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We study in theory the generation and detection of electron spin coherence in nonlinear optical spectroscopy
of semiconductor quantum dots doped with single electrons. In third-order differential transmission spectra, the
inverse width of the ultranarrow peak at degenerate pump and probe frequencies gives the longitudinal spin
relaxation time �T1�, and that of the Stokes and anti-Stokes spin resonances gives the spin dephasing time
including the inhomogeneous broadening �T2

*�. The transverse spin relaxation time excluding the inhomoge-
neous broadening effect �T2� can be measured by the inverse width of ultranarrow hole-burning resonances in
fifth-order differential transmission spectra.
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I. INTRODUCTION

Electron spin coherence in semiconductor quantum dots
�QDs� is a quantum effect to be exploited in emerging tech-
nologies such as spin-based electronics �spintronics� and
quantum computation.1 The electron spin decoherence is a
key issue for practical application of the electron spin free-
dom and is also of fundamental interest in mesoscopic phys-
ics and in quantum physics. The electron spin decoherence in
QDs, however, is yet poorly characterized. By convention,
the spin decoherence is classified into the longitudinal and
the transverse parts, which correspond to the spin population
flip and the Zeeman energy fluctuation processes and are
usually characterized by the longitudinal relaxation time T1
and the transverse relaxation time T2, respectively. Most cur-
rent experiments are carried out on ensembles of spins, com-
posed of either many similar QDs �Refs. 2–5� or many rep-
etitions of �approximately� identical measurements on a
single QD.6–14 The ensemble measurements are subjected to
the inhomogeneous broadening of the Zeeman energy, which
results from the fluctuation of the QD size, shape, and com-
pound composition �and in turn the electron g-factor� and
from the random distribution of the local Overhauser field
�due to the hyperfine interaction with nuclear spins in ther-
mal states�. The inhomogeneous broadening leads to a
dephasing time T2

*.15–17 The three time scales characterizing
the electron spin decoherence can differ by orders of magni-
tude usually in the order of T1�T2�T2

*. For example, in a
typical GaAs QD at a low temperature ��4 K� and under a
moderate to strong magnetic field �0.1–10 T�, the longitudi-
nal relaxation time T1 can be in the order of
milliseconds,6–11,18 the transverse relaxation time T2 is up to
several microseconds,5,12,14 and the dephasing time T2

* can be
as short as a few nanoseconds.3,5,12,13

The issue is how to measure the characteristic times of
electron spin decoherence in QDs. There have been many
experiments both in optics4,9–11,18 and in transport,6–8 which
establish the longitudinal spin relaxation time T1 in QDs of
different materials. The dephasing time T2

* has also been
measured for QD ensembles,2,3,5,12,13 giving a lower bound
of T2. Spin echo in microwave electron spin resonance �ESR�

experiments is a conventional approach to measuring the
transverse spin relaxation time T2 excluding the inhomoge-
neous broadening,19–21 which, however, is less feasible for
III-V compound quantum dots due to the fast time scales in
such systems �T2�10−6 s and T2

*�10−9 s�. Indeed, the re-
markable spin echo experiments in coupled QDs done by
Petta et al. are performed with rather long dc voltage pulses
instead of instantaneous microwave pulses.12 Alternatively,
picosecond optical pulses may be used to manipulate elec-
tron spins via Raman processes22 and realize the spin echo,
which, however, still need to overcome the difficulty of sta-
bilizing and synchronizing picosecond pulses in microsecond
time spans. A recent experiment by Greilich et al. also shows
that the inhomogeneous broadening effect can be filtered out
from the spin coherence mode locked by a periodic train of
laser pulses.5

In this paper, we will study the frequency-domain nonlin-
ear optical spectroscopy as another approach to measuring
the electron spin decoherence times. Particularly, the trans-
verse relaxation rate T2

−1 is correlated to the width of ultra-
narrow hole-burning peaks in fifth-order differential trans-
mission �DT� spectra. This hole-burning measurement of the
spin relaxation time is analogous to the exploration of slow
relaxation of optical coherence in atomic systems by the
third-order hole-burning spectroscopy.23 Here, the fifth-order
nonlinearity is needed because the creation of spin coherence
by Raman processes involves at least two orders of optical
field and hole-burning two more. The state-of-the-art spec-
troscopy already has the ultrahigh resolution �much better
than megahertz-resolution� to resolve the slow spin decoher-
ence in microsecond or even millisecond time scales.24–26

The organization of this paper is as follow. After this in-
troductory section, Sec. II describes the model for the QD
system and the master-equation approach to calculating the
nonlinear optical susceptibility. Section III presents the re-
sults and discussion. Section IV concludes this paper. The
solution of the master equation in the frequency domain is
presented in the Appendix.

II. MODEL AND THEORY

The system to be studied is a semiconductor QD doped
with a single electron. The geometry of the QD under an
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external magnetic field and optical excitation is shown in
Figs. 1�a� and 1�c�. The QD is assumed to be a shape with
small thickness in the growth direction and relatively large
radius in the lateral directions, as in the usual cases of fluc-
tuation GaAs QDs.3,10 To enable the generation and manipu-
lation of the electron spin coherence through Raman pro-
cesses, a magnetic field is applied along a lateral direction
�x axis�. The propagation directions of the pump and probe
laser beams are close to the growth direction �z axis�. The
two electron spin states ��� are split by the magnetic field
with Zeeman energy �0. The strong confinement along the z
axis induces a large splitting between the heavy hole and the
light hole states, thus the relevant exciton states are the
ground trion states ��� and ��̄�, which consist of two electrons
�including the doped one and one created by optical excita-
tion� in the singlet spin state and one heavy hole in the spin
states �+3/2� and �−3/2� �quantized along the z axis with
nearly zero Zeeman splitting�, respectively. Similarly, we can
also neglect the excitation of higher-lying trions, biexciton,
and multiexciton states since the energy of adding an exciton
in each case is well separated from energy of the lowest trion
states. The selection rules for the optical transitions are de-
termined by the �approximate� conservation of the angular
momentum along the growth direction so that a circularly
polarized light with polarization �+ or �− connects the two
electron spin states to the trion state ��� or �̄�, respectively
�see Fig. 1�b��. The relaxation processes in the system are
parametrized by the exciton recombination rate �1, the exci-
ton dephasing rate �2, the longitudinal spin relaxation time
T1, and the transverse spin relaxation time T2. The inhomo-
geneous broadening leads to a random component � to the
Zeeman splitting: �c=�0+�, which is assumed to be a
Gaussian distribution g���=e−�2/�2	*2� / ��2
	*�. The spin
dephasing time including the inhomogeneous broadening
T2

*�1/	*�T2, unless it is artificially set to be T2
*=T2 �by

setting 	2
*=0�. The hole spin relaxation is neglected since it

is extremely slow when the hole is confined in the trion
states.11 The theory presented here can be extended straight-
forwardly to include the hole spin relaxation, the light-hole
states, the hole mixing effect �which leads to the imperfec-
tion in the selection rules, for example, in InAs QDs�, the
multiexciton states, the inhomogeneous broadening of the
trion states, and so on, but we expect no qualitative modifi-
cation of the resonance features related to the electron spin
coherence in the nonlinear optical spectra. For simplicity, we

shall consider only �+-polarized optical fields �extension to
other polarization configurations may provide some flexibil-
ity for experiments and is trivial in the theoretical part�.
Thus, the model is reduced to a �-type three-level system,
consisting of the two electron spin states ��� and the trion
state ���. The �-type three-level model, in spite of its sim-
plicity, is the basis of a wealth of physical effects, including
electromagnetically induced transparency,27 lasing without
inversion,28 and stimulated Raman adiabatic passage,29 and it
has been successfully applied to study transient optical sig-
nals of doped QDs.3,30

The dynamics of the system is described in the density
matrix formalism with �,� as the density matrix elements
between the states ��� and ���. The optical excitation and
relaxation are accounted for in the master equation as

�t�,± = − i�Eg � ��0 + ��/2 − i�2��,± − iE�t��,� + iE�t��,±

+ iE�t�±,±, �1a�

�t�,� = − 2�1�,� + 2I�E*�t��,+ + E*�t��,−� , �1b�

�t±,± = − �p�±,± − p±�,��/T1 + �1�,� − 2I�E*�t��,±� ,

�1c�

�t±,� = �1�,� − i�±��0 + �� − i/T2�±,� + iE*�t��,�

− iE�t��,±
* , �1d�

where Eg is the energy gap and p± is the equilibrium popu-
lation of the spin states in the absence of the optical excita-
tion; the optical field E�t�=	 jEje

−i�jt contains different fre-
quency components. The transition dipole moment is
understood to be absorbed into the field quantities. In the
rotating wave reference frame, the energy gap Eg is set to be
zero and the optical frequencies � j are measured from the
gap. The first term in the right-hand side of Eq. �1d� is the
spin coherence generated by spontaneous emission,30–32

which has been demonstrated in time-domain experiments
with significant effects on spin beats.3 We will show that it
produces extra resonances in the fifth-order DT spectra.

To calculate the nonlinear optical susceptibility, the mas-
ter equation is obtained in the frequency domain �as given in
the Appendix�. With the spectrum of the optical field given
by E���=	 j2
Ej���−� j�, the density matrix can be ex-
panded as

�,���� = 	
j,. . .,k;m,. . .,l

2
Ej ¯ EkEm
*
¯ El

*�,�
�j¯km̄¯l̄����

− � j¯km̄¯l̄� , �2�

where � j¯km̄¯l̄
� j + ¯ +�k− ��m+ ¯ +�l�. The deriva-

tion of the density matrix component �j¯km̄¯l̄� up to the fifth
order is lengthy but straightforward. The final result is aver-
aged with the inhomogeneous broadening distribution g���.

FIG. 1. �Color online� Schematics of �a� the quantum dot, �b�
the selection rules for optical transitions, and �c� the optical detec-
tion geometry.
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III. RESULTS AND DISCUSSIONS

The linear optical susceptibility is given by

�j� =� g���
� j − Eg ± ��0 + ��/2 + i�2

d� . �3�

In fluctuation GaAs QDs, the exciton dephasing is much
faster than the spin dephasing due to the inhomogeneous
broadening ��2

−1�0.1 ns�T2
*�10 ns�,3 so the resonance

width in linear optical spectra is usually dominated by the
trion state broadening, revealing little information about the
spin decoherence.

In third-order optical response, the population and off-
diagonal coherence of the electron spin are generated by the
Raman processes,

±,±→
E2

�,±
�2�→

E1
*

±,±
�21̄� � �21̄ +

i

T1
�−1

, �4a�

±,±→
E2

�,±
�2�→

E1
*

�,±
�21̄� � ��21̄ ± ��0 + �� +

i

T2
�−1

, �4b�

corresponding to the illustrations in Figs. 2�a� and 2�b�, re-
spectively. Another optical field with frequency �1 brings
the second-order spin coherence into the third-order optical

coherence �,±
�211̄�. The DT spectrum as a function of the pump

frequency �1 and the probe frequency �2 is

SDT��2,�1� � − I��,+
�211̄� + �,−

�211̄�� , �5�

which presents the ultranarrow resonances around �21̄=0
and �21̄= ±�0, with resonance widths T1

−1 and T2
−1, related to

the spin population and off-diagonal coherence in Eqs. �4a�
and �4b�, respectively. Such resonances are shown in Fig. 3
�as dot black lines�. Thus, the spin relaxation times T1 and T2
are measured, but when the inhomogeneous broadening is
included, since usually T2�T2

*, the Stokes and anti-Stokes
Raman resonances at �21̄= ±�0 will be smeared to be a peak
resembling the inhomogeneous broadening distribution as

� ±,�
�21̄�g���d� � − i
g��21̄ � �0� . �6�

The effect of the inhomogeneous broadening is clearly seen
in Fig. 3 �solid red lines�. So in usual cases, the third-order
DT spectra measure the T2

* instead of the T2. The resonance
at degenerate pump and probe frequencies ��21̄=0� is related
to the spin population and is immune to the random distri-
bution of the electron Zeeman energy. So the longitudinal
spin relaxation time T1 can be deduced from the third-order
DT spectra, regardless of the inhomogeneous broadening.

We note that the resonance features of the third-order sus-
ceptibility shown in Fig. 3 are consistent with the recent
experimental data.18

To measure the transverse relaxation time excluding the
inhomogeneous broadening effect, the fifth-order nonlinear-
ity can be used. In the fifth-order optical response, the spin
coherence in the fourth order of optical field has very rich
resonance structures. For instance, a double resonance such
as

+,−
�432̄1̄� �

1

��31̄ − ��0 + �� +
i

T2
���432̄1̄ − ��0 + �� +

i

T2
�
�7�

arises from the excitation pathway

−,−→
E3

�,−
�3�→

E1
*

+,−
�31̄�→

E4

�,−
�431̄�→

E2
*

+,−
�432̄1̄�, �8�

as depicted in Fig. 4�a�. The double resonance will manifest
itself in a two-dimensional DT spectrum as an ultranarrow
peak at �31̄=�432̄1̄=�0+� with width of �T2

−1. When the
inhomogeneous broadening is included, the ultranarrow reso-
nance will be smeared into a broadened peak along the di-
rection �31̄=�432̄1̄ with width of �1/T2

*, but in the perpen-

FIG. 2. Schematics of Raman processes generating �a� the spin
population and �b� the off-diagonal spin coherence.

FIG. 3. �Color online� Third-order DT spectra of QDs doped
with single electrons. The parameters are chosen such that the Zee-
man energy �0=20 �eV, the spin population p±=0.5, the pump
frequency �1=Eg−10.5 �V, �1=5 �eV ��1

−1�0.12 ns�, �2

=6 �eV ��2
−1�0.1 ns�, T1=100 ns, T2=100 ns, and T2

*=10 ns for
the solid �red� lines and T2

*=T2 �no inhomogeneous broadening� for
the dot �black� lines. The insets are enlarged plots, showing details
of the resonances.

FIG. 4. �a� Schematics for a fourth-order optical process that
generates spin coherence with a double resonance structure. �b� The
Feynman diagram for the fifth-order optical response involving the
spontaneous emission, in which the optical field and the vacuum
field are represented by the wavy arrows and the dotted arrow,
respectively.
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dicular direction �defined by �31̄=−�432̄1̄�, the peak width
remains unchanged. So when �432̄1̄ is fixed around �0 and
�31̄ is scanned, or vice versa, the DT spectrum will present a
sharp peak whose width measures the inverse transverse re-
laxation time T2

−1. This peak has the character of hole burn-
ing: The first frequency difference acts just as a selection of
QDs with Zeeman energy �0+�=�432̄1̄ from the inhomoge-
neously broadened ensemble. The hole-burning resonance
resulting from the excitation pathway in Eq. �8�, however,
emerges together with the resonance associated with the spin
population ��42̄+ i /T1�−1, as given in Eq. �4a�. To avoid the
complication of mixing two types of resonance structures,
we would rather make use of another mechanism for spin
coherence generation, namely, the spontaneous emission that
connects the trion state to the two spin states through the
vacuum field �related to the first term in the right-hand side
of Eq. �1d��.3,30–32

The generation of spin coherence in the fifth-order optical
response involving the spontaneous emission can take a
quantum pathway like

−,−→
E3

�,−
�3�→

E1
*

+,−
�31̄�→

E4

�,−
�431̄�→

E2
*

�,�
�432̄1̄�→

�1

−,+
�432̄1̄�, �9�

where the last step is the spontaneous emission. This optical
process is illustrated by the Feynman diagram in Fig. 4�b�.
The spin coherence generated by the spontaneous emission
and that by optical excitation can have opposite spin indices

�+,−
�31̄�→−,+

�432̄1̄��, which is impossible in quantum pathways
without the spontaneous emission �as can be seen from Fig.
4�a��. Thus, the double resonance becomes

−,+
�432̄1̄� �

�1/��432̄1̄ + i2�1�

��31̄ + ��0 + �� +
i

T2
���432̄1̄ − ��0 + �� +

i

T2
� ,

�10�

which is well separated from the spin population resonance.
The spectrum is measured by fixing �432̄1̄ to be the hole-
burning frequency �0+� with ��1/T2

* and fine tuning �13̄
to be �432̄1̄+�. As shown in the inset of Fig. 5, the optical
frequencies can be configured such that �4 and �1 are fixed,
�3 are redshifted by �0+�+� from �1, and �5 and �2 are
redshifted by �0+�−�41̄ from �1 and �3, respectively.

Thus, the fifth-order optical response �,±
�5432̄1̄� oscillates at the

probe frequency �4, which enables the signal to be measured
in the DT setup instead of six-wave mixing ones. We note
that the resonance due to the spin population ���532̄1̄

+ i /T1�−1 contributes only a constant background since
�532̄1̄
0 in the above frequency configuration. As shown in
Fig. 5, which plots the fifth-order DT spectrum as a function
of �
�432̄1̄−�0 and the fine tuning �
�13̄−�432̄1̄, a very
narrow hole in the spectrum as a function of �31̄ is burnt
around �432̄1̄, with width given by T2

−1. Along the direction
�31̄=−�432̄1̄ ��=0�, the resonance is extended by the inho-
mogeneous broadening as expected. Sectioned plots of the
DT signal with fixed � are shown in Fig. 6�a� for various
transverse relaxation time. The resonance width is given by
the transverse relaxation rate, demonstrating unambiguously
that the T2 is measured by the hole-burning effect. The hole-
burning resonance can also be detected by varying the probe

FIG. 5. Contour plot of the fifth-order DT spectrum of the QDs
as a function of �
�432̄1̄−�0 and �
�13̄−�432̄1̄. The probe fre-
quency is fixed to be �4=22�eV, the pump frequency �1 is fixed
at 9 �eV, and the other three pump frequencies are scanned with
�532̄1̄=0 �which makes �15̄=�32̄=�0+�−�41̄ and �13̄=�52̄=�0

+�+�, as indicated in the inset�. The Zeeman energy �0=20 �eV,
the spin population p±=0.5, and the relaxation rates are such that
�1=5 �eV ��1

−1�0.12 ns�, �2=6 �eV ��2
−1�0.1 ns�, T1=100 ns,

T2=100 ns, and T2
*=1 ns.

FIG. 6. �Color online� �a� The sectioned plot of Fig. 5 with �
=0 �i.e., �432̄1̄=�0�. �b� The fifth-order DT signal as a function of
the probe frequency with pump frequencies fixed to be such that
�1=9 �eV, �5=2 �eV, and �13̄=�52̄=�0=20 �eV. In both fig-
ures, the transverse spin relaxation time T2=20, 50, 100, and 200 ns
for the dash-dot �black�, dash �blue�, dash-dot-dot �red�, and solid
�green� lines from top to bottom, respectively, and the dot �blue�
line is calculated with the spontaneously generated spin coherence
artificially switched off �for T2=100 ns�. The parameters are the
same as in Fig. 5.
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frequency with the pump frequencies fixed, as demonstrated
in Fig. 6�b�. The role of the spontaneous emission-generated
spin coherence is verified by the absence of the ultranarrow
resonance with artificial switch-off of the relevant term in
Eq. �1d�.

IV. CONCLUSIONS

The spin coherence can be generated and detected in non-
linear optical spectroscopy of quantum dots doped with
single electrons, which is studied in this paper up to the
fifth-order nonlinearity with a �-type three-level model. The
electron spin coherence is generated by the optical field
through Raman processes as well as by spontaneous emis-
sion of the trion. The spin population and off-diagonal co-
herence manifest themselves in third-order differential trans-
mission spectra as ultranarrow resonances. The
inhomogeneous broadening smears out the sharp Stokes and
anti-Stokes peaks related to the off-diagonal spin coherence.
Thus, the longitudinal spin relaxation time T1 and the
dephasing time T2

* are measured by the third-order spectra. In
the fifth-order optical response, the generation of the spin
coherence by both second- and fourth-order optical processes
leads to double resonance structures in two-dimensional DT
spectra, which are smeared by the inhomogeneous broaden-
ing along one direction in the frequency space but presents
ultranarrow hole-burning resonances along the perpendicular
direction. So the transverse spin relaxation time T2 is mea-
sured as the inverse width of the hole-burning peak. The

spontaneous emission-generated spin coherence3,30 is useful
to produce hole-burning resonances well separated from the
spin-population resonances in the fifth-order spectra. The fre-
quencies of the optical field can be configured properly to
enable the detection of the signal in the DT setup instead of
the multiwave mixing ones. In practice, the pump and probe
frequencies may be generated from a single continuous-wave
laser source by, e.g., acousto-optical modulation.26 Since the
ultranarrow hole-burning peaks are rather insensitive to the
global shift of the laser frequencies and variation of the hole-
burning frequency, nonstabilized laser sources may be used
to resolve the slow spin decoherence.26 In the present re-
search, the electron spin decoherence and the inhomoge-
neous broadening are parametrized with a few time scales
�T1, T2, and T2

*�. The theoretical framework in this paper can
be readily extended to study the effect of the spectral
diffusion33–35 of the electron spin on the nonlinear optical
spectroscopy. We expect that the leading-order effect of the
spectral diffusion can also be eliminated in the fifth-order
nonlinear optical susceptibility.
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APPENDIX: SOLUTION OF THE MASTER EQUATION

The master equation in Eq. �1� can be solved in the fre-
quency domain by Fourier transformation to be

�,±��� =� − E�� − ��±,±��� − E�� − ���,±��� + E�� − ���,����
� − Eg ± ��0 + ��/2 + i�2

d�

2

, �A1a�

�,���� = 	
±
� + E*�� − ���,±��� − E�� + ���,±

* ���
� + i2�1

d�

2

, �A1b�

±,±��� = p±2
���� − �� + i�1 + ip±/T1� � E*�� − ���,±��� − E�� + ���,±
* ���

�� + i/T1��� + i2�1�
d�

2


+ �i�1 − ip±/T1� � E*�� − ���,���� − E�� + ���,�
* ���

�� + i/T1��� + i2�1�
d�

2

, �A1c�

+,−��� =
i�1�,����

� − ��0 + �� + i/T2
+� − E*�� − ���,−��� + E�� + ���,+

* ���
� − ��0 + �� + i/T2

d�

2

. �A1d�
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