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In order to model diffusion for real crystals, it is necessary to acknowledge that for many chemically and
physically interesting classes of compounds �e.g., semiconductors, ionic solids, alloys�, there are several
different binding sites of possibly widely different character. In contrast to the majority of existing lattice-gas
models, which ignore this aspect by assuming equivalent lattice sites, we investigate the diffusion of particles
on a heterogeneous lattice with two kinds of nonequivalent sites. General analytical expressions for the
chemical and jump diffusion coefficients have been derived in the case of strong inhomogeneity for lattices of
different symmetries and dimensionality. It is shown that the character of the particle migration depends
crucially on the relative jump frequencies of particles sitting in deep and shallow sites. If these frequencies
differ insignificantly, particle diffusion proceeds by single uncorrelated jumps. In the opposite case of widely
differing jump frequencies, particles perform pairs of strongly correlated jumps. We have calculated density
dependencies of the diffusion coefficients and some thermodynamic quantities for different temperatures and
signs of the lateral pairwise interaction between the particles. The analytical data obtained by the real-space
renormalization-group method have been compared with the numerical data obtained by Monte Carlo simula-
tions. Almost perfect agreement between the respective results has been found.
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INTRODUCTION

The diffusive mass transfer controls the rates of a multi-
tude of physical, chemical, and biological processes. Theory
primarily aims at understanding the details of the migration
process in these application areas. The theoretical description
of various kinetic phenomena observed in experimental stud-
ies presents a considerable challenge. Appropriate models
must reflect the elementary microscopic migration act of par-
ticles, which depends on the structure and mutual particle-
particle interaction. Therefore, it is not surprising that a great
deal of effort has been devoted to developing the simplest
possible models, which offer the advantage of exact treat-
ment, despite oversimplifying the real phenomena. To in-
clude all these aspects, it is most convenient to employ the
lattice-gas models. In these models, particles perform sto-
chastic jumps among the sites of a discrete lattice. During
migration acts, affected by thermal activation, the particles
have to surmount barriers separating the sites. The effective
barrier height depends on the specific atomic environment
and, as a consequence of the particle-particle interaction, also
on the number and configuration of the neighbor particles. In
the majority of models, the particles occupy the equivalent
lattice sites formed by the minima of the potential relief.
Such simplification differs substantially from the real crys-
tals, where different binding sites have been experimentally
identified.

In general, the determination of the diffusion coefficient
requires the solution of a kinetic equation for a many-particle
system. However, under simplifying assumptions such as
slowly varying particle density inhomogeneities and neglect-
ing memory effects, the problem can be reduced to the cal-
culation of purely thermodynamic quantities: free energy and

its derivatives over chemical potential and interaction
parameters.1–3 This approach has been used widely for the
theoretical treatment of particle diffusion. The task of com-
puting thermodynamic quantities is substantially simpler and
computationally less expensive by orders of magnitude than
direct Monte Carlo �MC� simulations of kinetic phenomena,
which suffer from the statistical uncertainty of the results. It
turns out that the approximations involved when connecting
diffusion coefficients with thermodynamical quantities are
rather reliable for the lattice-gas systems. Results obtained
by different analytical methods �quasichemical approxima-
tion, cluster variation approach, real-space renormalization
group �RSRG� method, and others� show quite good agree-
ment with the numerical data �kinetic MC simulations�. The
analytical expressions for the diffusion coefficients are quite
simple and valid over wide regions of particle density and
temperature down to the subcritical values. These expres-
sions work perfectly in homogeneous lattices with different
dimensions and symmetries. Yet there is no general upper
bound to the errors established for these approximations just
as there is no guarantee for MC results to converge to the
required statistical accuracy for the general case with limited
computer resources. Compared to purely numerical schemes,
the theoretical methods of statistical mechanics reveal corre-
lations between the kinetic coefficients and some thermody-
namical quantities, thereby providing the basis for additional
insight.

In the case of inhomogeneous lattices, the ordinary ex-
pressions for the diffusion coefficients give qualitatively cor-
rect results for high temperatures only, when the lattice in-
homogeneity is small and really can be neglected. With
decreasing temperature, the deviations between analytical re-
sults and MC data grow considerably. The diffusion on het-
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erogeneous lattices was studied theoretically in someprevi-
ous investigations. Diffusion in a lattice gas on an fcc�100�
surface was investigated in Refs. 4 and 5 and on a square
lattice without lateral interaction between the adsorbed par-
ticles in Ref. 6. It was shown that the surface inhomogeneity
substantially changes the particle migration. The coverage
dependencies for tracer, jump, and chemical diffusion coef-
ficients differ qualitatively from those obtained for the ho-
mogeneous lattice.

In the present work, we have investigated the effect of the
lattice inhomogeneity on the particle diffusion. The purpose
of the investigation is to present the analytical expressions
for the jump and chemical diffusion coefficients that describe
the particle diffusion over the inhomogeneous lattices with
two kinds of adsorption sites. We derive such simple expres-
sions that occur quite universally and are valid for many
types of inhomogeneous lattices. Using the RSRG approach
and MC simulations, we check these expressions for a
simple square lattice. We have obtained the density depen-
dencies of the tracer, jump, and chemical diffusion coeffi-
cients for some representative temperatures. Also the mean
square density fluctuations or isothermal susceptibility, the
adsorption isotherms �the particle density as a function of the
chemical potential�, and the pair correlation function for the
nearest-neighbor sites have been calculated in the whole den-
sity region for different temperatures. It has been shown that
for significant lattice inhomogeneities at low temperatures,
there is a rather specific behavior of the particle migration
over the lattice. The ordinary analytical expressions fail even
to qualitatively describe density dependencies of jump and
chemical diffusion coefficients. The new expressions derived
in this work fit almost perfectly the MC data obtained at low
temperatures.

The outline of this paper is as follows. The model and
derivation of the diffusion equation and the expression for
the diffusion coefficient are described in Sec. I. The RSRG
approach employed in this work is described in Sec. II. The
MC technique is explained in Sec. III. Our results are pre-
sented and discussed in Sec. IV.

I. DIFFUSION OF PARTICLES ON INHOMOGENEOUS
LATTICES

In the following, we consider an ideal regular lattice with
coordination number z. There are deep �d� and shallow �s�
sites, arranged in alternating order �an example of such a
lattice of square symmetry is shown in Fig. 1�. Hence, the
lattice may be regarded as composed of two equivalent in-
terleaved sublattices comprised of deep and shallow sites
only. If the adsorption energies, �d ,�s, for the d and s sites,
respectively, are large relative to the thermal energy, kBT, the
particles will almost populate the minima, jumping occasion-
ally to empty, nearest-neighbor sites. A set of occupation
numbers, �ni�, describes all possible states of the particle
system,

ni = �1 if the ith site is occupied,

0 if the ith site is empty.
� �1�

In thermodynamic equilibrium, the system behavior is de-
scribed by the grand partition function,

Q = 	
�ni�

exp��Na − Ha� , �2�

or its corresponding potential, F=N−1 ln Q, termed free en-
ergy. Here �, Na, and Ha denote the chemical potential, num-
ber of particles, and Hamiltonian of the system, respectively;
the summation is carried out over all particle configurations
�here and henceforth we use the system of units with kBT
=1�. The Hamiltonian and number of particles are given by

Ha = − �d	
i�d

ni − �s	
i�s

ni + �	

nn�

ninj, Na = 	
i=1

N

ni. �3�

Here � is the pair interaction energy of the nearest-neighbor
�NN� particles, and symbols i�d, i�s, 
NN� denote sum-
mation over all d sites, s sites, and lattice bonds, respectively.

The migration of particles over the lattice is described by
some diffusion coefficients. The tracer diffusion coefficient
Dt addresses the random walk of individual tagged particles,
i.e.,

Dt = lim
t→�

1

2dNat	i=1

Na


�r�i�t� − r�i�0��2� . �4�

Here r�i�t� denotes the displacement of the ith particle as a
function of time t; d is the dimensionality of the system; the
angular brackets 
¯� symbolize the ensemble average. An-
other useful quantity is the jump diffusion coefficient, Dj,
related to the asymptotic behavior of the center of mass of
the system,

FIG. 1. Schematic view of a square lattice with two kinds of
sites. The filled and open circles denote deep and shallow sites. The
blocks of the 17�2 RSRG transformation are shown by solid lines.
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Dj = lim
t→�

1

2dNat��	
i=0

Na

�r�i�t� − r�i�0���2 . �5�

The definitions for Dt and Dj are well-suited for MC simu-
lations as they are expressed in terms of directly accessible
quantities.

The chemical diffusion coefficient Dc is determined by
Fick’s first law, which constitutes the relationship between

the flux of particles, J�, and the gradient of the particle den-
sity, �,

J� = − Dc�� � . �6�

The chemical surface diffusion coefficient is of significance
for the description of mass-transfer processes in the system.

To describe particle diffusion, the diffusion process must
be resolved into its elementary components. Particle trans-
port may be described in terms of jumps of particles in a
regular or random energy landscape. Particles jump over the
potential energy pits or lattice sites. A particle in the ith site
can jump to any of its z unoccupied NN sites. The jumping
particle must surmount a potential barrier Eif separating the
initial and final sites. In the simplest case of the Langmuir
lattice gas ��=0�, the barrier is a constant �d or �s depending
on the type of initial site. For interacting particles, the acti-
vation energy depends on the number of adjacent particles.
We assume that the interactions affect the minima of the
potential landscape and neglect the influence on an activated
particle at the saddle point of the potential barrier. Then, the
jump frequency from the ith to the fth site has the following
form:

�if = � exp�− �i + �	
k=1

z

nk� , �7�

where summation runs over all NN’s of the ith site. The
jump frequency depends on the energy of the initial state
only and is the same for jumps to all NN sites. The model
should be appropriate for a short-range lateral interaction be-
tween the particles.

Next we consider the evolution of the occupation num-
bers. The balance equation can be written in the following
form:

ni�t + �t� − ni�t� = 	
f=1

z

�Jfi��t� − Jif��t�� , �8�

where Jif��t� denotes the number of particle jumps from the
ith to the fth site during the time interval �t. Invoking the
local equilibrium approximation and neglecting memory ef-
fects, an analytical expression for Dc can be derived �for
details, see Refs. 1, 3, 7, and 8�. Utilizing these approxima-
tions, the balance equation is easily reduced to the ordinary
diffusion equation with the chemical diffusion coefficient
given by

Dc = D0 exp���P00/	T, �9�

where D0 denotes the diffusion coefficient for one particle on
the empty lattice; the correlation function P00 describes the
probability to find a pair of empty NN sites,

P00 = 
hihf� � 
�1 − ni��1 − nf�� , �10�

and 	T is the isothermal susceptibility or the mean-square
particle density fluctuations,

	T =
1

N
	
i,j

�ni − ���nj − �� . �11�

The jump and chemical diffusion coefficients are simply
related via the Kubo-Green equation

Dc = �Dj/	T. �12�

The thermodynamic quantities that occur on the right-hand
side of Eq. �9� can be expressed via the first and second
derivatives of the free energy over its arguments as follows:

� =
�F

��
, 	T =

�2F

��2 , P00 = 1 − 2� −
2

z
� �F

��
� . �13�

Note that the kinetic coefficients �Dc and Dj� that describe, in
principle, the nonequilibrium behavior of the lattice-gas sys-
tem are related to the equilibrium thermodynamic quantities.

The density and temperature dependencies of the diffu-
sion coefficient can be compared with the corresponding data
obtained by the MC method.7,9–13 There is a very good co-
incidence of the data obtained by these conceptually different
methods over wide temperature and density regions as well
as different lateral interactions and lattice symmetries. But
this expression works badly for inhomogeneous lattices with
different kinds of adsorption sites. Qualitative discrepancies
arise when the site inhomogeneity cannot be neglected, i.e.,
when exp��d�
exp��s�. In the following, we extend the deri-
vation of analytical expressions for the chemical and jump
diffusion coefficients.

Let us consider the particle migration on an inhomoge-
neous lattice in detail. All particles tend to occupy d sites
resulting in either an almost empty s sublattice and partially
filled d sublattice ���

1
2

�, or a completely filled d sublattice
and partially filled s sublattice ���

1
2

�. The inhomogeneity
implies a higher jump probability for an s→d jump than for
a d→s jump, and a rather specific correlation between the
particle jumps arises in this case: Any d→s jump transfers a
particle to the s sublattice and creates an unstable local non-
equilibrium configuration consisting of a pair of neighboring
sites with the s site occupied and the d site unoccupied.
There are two fast decay channels for this configuration: ei-
ther the particle jumps to any of the NN empty deep sites or
the deep site is filled by a particle from any filled NN shal-
low sites. As �slow� creation and �fast� decay of the interme-
diate nonequilibrium configuration take place on largely dif-
ferent time scales, their combination ought to be considered
as the central entity of the diffusion process. The particle
jumps collect into pairs: Any d→s jump is followed imme-
diately by an s→d jump. Such jump pairs are the most fre-
quent events and they govern the particle migration. The
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frequency of this event is determined by its slowest compo-
nent, the d→s jump frequency. Despite the fact that the in-
dividual jumps are statistically uncorrelated, the lattice inho-
mogeneity imposes a strong pairwise correlation between
d→s and s→d jumps. Correlation between jump pairs is
absent. This specific correlation appears at low temperatures
and will be especially important at �= 1

2 when all deep sites
are occupied and all shallow sites are empty.

The characteristic density �= 1
2 separates two regions with

distinctly different types of jump pairs dominating the par-
ticle migration. For ��

1
2 , the s sublattice is empty and any

act of migration starts by a particle d→s jump from a deep
�initial� to any empty NN shallow �intermediate� site. Shortly
after an s→d jump, the particle leaves the intermediate site
and moves to some empty �final� d site. The s→d jump
probability depends on the total number of empty NN d sites,
nocc, i.e., 1

z−nocc
, where z denotes the coordination number of

the lattice. The migration of the particles proceeds over the d
sublattice using the empty s sites as the intermediate steps.
The probability of the jump pair depends not only on the
occupation numbers of the initial and final sites, but on the
occupation numbers of the intermediate NN sites.

For ��
1
2 the d sublattice is filled and the s sublattice is

partially occupied. Again, any act of migration starts by a
d→s jump from an �intermediate� d site to a final empty
shallow NN site. The jump creates a “hole” in the completely
occupied d sublattice and initiates fast s→d jumps from
some �initial� shallow NN site to the intermediate d site. The
s→d jump probability depends upon the number of occupied
NN sites, nocc, at the intermediate d site, i.e., 1

nocc
, where

nocc�z. The pair of successive d→s and s→d jumps causes
particles to migrate over the s sublattice using d sites as
intermediate steps.

The s→d jump probability determines the total probabil-
ity of backward jumps, where initial and final sites are iden-
tical. The total probability of the backward jump is increased
relative to all other possibilities as either the initial ���

1
2

� or
final site ���

1
2

� is always unoccupied and occupied, respec-
tively. There is some similarity to the backward correlation
of the motion of tagged particles.14

Summing up contributions from all possible particle con-
figurations, we obtain the balance equation for the evolution
of the occupation numbers. Using the same approximations
as in the case of a homogeneous lattice, the expression for
the chemical diffusion coefficient runs as follows:

Dc��� = Dc�0�exp���P�z�	T
−1, �14�

where the correlation function P�z� is given by

P�z� =
1

z − 1

h1hc�z − 1 − n2

− n2n3 − ¯ − n2n3 ¯ nz��, � � 1/2,

P�z� =
1

z − 1

h1hc�z − 1 − h2

− h2h3 − ¯ − h2h3 ¯ hz��, � � 1/2. �15�

Here hi�1−ni; c denotes the intermediate site and the sub-

scripts 1 , . . .z, its NN’s. For details of the derivation, see the
Appendix. It should be noted that the upper and lower ex-
pressions for P�z� are exponentially small outside the regions
of their definition. Then, one can use the sum of these ex-
pressions for the calculations of the diffusion coefficients.

Equation �14� is rather universal and applies to many lat-
tices of different symmetries and dimensionality such as a
one-dimensional chain, two-dimensional �square and honey-
comb�, and three-dimensional cubic inhomogeneous lattices.
The expression is more complex as compared with the simi-
lar expression Eq. �9�. It depends on the correlation functions
of clusters of 2 ,3 , . . . ,z+1 sites. These correlators can be
approximately expressed via the first derivative of the free
energy over the interaction parameter and mean values of the
occupation numbers on the deep and shallow sublattices.

II. REAL-SPACE RENORMALIZATION-GROUP
TRANSFORMATION

A variety of analytical methods can be used for the cal-
culations of the thermodynamical quantities that enter the
expressions for the diffusion coefficients. Among them, the
RSRG approach is particularly simple so that a rather modest
effort suffices to compute data of good accuracy. This applies
especially to the two-dimensional lattice-gas systems.

In this section, we will briefly outline the RSRG method
used for this purpose. It is well known that there is a one-to-
one correspondence between the lattice-gas model and the
Ising spin model in an external magnetic field. Empty and
occupied sites are equivalent to s=−1 and s=1, respectively.
Using the obvious relation between the site spins and occu-
pation numbers, 2ni=1+si, the equivalent reduced Hamil-
tonian of the Ising model runs

H�s� = hd	
i�d

si + hs	
i�s

si + k	

nn�

sisj + Nc . �16�

Here

hd = �� + �d − �z/2�/2,

hs = �� + �s − �z/2�/2,

k = − �/4,

c = �2� + �d + �s − �z/2�/4. �17�

The thermodynamic properties of the lattice gas are de-
scribed by the magnetic behavior of the spin system. Al-
though Eqs. �3� and �16� are fully equivalent, we prefer to
use the spin representation in this section because of its ap-
parent symmetry with respect to the magnetic field. How-
ever, we will refer to lattice-gas terms where this seems to be
more transparent. The spin model looks slightly strange as
there are two magnetic fields hd and hs acting separately on
the spins in the d and s sublattices. The fields have different
values and even directions depending on the relation be-
tween the chemical potential and site depths difference �d
−�s.

The case ��0 corresponds to ferromagnetic �F� spin-spin
interaction and ��0 describes the antiferromagnetic �AF�
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spin model. Whereas F interaction aligns all spins up or
down, AF interaction aligns spins on different sublattices in
the opposite directions.

In the RSRG method developed by Niemeyer and van
Leeuwen15 and Nauenberg and Nienhuis,16,17 the whole lat-
tice is divided into blocks �or cells� of L sites.18,19 A block
spin S is assigned to each block. All blocks together must
form a lattice of the same symmetry. The RSRG transforma-
tion of the spin system allows the reduction of the number
of independent variables, i.e., the transition from the set of
N site spins �si� to N /L block spins �S�. For blocks with an
odd number of spins L, the block spin S is usually deter-
mined by the so-called “majority rule,”18

S = sgn�	
i=1

L

si�, where sgn�x� = �+ 1 if x � 0

− 1 if x � 0.
�

�18�

The main goal of any RSRG transformation of the Hamil-
tonian Eq. �16� is to obtain the result in the same form as the
original Hamiltonian plus possibly some insignificant terms,
weakly affecting the critical behavior of the system. In the
framework of the RSRG approach, one usually employs pe-
riodic boundary conditions. It is assumed that the whole lat-
tice is given by the periodic continuation of a small cluster of
blocks. In the present work, we consider the smallest pos-
sible cluster of two blocks �see Fig. 1�. Due to the simplicity
of this cluster, no additional interactions appear in the renor-
malized Hamiltonian. It is the same Hamiltonian of the
square lattice of spins with, however, renormalized values
for the external magnetic fields hd

�1� ,hs
�1� and spin-spin inter-

action parameter k�1�,

hd
�1�S1 + hs

�1�S2 + 4k�1�S1S2 + 2Lg

= ln�	
�s�

P�S,s�exp�H�s��� = ��S1,S2� . �19�

Here the summation is carried out over all possible configu-
rations �si� for fixed values of the block spins S1,2. The
relations between the renormalized and original values of the
parameters are given by the following system of RG equa-
tions:

hd
�1��hd,hs,k� =

1

4
���1,1� − ��− 1,− 1� + ��1,− 1�

− ��− 1,1�� ,

hs
�1��hd,hs,k� =

1

4
���1,1� − ��− 1,− 1� − ��1,− 1�

+ ��− 1,1�� ,

k�1��hd,hs,k� =
1

16
���1,1� + ��− 1,− 1� − ��1,− 1�

− ��− 1,1�� ,

g�hd,hs,k� =
1

8L
���1,1� + ��− 1,− 1� + ��1,− 1�

+ ��− 1,1�� . �20�

The RSRG transformation functions ��±1, ±1� depend
strongly on the size and the symmetry of the blocks. They
have the following general form:

��±1, ± 1� = ln�	
i=1

N±,±

ai
�±,±� exp�hdbi

�±,±� + hsci
�±,±� + kdi

�±,±��� .

�21�

For the cluster of two “crosses” with L=17, shown in Fig. 1,
the numbers of terms in the transformation functions are the
following: N1,1=N−1,−1=2669 and N1,−1=N−1,1=3781. The
four four-column tables �matrices� �ai

±± ,bi
±± ,ci

±± ,di
±±� are

very useful for fast calculations of the free energy and its
derivatives for any values of the magnetic field and particle
interaction �temperature�.

As was shown by Nauenberg and Nienhuis,16 the free
energy of the system for any values of magnetic fields and
interaction parameter F�hd ,hs ,k� can be evaluated in the se-
ries of sequential RSRG transformations of the original
Hamiltonian,

F�hd,hs,k� = c + 	
m=0

n

L−mg�hd
�m�,hs

�m�,k�m�� . �22�

Here hd
�m� , hs

�m� , k�m� are the parameters of the mth RSRG
transformation; hd,s

�0�=hd,s, k�0�=k.

III. MONTE CARLO SIMULATIONS OF THE SURFACE
DIFFUSION

The Monte Carlo technique is one of the most universal
and reliable methods that is used widely to study complex
phenomena, especially when analytical approaches are not
available or work badly. Due to its simplicity and the avail-
ability of powerful supercomputers, MC simulations have
been widely used for investigations of kinetic properties of
lattice-gas models. We applied the MC approach to calcula-
tions of the tracer and jump diffusion coefficient and some
thermodynamic quantities of the particle system.

For a detailed description of MC application in the field of
the surface diffusion, the interested reader is referred to Refs.
20–23. Here we give only a brief overview of the MC algo-
rithms used for simulations.

The system represented by the Hamiltonian Eq. �3� is
realized by a two-dimensional array of N=M2 sites
�M =32,64� with periodic boundary conditions applied. On a
lattice of M2 sites, the nearest neighbors of a site with coor-
dinates �i , j� are (�i±1�mod M , j) and (i , �j±1�mod M),
where mod M denotes remainder modulo M. This ensures
the equivalence of all sites on the lattice. Choosing M as
powers of 2, the modulo operation can be replaced by the
corresponding bit operations i mod M = IAND�i ,M −1�. An
alternative is the so-called helical boundary conditions
�HBC�.24 An example of HBC for a lattice with M =4 is
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plotted in Fig. 2. Due to the heterogeneous surface relief, we
cannot use simple square original M2 arrays displaced by one
row in the vertical direction to build the infinite lattice. In-
stead of this, we use �M +1�� �M −1� rectangles with an
additional lattice site glued at the left upper corner. Its looks
may be odd, but nevertheless this representation offers com-
putational advantages: �i� all lattice sites are represented by a
one-dimensional index i varying from 0 to M2−1. �ii� The
NN’s of the ith site are determined by fast bitwise operations
IAND�i±1,M2−1� and IAND(i± �M +1� ,M2−1), and the
kind of the site �deep or shallow� is determined by the parity
of its index.

An initial configuration is generated by adsorbing Na
=�N particles on the surface at random. The saddle point
energy �describing the wells that need to be overcome by
diffusing particles� is equal to zero. It is assumed that the
saddle point energy is not affected by the particle-particle
interactions. The jump probability Pi is given by

Pi = � exp�− Ei� , �23�

with � as the normalization factor and Ei denotes the activa-
tion energy for such a jump, i.e., the energy difference be-
tween the saddle point and the energy of the initial site, the
latter being influenced by the NN interaction,

Ei = �i − �	
k

nk.

� is chosen as �=exp�min�Ei��.
The ordinary MC algorithm may be described as follows.

First, an initial site i of the whole lattice is picked at random.
If filled, an adjacent final site f is randomly selected. If the
destination is vacant, a third random number � is generated.
A jump occurs if �� Pi. One MC step �MCS� corresponds to
N repetitions of the jump algorithm. The main drawback of
this MC algorithm for inhomogeneous lattices is a very small
transition probability for jumps from d sites. A large part of
the computing time is spent in attempting jumps that
are rejected. To overcome this difficulty, we use the BKL

algorithm, after Bortz, Kalos, and Lebowitz.25 It operates in
the space of possible events instead of the real space as the
ordinary MC algorithm does. There are no rejected attempts,
which results in a high efficiency of the BKL algorithm. It
has been described in detail elsewhere.26,27 The BKL algo-
rithm picks up an event from the common space of possible
events at random. All possible events are grouped into
classes of events of the same probability. In order to avoid
the time-consuming maintenance of the event list, we note
that at a given particle distribution all events from a given
site belong to the same event class, so that the number of
possible events is computable from the class index. Hence, it
is sufficient to maintain the association between sites and
classes. Technically, four random numbers are required in
order to select the time interval between successive jumps,
the event class, the site belonging to this class, and the di-
rection of jump �if necessary�. For efficient MC simulations,
we note that the number of MC jumps in one MCS cycle
required to suppress correlations between MCS configura-
tions depends upon the particle density. Correspondingly, for
the BKL algorithm, the accumulated time difference can be
used as a termination criterion of an MCS cycle. Choosing
this criterion density-dependent offers a possibility for very
substantial savings in computer time without affecting the
results.

We used the MC simulations for calculations of the tracer
and jump diffusion coefficients, adsorption isotherms, and
isothermal susceptibility. The chemical diffusion coefficient
has been determined via the Kubo-Green relation, here
written as

Dc = �Dj
Np�N − Np�

N
��n�2�
, �24�

where Np is the number of sites inside the probe area, and

��n�2� is the mean-square fluctuation of the number of par-
ticles in this area.28 The shape of the probe region may be
arbitrary, square, or rectangular.

The dependencies ���� have been calculated using the
method of local states.29 The idea of the method is rather
simple. The energy of any particle can take the 2�z+1� val-
ues: Ei=−�d,s+n�, n=0,1 ,2 , . . . ,z, depending on the num-
ber of NN’s. The energies define the local states of the par-
ticles. The set of conjugate states is determined for holes
�empty sites�. All conjugate states have the same zero energy.
The frequencies of occurrence �ensemble average popula-
tions� of the ith local state and its conjugation are denoted as
�i and �i�. They are related by the condition of the detailed
balance as follows:

� = ln��i/�i�� + Ei, i = 1, . . . ,2�z + 1� . �25�

To smooth out the fluctuations, it is advisable to average
� over the most probable local states and exclude rare
configurations.

The MC codes have been parallelized using MPI by di-
viding the entire workload of coverage-dependent configura-
tion sampling into independent tasks, so that the overall
communication load is negligible. We have averaged over
40 000–160 000 configurations, depending upon the lateral

FIG. 2. An example of the HBC. Square lattice is obtained by
the periodic continuation of a small cluster of 16 sites. The bigger
clusters are constructed in the same way.
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interaction strength �. The accuracy has been judged by
monitoring the change of computed quantities as a function
of the number of configurations and the MCS cycle termina-
tion criterion. The final results are almost indistinguishable
on the scale of the figures.

IV. RESULTS AND DISCUSSION

We have calculated using the RSRG and MC methods the
adsorption isotherms, pair correlation function, isothermal
susceptibility, tracer, jump, and chemical diffusion coeffi-
cients for attractive and repulsive lateral interaction between
the particles adsorbed on an inhomogeneous square lattice.
The inhomogeneity parameter �d−�s is the same for all
calculations and equal to 7.

In Fig. 3, we plot the adsorption isotherms for some rep-
resentative values of the lateral interaction parameter �. The
agreement between the RSRG results and MC data is excel-
lent over the entire temperature and coverage range for at-
tractive and repulsive interactions. At high temperature
��→0�, the isotherms are close to the Langmuir case,

�L��� =
1

2
� exp�� + �d�

1 + exp�� + �d�
+

exp�� + �s�
1 + exp�� + �s�

� . �26�

If the temperature decreases, the effects of the heterogeneity
and lateral interaction appear on the dependencies. It should
be noted that the inhomogeneity plays a rather specific role:
it cancels lateral repulsion between the particles at low cov-
erage ���

1
2

�, placing them on the d-sublattice sites. Then,
the particles do not “feel” each other. The dependencies for
all quantities are very close to those obtained for the Lang-

muir case in this region, despite the different values of the
lateral interaction parameter �.

Strong repulsion results in a broad, almost horizontal pla-
teau at �= 1

2 �see Fig. 3�b��. It corresponds to a stable, or-
dered structure when particles occupy the d sublattice only.
Attraction produces another type of singular behavior. As
temperature is decreased, the dependencies become steeper
and at critical temperature the tangent becomes vertical. This
means there is an infinite growth of the isothermal suscepti-
bility, which is the second derivative of the free energy over
�. If the temperature decreases below critical, the isotherms
exhibit a discontinuity, i.e., jumps of the particle density
�shown in �a� by the vertical dashed line�. This discontinuity
corresponds to the first-order phase transition. There are two
critical values of the particle density, �c and 1−�c, corre-
sponding to a single value of the chemical potential �c. The
region ��c ,1−�c� is inaccessible for the RSRG method.
Therefore, we have only a few RSRG data for some depen-
dencies �some lines in �a� consist of two small parts for
���c and ��1−�c�.

The pair correlation function P00 describes the probability
to find two holes on nearest-neighbor sites. At high tempera-
tures, P00 is nicely represented by its mean-field dependence
P00

MF��1−�d��1−�s�. At low temperatures, the dependence
is well described by the line: P00�1−2� for ��

1
2 and

P00→0 for ��
1
2 .

To show clearly the coincidence between the RSRG and
MC data, we plotted the dependencies ln P00��� in Fig. 4.
Again, the agreement between lines �RSRG� and symbols
�MC� is ideal. The isotherms and pair correlation functions
are the first derivatives of the free energy over its arguments.
These quantities do not have singularities and their behavior
is described by the RSRG method with high accuracy.

FIG. 3. Adsorption isotherms � vs � for different values of the
interaction parameter � as indicated. Lines and symbols denote the
RSRG and MC data.

FIG. 4. The pair correlation function ln P00 vs �. Notations are
the same as in Fig. 3.
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The calculations of the diffusion coefficients requires
knowledge of the correlation functions, which cannot be ob-
tained by the RSRG method. These are the probabilities

hch1h2� , 
hch1h2h3� , . . . , 
hch1¯hz�, to find clusters of
3 , . . . ,z+1 empty sites with one �central� site, which belongs
to the d or s sublattice, and others are its NN’s. For the
Langmuir lattice gas, the probabilities are simply powers of
corresponding hole densities,


hch1 ¯ hk� � �1 − �d��1 − �s�k, c � d ,


hch1 ¯ hk� � �1 − �s��1 − �d�k, c � s . �27�

Such approximation is rather good for ��
1
2 , where the par-

ticles can be considered as noninteractive. But for higher
densities it gives noticeable discrepancies. In this case, we
expressed all necessary functions via the simplest two-site
correlator we have at hand, P00, as follows:


hch1 ¯ hk� � P00
k �1 − �d�1−k, c � d ,


hch1 . . . hk� � P00
k �1 − �s�1−k, c � s . �28�

This approximation works very well over the entire
temperature and density range.

The quantity most sensitive to the method of calculation
is the isothermal susceptibility—the mean square density
fluctuations. The coverage dependencies of the isothermal
susceptibility are plotted in Fig. 5. At high temperature, the
fluctuations are well described by its mean-field expression,

	T
MF = ��d�1 − �d� + �s�1 − �s��/2. �29�

The lateral repulsion decreases the density fluctuations keep-
ing particles apart from each other. The density fluctuations

are strongly suppressed at �= 1
2 �see Fig. 5�b��. In the ordered

phase, any density disturbance �i.e., displacement of a par-
ticle from its “right” position in the filled d sublattice to any
site of the empty s sublattice� increases significantly the en-
ergy of the system and is thermodynamically unfavorable. As
the density does not equal 1

2 , there are fluctuations of the
nonstoichiometric nature that do not require additional en-
ergy for their existence and cannot be removed by the par-
ticle jumps. Therefore, 	T increases when � deviates from
the stoichiometric value and the dependencies 	T��� have a
deep and narrow minimum at low temperatures but remains
finite and analytical in this point. The coincidence between
the RSRG and MC data in Fig. 5�b� is rather good even at
low temperatures.

Strong attraction decreases relaxation of the density dis-
turbances. Any coverage fluctuation decays slower and
slower as the lateral interaction approaches its critical value.
The system becomes unstable at the critical point and
fluctuations diverge to infinity.

The coincidence between the RSRG and MC data in Fig.
5�a� is very good at high temperatures, but there are visible
and regular deviations between the RSRG and MC data that
grow as temperature is lowered. It should be noted that irre-
spective of the method, the isothermal susceptibility is the
most challenging property to compute. Due to its singular
behavior, the data are more sensitive to the choice of the
RSRG blocks. The �infinite� growth of the density fluctua-
tions is controlled by the critical exponents, so the proximity
to the exact values becomes important.

The coverage dependencies of the tracer diffusion coeffi-
cient are shown in Figs. 6�a� and 6�b� for repulsive and at-
tractive interaction. It has already been mentioned that the

FIG. 5. Isothermal susceptibility 	T vs �. Lines denote RSRG
results, symbols denote the MC data.

FIG. 6. The density dependencies of the normalized tracer dif-
fusion coefficient for repulsive and attractive interactions. The MC
data only.
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repulsion accelerates particle migration on the surface, as is
clearly seen in Fig. 6. The dependencies for the tracer diffu-
sion coefficient Dt were obtained by the MC simulations
only. We have no analytical expression for the tracer diffu-
sion coefficient. The tracer diffusion coefficient describes
diffusion of a single tagged particle. At high temperatures, Dt
is a monotonic decreasing nonlinear function of the surface
coverage. As temperature is lowered, the tracer diffusion co-
efficient shows a pronounced minimum at half monolayer
coverage. The nature of this minimum can be explained as
follows. At low temperature, particles form perfect ordered
structure at the stoichiometric density �= 1

2 . The overwhelm-
ing majority of jumps will be unsuccessful. Particles jump to
the shallow sites and return back because all deep sites are
occupied and all shallow sites are empty. Any deviation from
the stoichiometric value will increase the particle diffusivity.
Decreasing of the density causes holes in the d sublattice,
and particles situated close to a hole can occupy this hole by
performing a pair of jumps. The increase of the density cre-
ates some particles in the s sublattice. Then the particles in
the d sites situated close to this excess particles have some
probability to perform a successful jump. Therefore, the
tracer and jump diffusion coefficients grow when the density
deviates from �= 1

2 .
The dependencies for the jump diffusion coefficient

Dj are plotted in Fig. 7. At high temperatures, the jump dif-
fusion coefficient is a linear function of coverage Dj =D0�1
−��. As the temperature is lowered, a deep minimum is
found at �= 1

2 similar to that for the tracer diffusion coeffi-
cient. Strong repulsion results in a broad and high maximum
for ��

1
2 . Again, RSRG and MC data coincide rather well.

Only small deviations appear on the coverage dependencies
for strong lateral interaction ����=2.5,3�.

The dependencies for the chemical diffusion coefficient
Dc are shown in Fig. 8. There is a rather strong effect of the
lateral interaction on the particle diffusion. The chemical dif-
fusion coefficient grows from its initial value D0 almost lin-
early for ��

1
2 and then jumps at �= 1

2 . At this density, the
lateral interaction is switched on and particles begin to “feel”
each other. The chemical diffusion coefficient grows very
fast if the density exceeds slightly the stoichiometric value.

In the limits of �→0,1, a jumping particle has either
none or three nearest neighbors, respectively. Therefore, the
limiting values of the diffusion coefficient are equal to

lim
�→0

Dc = D0,

lim
�→1

Dc = D0 exp��z − 1��� . �30�

Attraction inhibits the particle migration. The relaxation
of the density disturbances became slower and slower as
temperature decreases. The critical slowdown of the chemi-
cal diffusion coefficient is controlled by the singular behav-
ior of the isothermal susceptibility. As was mentioned above,
strong attraction causes the first-order phase transition. In
this density region, the particle distribution is nonuniform.
There are islands of dense phase with �c→1 on the rarefied
background with �=1−�c. The islands grow and decay
chaotically. The system is thermodynamically unstable. We
cannot obtain any data by the RSRG method in this region.

The numerical data for the chemical diffusion coefficient
are obtained using the Kubo-Green relation as a ratio of two
quantities: jump diffusion coefficient and isothermal suscep-
tibility. The good coincidence between the data obtained by

FIG. 7. The density dependencies of the normalized jump dif-
fusion coefficient. Solid lines are calculated using the model of
jump pairs.

FIG. 8. The density dependencies of the normalized chemical
diffusion coefficient. Solid lines are calculated using the model of
jump pairs.
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the analytical and numerical methods means the applicability
of the Kubo-Green relation for this model. Also it means that
the approximate expressions for the correlation functions of
higher orders via the pair correlation function P00 are valid in
wide density and temperature regions.

V. SUMMARY

We have investigated the diffusion of particles on inho-
mogeneous lattices with two kinds of sites. Such systems
display specific peculiarities, which qualitatively affect the
particle diffusion as compared to homogeneous lattices. No-
tably, the lattice inhomogeneity causes temperature-
dependent specific correlation between particle jumps. This
results in a qualitatively different nonmonotonic behavior of
the diffusion coefficients: the appearance of a minimum
Dt��� and Dj���.

The numerical BKL technique as well as the analytical
RSRG method have been used to compute adsorption iso-
therms and the density dependencies of the pair correlation
function, the isothermal susceptibility, the jump, tracer, and
chemical diffusion coefficients at different temperatures. The
excellent agreement between the data indicates that the
RSRG method can be applied successfully for investigations
of the thermodynamic properties of the lattice gas systems
with strong lateral interactions.

The standard model of single jumps works rather well in
simple lattice gas systems provided the lattice inhomogeneity
is not substantial. However, the model is doomed to failure
even at a qualitative level of accuracy in the case of inhomo-
geneous potential relief. An extension to the model of jump
pairs has been proposed that forms a sound basis for the
quantitatively correct description of the particle diffusion in
such cases. This approach is quite general. The analytical
expressions for the chemical diffusion coefficient derived on
the basis of this model extension are valid for inhomoge-
neous lattices of different symmetry and dimensionality. The
proposed model of jump pairs gives a simple and natural
explanation of the peculiar characteristics of surface diffu-
sion on inhomogeneous lattices mentioned above.
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APPENDIX

Let us consider the first type of the jump pairs. A particle
from the initial deep site �first� jumps to the final deep site
�second� via the intermediate shallow cth site. The total

probability J12 of the jump sequence is the sum of contribu-
tions coming from all possible particle configurations
n3 ,n4 , . . . ,nz with fixed nc=0, n1=1, and n2=0,

J12 �
1

z

n1hch2h3h4 ¯ hz� +

1

z − 1

n1hch2�n3h4 ¯ hz

+ h3n4 ¯ hz + ¯ + h3h4 ¯ nz��

+
1

z − 2

n1hch2�n3n4 ¯ hz + n3h4n5 ¯ hz + ¯

+ h3h4 ¯ nz−1nz�� + ¯ +
1

2

n1hch2n3n4 ¯ nz� ,

�A1�

which can be rewritten as

�A2�

where binomial coefficients Cn
m are defined as usual,

Cn
m =

n!

�n − m�!m!
. �A3�

It is easy to see that the inner sum is equal to the definite
integral as follows:

	
n=0

p
�− 1�n

z − n
Cp

n = 	
n=0

p

�− 1�nCp
n�

1

�

xn−z−1 dx

= �
1

�

x−z−1�1 − x�p dx . �A4�

The substitution x=1/y reduces the integral to the standard
form

�
1

�

x−z−1�1 − x�p dx = �− 1�p�
0

1

yz−p−1�1 − y�p dy

= �− 1�pB�z − p,p + 1� . �A5�

Using the well-known equality

B�n,m� =
��n���m�
��n + m�

, �A6�

one can obtain the final result

J12 �
1

z�z − 1�

n1hc�z − 1 − n2 − n2n3 − n2n3n4 − ¯

− n2n3n4 ¯ nz�� . �A7�

The second type of the jump pairs is considered in a similar
way.
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