially
delaminated film. Open symbols are the anchor-
ing points in the substrate. The film is attached to
the substrate to the left and is detached to the
right. Note the possibility of horizontal relaxation
in the attached part, indicated by the thin lines,
along which the spring constant kh is acting.
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no role in the evolution. Then the positions of the nodes of
the lattice evolve according to

du

dt
= − �

�H

�u
; �4�

thus, � sets the time scale for the evolution.
It is also convenient to introduce nondimensional param-

eters to describe the simulations. From Eqs. �1� and �4�, it
can be seen that the simulations can be parametrized by the
values of kb / �l0

2ks�, k� / �l0
2ks�, kh /ks, and fmax / �ksl0�. A nondi-

mensional time � can also be introduced through �=�kst. A
first-order method was used to integrate Eq. �4�, with a time
step ��=0.3.

II. COMPARISON WITH ANALYTICAL RESULTS

As a validation test for the model, I will compare the
results from simulations with available analytical results in
simple geometrical configurations. Analytical results are
available for a straight delaminated blister and a circular blis-
ter, and can be found in Ref. 10. In this section I take no
horizontal relaxation in the nondelaminated regions �i.e., kh
→�� since this is the condition applied in the calculations.
The simplest configuration to study is the buckling of a stripe
of material. When the stripe is loaded isotropically in com-
pression �i.e., ��0�, the film remains flat until a critical
value �1 is reached. At this point a uniform wrinkle along the
longitudinal direction is formed. This configuration is usually
referred to as the Euler column. The value of �1 can be
analytically calculated, and it is known to be

�1 =
4	2D

w2Bd
. �5�

An equivalent expression can be obtained by expressing D
and B in terms of the Young modulus of the material E, as
indicated in Ref. 9. The result is

�1 =
	2d2

3w2�1 + ��
, �6�

where we see that the value of �1 is mainly controlled by the
ratio between thickness and width of the delaminated stripe.

The value of �1 can also be expressed in terms of the
parameters of the model by using Eqs. �2�, as

�1 =
4	2

�n + 1�2

kb

l0
2ks

, �7�

where n is the number of rows of nodes that compose the
delaminated stripe �i.e., w=

	3
2 l0�n+1�� and where the previ-

ously defined nondimensional parameter kb / �ksl0
2� appears.

In the Euler column configuration, the FvK equations be-
come linear and can be solved analytically. The film takes a
sinusoidal profile across the wrinkle for all values of the
applied strain, and the amplitude of the buckled profile
grows as �� /�1−1�1/2. In Fig. 2, I show some numerically
obtained buckling profiles. They were obtained taking one of
the main directions of the triangular simulation lattice along
the stripe. The stripe was described by 24 rows of this trian-

gular mesh, and the value of kb / �l0
2ks� was taken to be 0.05

and k�=0; i.e., a film with �=1/3 is being simulated. Due to
the fact that we are seeking a homogeneous pattern along the
stripe, only one lattice node �and periodic boundary condi-
tions� was used in this direction. We can see that as long as
the applied strain is small, the profile agrees very well with
the analytical prediction, both in its form and in the buckling
amplitude. The numerically obtained critical strain �1 coin-
cides with the analytical value within an error of order 1 /n
where n is the number of rows that form the stripe. For very
large values of the applied deformation, we see that the
buckling profile departs from the sinusoidal form. This is
actually not an artifact of the model, but instead a limitation
of the FvK equations, for which the condition ��1 is as-
sumed. From now on, in the rest of the paper I will restrict
this study to cases in which � does not reach these very large
values. In this case, the strain enters into the problem only in
the combination � /�1.

Other interesting quantities to calculate in delamination
problems are the energy release rate and the loading ratio at
the edge of the delaminated blister. They are precisely de-
fined in Ref. 10 and are analytically known for the Euler
column. In the numerical implementation they are computed
by calculating the in-plane compressive force and the bend-
ing moment per unit length at the border between delami-
nated and nondelaminated regions. In the top of Fig. 3 I plot
the analytical values and the results from the simulations for
the Euler column. We can see that the agreement is quite
satisfactory.

A second configuration in which the FvK equations have
been solved in detail is the circular blister. In this case the
nonlinear nature of the FvK equations enters into play. Nu-
merically obtained buckling profiles for the circular blister
are shown in Fig. 4. Very close to the buckling threshold, the
profile is analytically known to be given in terms of the J0
Bessel function. In practice, this profile is hardly distinguish-
able from a sinusoidal profile. The change of the profile for
larger values of � /�1 �but still ��1� is a consequence of the
nonlinear nature of the problem. The numerically obtained
energy release rate and edge loading ratio, shown in the bot-
tom of Fig. 3, agree very well with the forms given in Ref.
10.

III. BUCKLING PATTERNS OF A STRIPE

Now I consider the stability of the Euler column configu-
ration when applied deformation increases. This case has

FIG. 2. Homogeneous buckling profiles of a stripe for different
values of � /�1, obtained in simulations with n=24 and kb / l0

2ks

=0.05. Inset: measured buckling amplitudes as a function of � /�1.
Dots are the simulated values, and the line is the analytical result.
The critical strain �1 for the parameters used is �1�0.00315.
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been considered previously in the literature,11 and then it will
be useful to validate the numerical model. In addition we
will see that already in this simple case the behavior is non-
trivial. Thus we consider a stripe piece of the film of width
w, which is detached from the substrate. The rest of the film
is assumed to be rigidly attached to the substrate �i.e., kh
→��. In this way, the only effect of this part of the film is to
provide a clamped boundary condition for the stripe. In ad-
dition, due to the presence of the substrate, the stripe can
buckle only toward positive values of z. Under these condi-
tions we will look for a stable configuration of the stripe for
different parameters.

The Euler column configuration mostly relieves the per-
pendicular stress on the stripe, but leaves an important de-
gree of longitudinal compression in it. If the isotropic com-
pression � is increased, a secondary buckling is expected at
some mismatch strain �2, in which the longitudinal unifor-
mity of the Euler column is lost and one of two different
patterns is expected:11 in one case �occurring if the Poisson
ratio � of the film is larger than a value of approximately
0.255� the Euler column transforms into an undulated
wrinkle. The second case corresponds to a pattern �some-
times called “varicose”� appearing if � is lower than this
value, in which the uniform maximum of the Euler column is
distorted and transforms into a sequence of small hills and
shallow valleys. The varicose pattern preserves the symmetry
of the configuration with respect to the axis of the delami-

nated region, whereas the undulated wrinkle does not. These
results have been obtained analytically doing a perturbative
analysis of the FvK equations considering small distortions
of the Euler column. The analysis shows also11 that �2 /�1 is
a function of the Poisson ratio of the film only. Using the
numerical model presented here, we can test this prediction,
and in addition we can explore arbitrary distortions of the
film.

Numerical results in the stripe geometry were obtained
using the same parameters as those of the previous section,
except that I take 200 nodes in the direction along the stripe
to allow the appearance of nonhomogeneous patterns in that
direction. Results are synthesized in the phase diagram of
Fig. 5 and in Figs. 6–8, where the obtained configurations
are shown for different values of the two main control pa-
rameters � /�1 and �. In agreement with the analytical pre-
dictions, we can see that by increasing �, the instability of

FIG. 3. Energy release rate G normalized by its analytical
asymptotic value G0 and edge loading ratio S at the edge of a stripe
blister and a circular blister �S=h
N /	12M in the notation of Ref.
10�. For the stripe geometry the solid lines are the exact results
from Ref. 10. The results for the circular blister can be compared
with those in Fig. 64 of Ref. 10.

FIG. 4. Buckling profiles of the circular blister for different
values of � /�1 �a blister of radius 20l0 was used in the simulations�.
Inset: Measured buckling amplitude as a function of � /�1. Dots are
the simulated results, and the solild line is the asymptotic analytical
behavior for �→�1. Critical strain �1 in this case is �1�0.00129.

FIG. 5. The �-� parameter space, with the different sectors in
which different qualitative behavior is observed. The lines separat-
ing different regimes were obtained by doing independent simula-
tion at different points of the �-� plane. Some of them are presented
in the next three figures. See the text and Figs. 6–8. Simulations
were performed using a triangular lattice of 200 sites along the
stripe and 24 rows in the perpendicular direction. The dimension-
less combination of parameters kb / �ksl0

2� was taken to be 0.05.

FIG. 6. �Color online� The buckled configuration of the stripe,
for �=1/3 and � /�1=6.25, 7.5, 9.4, 12.5, and 25, respectively, from
�a� to �e�. The gray �color� scale indicates the departure of the film
from the substrate, in units of the discretization distance l0 �in units
of l0 the width of the stripe is 25	3l0 /2�.
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the Euler column corresponds to a nonsymmetric pattern for
���c�0.25, whereas it corresponds to a symmetric one for
���c. However, we also see that when larger values of � are
considered, the stability range of the symmetric pattern is �at
least for ��0.05� only a rather small wedge in the phase
diagram. For sufficiently large values of � the undulated
wrinkle pattern is observed always to be the stable one.

The symmetric and nonsymmetric sectors of the phase
diagram in Fig. 5 have been divided by a dotted and dashed
line, respectively. I describe now their meaning. The dashed
line in the nonsymmetric sector marks only a crossover: At
the right of this line, the undulated wrinkle is well devel-
oped, in the sense that it has a maximum of almost constant
amplitude that undulates along the stripe; see, for instance,
Fig. 7�e�. At the left of the dashed line, there is a clear modu-
lation of the amplitude �Fig. 7�c��. I emphasize again that the
transition between the two different behaviors is simply a
crossover.

The dotted line within the symmetric sector in Fig. 5
marks an interesting behavior change in the region of small
or negative values of �. To the left of the dotted line we have
the symmetric pattern as described analytically in Ref. 11. To
the right of the dashed line, this pattern gets modified by the
appearance of deep valleys interrupting the normal sequence
of small hills and shallow valleys �see Fig. 8�c��. Note that in
the center of the deep valleys, the film is almost touching the
substrate. The appearance of these deep valleys is abrupt;

namely, they do not grow deeper and deeper as some param-
eter is changed, but they simply exist or do not exist. The
periodicity of the appearance of deep valleys is difficult to
obtain from the simulations, but the information collected
from different simulations suggests that close to the dotted
line of the phase diagram deep valleys are well separated
from each other, whereas when moving to larger values of �
they become closer, eventually leaving no shallow valleys in
between. A qualitative explanation for the appearance of
these deep valleys could be based on the following observa-
tion. In a material with negative Poisson ratio, a compression
in one direction is accompanied by a compression in the
perpendicular direction. Transforming a shallow valley of a
varicose pattern into a deep valley produces a compression in
the direction perpendicular to the stripe, which implies a ten-
dency to compress also in the direction along the stripe. In
this way part of the longitudinal compression is relieved, and
this can stabilize the deep valley. The observation of patterns
with deep valleys for sufficiently low Poisson ratio seems to
be correlated with the existence of a snapthrough transition
occurring in the Euler column configuration of a film with
��1/3 under nonisotropic conditions, when compression
along the stripe is increased.12

On the whole, the previous results show that, for the usual
cases of materials with Poisson ratio close to 1/3, the undu-
lated wrinkle pattern is the most likely to be observable in
experimental situations in which stripe-delaminated regions
occur.

IV. DELAMINATION

In this section I consider the full interplay of buckling and
delamination, and present the different kinds of delamination
morphologies that can be obtained with the present model.
From now on I restrict the discussion to the case of a film
with �=1/3 �i.e., k�=0�. When buckling and delamination
both occur, there are two natural length parameters in the
problem whose meaning is convenient to emphasize from the
beginning. The first length scale L1 is the typical size of a
blister that is in equilibrium upon further delamination. An
estimation of L1 goes as follows. For a buckled region of
typical linear size L1 �L1 may be, for instance, the diameter
of a circular blister or the width of an Euler column� under a
deformation �, the typical curvature of the buckled film at
the points of contact with the substrate is �	� /L1.13 The
torque T per unit length exerted by the delaminated film on
the part attached to the substrate is obtained by multiplying
this curvature by the bending rigidity D—i.e., T�	�D /L1.
The equilibrium condition for the film will correspond to this
torque been equal to a critical maximum value that the inter-
action with the substrate can sustain. I denote this maximum
torque as Tmax. Thus we obtain the order of magnitude of L1
as L1�	�D /Tmax. It is important to emphasize that the con-
dition of a maximum torque per unit length that I use here is
totally compatible with the condition of a maximum force
used to describe the model in the previous section. In fact,
note first of all that a torque per unit length has the correct
units of a force. In addition, a detailed consideration of the
geometry of the triangular lattice used shows that Tmax in the

FIG. 7. �Color online� Same as Fig. 6 for �=0.075 and � /�1

=4.0, 4.7, 5.6, 6.25, and 6.9, respectively, from �a� to �e�.

FIG. 8. �Color online� Same as Fig. 6 for �=0 and � /�1=3.12,
3.75, 4.37, 6.25, and 6.9, respectively, from �a� to �e�.
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continuum description and fmax of the atomistic description
are simply related by Tmax= fmax

	3/2. Then, in the micro-
scopic units of the model L1 can be written also as L1
�	�kb / fmax.

A second characteristic distance is related to the existence
of horizontal relaxation within the unbuckled film. In fact,
consider a film uniformly attached to the substrate. If we
force a horizontal displacement of some point of the film,
this perturbation will decay away in a typical distance L2,
which depends on the ratio between the stiffness of the film
and the strength of the interaction to the substrate; namely,
L2� l0

	ks /kh or, in macroscopic units, L2�	Bd /Es. The ra-
tio L2 /L1 is a measure of the importance of horizontal relax-
ation. This will be negligible if L2 /L1�1 or important if
L2 /L1�1.

In order to observe the delamination process, I seed the
simulation with a configuration in which a small part of the
film is detached. This portion was chosen as a small rectan-
gular piece, misoriented with respect to the numerical mesh
to minimize spurious effects associated with it. In a first
stage of the simulation I take fmax→�. In this way buckling
of the seeded delaminated region occurs, but the film does
not delaminate further. After a stationary configuration is
achieved, fmax is put to a finite value, time is reset to zero,
and the evolution of the film is calculated. In all cases pre-
sented the numerical lattice has a total of 300
300 nodes,
and periodic boundary conditions are used.

I present first some result in the case in which horizontal
relaxation is small: namely, kh=ks. This corresponds to a
distance L2 of the order of the discretization distance l0—i.e.,
a very small value. In Fig. 9 we see a sequence of configu-
rations corresponding to �=0.09. We see how in this case the

film delaminates almost completely. This kind of pattern was
called “brain like” in Ref. 4. In Fig. 10 we see the situation
for a slightly lower value of �: namely, �=0.085. After the
delamination of a small region near the original defect, the
evolution stopped completely and delamination halted. We
see that there is a rather sharp transition between a blister
that is not able to grow for low strains to an almost com-
pletely delaminated film for larger strains.

In the case in which the value of horizontal relaxation is
higher, there are important differences in morphology. Fig-
ures 11, 12, and 13 show the evolution of the same original
defect for the case of kh=ks /100 �which corresponds to a

FIG. 9. �Color online� Temporal evolution of the delaminated
regions for �=0.09, kb / �ksl0

2�=0.05, fmax / �ksl0�=0.03, and kh=ks.
Note that the gray �color� scale goes from darker to brighter when
the vertical coordinate of the film increases, but nondelaminated
regions are plotted as white for clarity. Vertical scale is in units of
l0. Dimensionless time � for the four views is �=5
103, 2
104,
3.5
104, and 2
105.

FIG. 10. �Color online� Same as Fig. 9 for �=0.085 and kh=ks

at times �=5
103, 2
104, 3.5
104, and 2
105. Note in particu-
lar that the last panel shows a stable configuration in which the film
does not delaminate further.

FIG. 11. �Color online� Same as Fig. 9 for �=0.09 and kh

=ks /100 at times �=1.2
103, 3
103, 5.4
103, and 1.8
104.
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relaxation distance L2 approximately 10 times l0� and �
=0.09, 0.07, and 0.065, respectively. For large values of the
strain �Fig. 11�, the delaminated region propagates to all the
film; however, contrary to the previous case, there are large
sectors in which the film remains attached to the substrate.
The typical size of these sectors is roughly determined by L2,
whereas the typical width of the delaminated stripes between
sectors is of order L1. Note that the propagation occurs via

the formation and branching of undulated blisters, which at
the end form a pattern of polygons bounded by undulated
wrinkles. When � is reduced, the branching of the undulated
blisters reduces, giving rise to a pattern like that in Fig. 12.
In a narrow band of values of the applied strain �Fig. 13�,
branching does not occur and a “telephone cord” may be
formed. For lower values of � �not shown� the original blister
is not able to grow at all.

V. CONCLUSIONS

I have presented results about the buckling of a thin film
attached to a substrate. Buckling is induced by a mismatch in
the relaxed configurations of film and substrate. For a fixed
geometry of the delaminated region—namely, a uniform
stripe—the buckling patterns were obtained as a function of
the strain mismatch � and the Poisson ratio of the film �. The
numerical results confirm the findings of previous analytic
treatments about the instability mode of the uniform Euler
column: a undulated wrinkle for ��0.25 and a symmetric,
“varicose” pattern for ��0.25. However, the present nu-
merical analysis, which is not restricted to small distortions
of the Euler column, shows that the stability of the varicose
pattern, in the region of experimental interest close to �
�1/3, is restricted to a narrow interval of � values, then
limiting the possibility of observing this pattern experimen-
tally.

In the second part of the paper I considered the interplay
of buckling and delamination, and argued that a key factor
determining the morphology observed is the possibility of
horizontal relaxation in the nondelaminated part of the film.
For small horizontal relaxation and large enough �, the film
delaminates almost completely, generating a “brainlike”
structure. When � is reduced, there is an abrupt transition to
a situation in which the delaminated region is not able to
grow.

For the case of large horizontal relaxation in the non-
delaminated part of the film, at large � the growing occurs
via elongation and branching of undulated delaminated re-
gions. At the end a polygonal pattern delimited by undulated
stripes is observed. The main characteristic of this pattern is
the existence of regions in which the film does not delami-
nate. When � is reduced, the tendency of the undulated
stripes to branch is reduced, and eventually a regime where a
single undulated stripe �a “telephone cord”� grows is ob-
served. If � is reduced further, the delamination stops com-
pletely.

The simulations presented clarify the origin of the differ-
ent morphologies observed experimentally. I want to empha-
size in particular the importance of horizontal relaxation in
obtaining different kinds of patterns, most remarkably the
necessity of horizontal relaxation to obtain the well-known
telephone-cord pattern.
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FIG. 12. �Color online� Same as Fig. 9 for �=0.07 and kh

=ks /100 at times �=2.4
103, 5.4
103, 3.5
104, and 1
105.

FIG. 13. �Color online� Same as Fig. 9 for �=0.065 and kh

=ks /100 at times �=6
102, 3.6
103, 8.4
103, and 1.4
104.
The curvature observed is due to a residual effect of the triangular
lattice that defines the model.
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