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Wannier exciton dispersion curves of InxGa1−xAs/GaAs�001� quantum well superlattice are obtained by
computing exciton energies, for different K points in the corresponding Brillouin zone, using a variational
exciton envelope function model. The effective mass and the spatial dispersion of the exciton show strong
variations depending on energy bands and K points. Polariton dispersion curves are computed in the semiclas-
sical framework by using a nonlocal exciton susceptibility and solving self-consistently the Schrödinger-
Maxell equations. Photon dispersion curves of the one-dimensional photonic crystal, resulting from the peri-
odicity of the dielectric constant in the superlattice, are also computed and reported in comparison with exciton
and polariton bands. In order to mimic mesoscopic uniaxial photonic crystals, the versatility of
InxGa1−xAs/GaAs�001� superlattice is highlighted by selected numerical examples.
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I. INTRODUCTION

The Wannier exciton-polariton, propagating in a quantum
well superlattice �SLQW�, has attracted a lot of interest since
the beginning of optical response study in mesoscopic
structures.1–9 In fact, this radiation-matter interaction allows
the optical tailoring of the system to be performed by taking
into account the following physical parameters: �i� the exci-
ton energy, �ii� its envelope function, both affected by quan-
tum and dielectric confinements, and �iii� the spatial confine-
ment of the electromagnetic field. Besides, the SLQW has
very recently10,11 been considered a paradigmatic model
since it can mimic different interesting optical systems,
namely, �i� mesoscopic uniaxial semiconductor crystal12,13

with respect to the Wannier exciton energy bands, �ii� one-
dimensional �1D� photonic crystals with respect to the back-
ground dielectric constant modulation, and finally, �iii� 1D
resonant photonic crystals �or polaritonic crystals� in the case
of photon energies close to the Wannier exciton
transition.10,11

It is well known that the biaxial misfit strain in lattice-
mismatched �001� oriented heterostructures deforms the iso-
metric zinc blende �InxGa1−xAs/GaAs�001�� structure into
tetragonal. Therefore, the strain shifts conduction- and
valence-band levels and completely removes the degeneracy
at the � point of the p-like valence-band states already split
by the spin-orbit interaction.14–19 Moreover, the effective
valence-band masses become anisotropic, due to the cylin-
drical symmetry induced by the biaxial strain, and assume
different values of the parallel and perpendicular components
with respect to the superlattice axis.17 The energy splitting at
the � point of the valence band allows the formation of dif-
ferent valence-conduction transitions that correspond to three
different kinds of exciton: heavy-hole �hh-e�, light-hole �lh-
e�, and split-off �so-e�. These three excitons show a different
dynamics due to their effective masses and finite confining
potentials, and their interaction gives appreciable contribu-
tions to the exciton energy values.

Electrons and holes, propagating in heteropolar solids, in-
teract with the ion cores of the crystal and produce local

lattice deformations that modify the screening of the
electron-hole Coulomb interaction. A remarkable effect of
this so-called polaron interaction20 is the increase of the
charge-carrier effective masses as a consequence of the ionic
field contribution to their motion. Finally, excitons penetrate
into the finite potential barriers of the quantum well and feel
a dielectric mismatch that also modifies the screening of the
electron-hole Coulomb interaction. This effect, commonly
called “dielectric confinement,”21 increases by increasing the
dielectric mismatch and, in the present calculation, it is mod-
eled by the image potential formalism.

It should be noted that all these physical effects influence
the binding energies and the oscillator strength of the con-
fined exciton, and, therefore, they will be embodied on an
equal footing into the present theoretical model.

The aim of the present work is twofold: �i� to present a
variational model for studying periodic semiconductor het-
erostructures by means of calculations of Wannier exciton
energies and binding energies in InxGa1−xAs/GaAs�001�
SLQW, and �ii� to study photon and polariton dispersion
curves by self-consistent Maxwell-Schrödinger calculations
in the semiclassical framework and in the effective-mass ap-
proximation.

The Schrödinger-Maxwell semiclassical framework
adopted is known to be a rather general theoretical scheme
for computing the optical response of mesoscopic systems
when the exciton nonlocal dielectric function is
considered.4,9

In conclusion, the main physical properties embodied in
the present model are �i� interaction among valence bands
split by the strain, �ii� anisotropic effective band masses, �iii�
charge image potential, �iv� polaronic contributions to the
Coulomb potential, and �v� nonlocal polarization �spatial dis-
persion� of Wannier exciton.

The theoretical framework used to calculate excitons and
polaritons in SLQW is presented in Sec. II, while results and
discussions are reported in Sec. III. Section IV is devoted to
a brief summary and conclusions.

PHYSICAL REVIEW B 75, 085317 �2007�

1098-0121/2007/75�8�/085317�9� ©2007 The American Physical Society085317-1

http://dx.doi.org/10.1103/PhysRevB.75.085317


II. MODEL CALCULATION

A. Excitons in a SLQW

The theoretical study of excitons, confined in a SLQW,
involves the solution of Schrödinger equation in periodic
heterostructures where the confining potentials, the dielectric
function, and the effective masses show the full translational
symmetry of the lattice. For this purpose, periodic hetero-
structures constituted of layers of InxGa1−xAs �x=0.185�,
sandwiched between layers of GaAs �001� oriented, have
been chosen as model for calculations.

The Wannier exciton is computed in the effective-mass
approximation by an accurate variational model well suited
to describe energy states and optical response of the system.

The total Hamiltonian for heavy-hole, light-hole, and
split-off excitons can be written down as a 3�3 block ma-
trix whose elements are Hh�,h= ��e-h��H��e-h� with e
=electron, h=hole, and � represents an excitonic state:

He-h = �Hhh,hh Hhh,lh Hhh,so

Hlh,hh Hlh,lh Hlh;so

Hso,hh Hso,lh Hso,so
	 . �1�

In the calculations, the negligible interactions of the
heavy-hole exciton with light-hole and split-off excitions
have been disregarded.15,22,23

The general expression, in cylindrical coordinates, for the
diagonal elements of the Hamiltonian operator is

He-h = −
1

2�x,y
��

2 −
1

2

�

�ze

1

me�ze�
�

�ze
−

1

2

�

�zh

1

mh�zh�
�

�zh

+ Vef f�r� − �e	LO − �h	LO + Vim�r� + Ve
o�ze� + Vh

o�zh�

+ Eg
e-h, �2�

while the z component of the kinetic operator of the off-
diagonal lh-so element is17,18

Tlh,so = −
1

2

�

�z
� 1

mso�z�
−

1

mh�z�� �

�z
. �3�

The z axis is oriented along the �001� direction and r
=
�ze−zh�2+�2. Ve

o�ze� and Vh
o�zh� are the confining poten-

tials for electrons and holes, respectively, while mi �i=e ,h� is
the position-dependent effective mass renormalized by the
interaction with longitudinal optical phonons, as described
below. The z and in-plane �x ,y� components of the effective
band-mass tensor, split by the cylindrical symmetry, are re-
lated to the well-known Kohn-Luttinger parameters24,25 
1
and 
2 as given in the following equations:

mhh
* �z� =

1


1 − 2
2
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The polaron contribution has been derived from the model
proposed by Bajaj and co-workers;26,27 in accordance with
this model, both the z and in-plane masses scale as mi
=mi

*��12+�i� / �12−�i�� �i=e ,h�, where the dimensionless
coupling parameter �i, measuring the strength of the interac-
tion between electrons �holes� and lattice longitudinal optical
phonons, is

�i =
1

2�̄

2mi

*

	LO
with

1

�̄
=  1

��

−
1

�B
� ,

�B and �� are the static and the high-frequency dielectric
constants, respectively, and 	LO is the longitudinal optical
phonon frequency.

The effective potential Vef f�r� comes from the Coulomb
electron-hole interaction screened by the LO phonons. In the
present calculation, we have adopted as effective potential
the functional given in Refs. 26 and 27, namely,

Vef f�r� = −
1

�Br
−

1

2�̄r
�e−er + e−hr� +

1

2�̄
Cee

−er

+
1

2�̄
Che−hr,

where Ci =
i

�1 + �i/4�1 + �i/12�2��1 + �i/12�
with i = e,h ,

�5�

�e	LO and �h	LO are the polaron self-energies for electrons
and holes, respectively.

The dielectric confinement is embodied into the Hamil-
tonian by the image potential Vim given in Refs. 28 and 29
and it will not be discussed further here.

All the calculations have been performed for T=9 K, and
the adopted values of the physical parameters are those of the
pure materials,30,31 namely, 
1=6.85, 
2=2.10, �B=12.53,
and ��=10.90 for GaAs, and 
1=19.67, 
2=8.27, �B
=14.60, and ��=12.25 for InAs, from which the correspond-
ing parameters of the alloy material are obtained by using a
linear interpolation scheme, as reported in Refs. 18 and 31.

The energy band gaps of the heavy, light, and split-off
holes are obtained by computing the shift of the different
band states produced by the misfit strain of the heterostruc-
ture with respect to the band-gap energy of the unstrained
InxGa1−xAs alloy, as reported in Ref. 18. This latter energy
gap is computed as function of the temperature and of alloy
composition x by the following nonlinear interpolation
formula:32

Eg�x,T� = Eg�0,0� + ax + bx2 − �c + dx�
T2

T + �ex + f�
,

where Eg�0,0�=1.5192 eV, a=−1.597 eV, b=0.5 eV, c
=5.408�10−5 eV/K, d=−9.4�10−4 eV/K, e=183 K, and
f =204 K.
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The variational exciton envelope functions are expanded
in products of electron and hole subbands, ui

e�ze�uj
h�zh� com-

bined with optimized hydrogenic 1S radial wave functions:
�ij�r�=exp�−r /�ij�. The quantity �ij is also chosen as varia-
tional parameter and optimized for each basis function.

In principle, the SLQW subband functions must fulfill the
condition of continuity, at each interface of the heterostruc-
ture, together with the periodicity condition at the boundaries
of the SLQW unit cell. Moreover, as in any periodic potential
problem, the overall solution must be of the Bloch form. All
these conditions can be satisfied by using, as subbands,
Bloch-type functions computed, for each heterolayer consti-
tuting the SLQW cell, as solutions of the Hamiltonian of Eq.
�2� in which all the electron-hole interaction contributions
are wiped out:

uj�z;K� = �Aje
ikjz + Bje

−ikjz�e−iKz. �6�

K defines a point inside the 1D Brillouin zone �BZ� of the
SLQW, and

kj = 
2mj�E − Vj
o + � j	LO� , �7�

where mj is the z component of the electron �hole� mass.
The phase amplitude values Aj and Bj are obtained, for

each j layer of the elementary cell, by imposing the continu-
ity of the current density at each j interface together with the
periodicity condition. Their values, in two adjacent hetero-
layers �j and j+1� of the heterostructure, are related by the
transfer matrix Mj computed at the j interface:

Aj+1

Bj+1
� = MJAj

Bj
� �8�

with

Mj =
mj+1

2

4kj+1
2 �

mjkj+1 + mj+1kj

mjmj+1
e−i�kj+1−kj�zj

mjkj+1 − mj+1kj

mjmj+1
e−i�kj+1+kj�zj

mjkj+1 − mj+1kj

mjmj+1
ei�kj+1+kj�zj

mjkj+1 + mj+1kj

mjmj+1
ei�kj+1−kj�zj 	 . �9�

In a SLQW unit cell, embodying n heterolayers, the continu-
ity condition gives

An+1

Bn+1
� = Mn ¯ M2M1A1

B1
� = MA1

B1
� , �10�

while the periodicity condition is given by the following ma-
trix equation:

An+1

Bn+1
� = PA1

B1
� �11�

with P periodicity matrix:

P = e−iKteik1t 0

0 e−ik1t � , �12�

where t is the translation vector of the 1D cell.
From Eqs. �10� and �11� we obtain the homogeneous

equation

�M − P�A1

B1
� = 0

0
� �13�

that can be solved as a secular equation problem,

�M − P� = �M� + �P� − �M11P22 + M22P11� = 0, �14�

in order to obtain the subband energy states and the coeffi-
cients Aj and Bj for all the j layers of the SLQW cell.

Wannier exciton wave functions are given as a variational
expansion according to

�n�ze,zh,�;K� = �
i,j

Cij,nui
e�ze;K�uj

h�zh;K��ij�ze,zh,�;�ij� ,

�15�

and the exciton states are computed along the line of Refs. 9
and 33. Moreover, for wave vectors K in the first BZ, each
exciton state defines a band of energy and, therefore, the
dispersion curves of the exciton states in SLQW can be com-
puted.

B. Polaritons in SLQW

Now, let us consider the polariton dispersion curves for a
SLQW of Ga1−xlnxAs/GaAs�001�. The nonlocal linear polar-
ization vector is given by

4�P�z;	� = �
n

Sn�	��n
*�z;K��

L

�n�z�;K�E�z�;	,K� ,

�16�

where ze=zh=z. The Maxwell equation for an electromag-
netic wave at normal incidence and for each point K of the
first BZ is �in a.u.�

EXCITON AND POLARITON DISPERSION CURVES OF In… PHYSICAL REVIEW B 75, 085317 �2007�

085317-3



d2E�z;	,K�
dz2 = −

	2

c2 �B�z�E�z;	,K� −
	2

c2 �
n

Sn�	��n
*�z;K�

��
L

dz��n�z�;K�E�z�;	,K� , �17�

where �B�z� is the background dielectric constant modula-
tion.

The integration on z� is performed on the volume L of the
1D unit cell of the SLQW, and the summation is over the
excitonic states �n with energy 	n. The quantities Sn�	� are

Sn�	� =
So�	�

	n − 	 − i

�18�

with

So�	� = 2�g
	K

	2 , �19�

where 	K is the Kane energy of the interband transition, g is
the multiplicity of the exciton state �g=3/4 and g=1/4 for
the hh-e and lh-e excitons, respectively�,19 and 
 is the non-
radiative homogeneous broadening that, for very low tem-
peratures, is essentially due to the exciton acoustic-phonon
scattering. In the present calculation, it is taken as a constant
value.

The formal solution of Eq. �17� is performed by using the
Green function method34 along the line of Refs. 9 and 33 and
the resulting electric field in each j layer �Lj� is

Ej�z;	,K� = Aj� j�z;	,K� + Bj j�z;	,K� , �20�

where

� j = eiqjz − �
m

	2

c2 �
Lj

dz� gj�z,z���m�z�;K��
n

Dmn
−1 �	,K�

��
LJ

dz �n
*�z,K�eiqjz, �21�

 j = e−iqjz − �
m

	2

c2 �
Lj

dz� gj�z,z���m�z�;K��
n

Dmn
−1 �	,K�

��
LJ

dz �n
*�z,K�e−iqjz, �22�

with qj = �	 /c�
�B�zj�,

gj�z,z�� =
��z − z��eiqj�z−z�� + ��z� − z�eiqj�z�−z�

i2qj
�23�

is the Green function, and Dmn
−1 �	 ,K� are the elements of the

inverse of the polaritonic matrix D with

Dmm = So
−1�	m + So

	2

c2

��
Lj

dz �m
* �z,K��

Lj

dz� �m�z�,K�g�z,z�� − 	 − i
� ,

�24�

Dmn =
	2

c2 �
Lj

dz �m
* �z,K��

Lj

dz� �n�z�,K�g�z,z�� �25�

the diagonal and off diagonal matrix elements, respectively.
The coefficients Aj and Bj of Eq. �20� are obtained, for

each j layer of the SLQW cell, by imposing the condition of
continuity of the in-plane electric field, at each interface, and
the periodicity at the boundaries of the unit cell. These con-
ditions give rise to a secular equation for the electric field E,
formally analogous to that previously introduced for the cal-
culation of the subband functions �see Eqs. �10�–�14��, from

FIG. 1. Energies computed for hh-e and lh-e in
InxGa1−xAs/GaAs�001� SLQW �solid lines� and in a single QW
�dashed lines�.

FIG. 2. Exciton binding energies computed for hh-e �solid line�
and lh-e �dashed line� in InxGa1−xAs/GaAs�001� SLQW.
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which the polariton energies 	 are obtained as a function of
the K wave vectors.

Moreover, taking into account only the background di-
electric function modulation �So=0 in Eq. �17��, the photonic
dispersion curves of the superlattice can also be computed.

Finally, the normal incidence reflectivity spectrum can be
obtained by computing the solutions of Eq. �20� as a function
of 	 for a fixed K value.

It should be emphasized that the present model calcula-
tion, based on a generally accepted semiclassical framework
where Schrödinger and Maxwell equations are self-
consistently solved,4,9 avoids the use of ad hoc assumptions
such as the so-called additional boundary conditions,4,6,35

and, indeed, the only fitting parameter embodied in the
theory is the nonradiative homogeneous broadening 
.

III. RESULTS AND DISCUSSION

A. Excitons in SLQW

Let us consider an InxGa1−xAs/GaAs�001� SLQW with
indium concentration x=0.185. The exciton transition ener-
gies of the lowest hh-e and lh-e exciton levels, as a function
of well width, in the case of barrier thickness Lb=5 nm, are
shown in Fig. 1. The hh-e and lh-e exciton energies, com-
puted for a single quantum well with Lb=200 nm, are also
reported in the same figure for the sake of comparison. It
should be noticed that all the curves show the same behavior
as a function of the well width, but the energy of exciton in
SLQW is systematically smaller than that in the single quan-
tum well system. This property is due to the lower confine-
ment experienced by the exciton propagating in the SLQW.
The maximum energy difference, of about 20 meV for both
the excitons, is observed for the thinnest well widths �of
about 1 nm�.

The exciton binding energies of the lowest hh-e and lh-e
exciton levels, computed at � point as a function of well
width, are shown in Fig. 2. The behavior of the hh-e binding
energy is surprising if compared with the binding energy in a
single QW where only a maximum, corresponding to the
so-called pseudo two-dimensional �2D� to three-dimensional
�3D� transition, is present.18 At variance with this well-
known case, the calculations in SLQW clearly show two
different maximum values at about 8 and 15.5 nm, respec-
tively.

In order to explain this interesting result, let us go back to
Fig. 1 where, for large value of well width, the exciton en-
ergy in the superlattice is close to that confined in the single
quantum well. Now, by decreasing the well thickness, the
binding energy increases toward the two-dimensional limit
�Eb�2D�=4Eb�3D�� of InxGa1−xAs quantum well, until it
reaches the maximum confinement energy obtained for the
well width value of about 15.5 nm. For smaller well widths,
the exciton delocalizes in the barriers and restores its three-
dimensional behavior, and the exciton binding energy under-
goes a minimum value. Finally, for very thin quantum wells,
exciton delocalizes throughout the SLQW and its binding
energy is due to the interplay between confinement and pe-
riodicity effects. In this latter case, the maximum confine-
ment in the SLQW is observed at about 8 nm, while the
minimum is close to 2.5 nm, where equal probabilities are
obtained for Wannier exciton localized inside the wells or in
the barriers as is clearly shown in Fig. 3.

Different from the heavy-hole exciton behavior, the light-
hole exciton binding energy, in the SLQW, shows a single
but very broad maximum at about 19 nm; this is because, as
in the case of the single QW,18,32 the SLQW lh-e exciton
experiences a weak confinement. It should be noted that the
polaron interaction and the dielectric confinement give con-
tributions of 0.38 and 0.21 meV, respectively, to the hh-e
exciton binding energy close to its maximum value �Eb

FIG. 3. Exciton localization probability of hh-e �solid line� and
lh-e �dashed line� in the well and in the barrier computed as a
function of well width in SLQW.

FIG. 4. Fractional space dimension computed for hh-e �full line�
and lh-e �dashed line� as a function of the well width.
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=5.57 meV�. While contributions as large as 0.47 and
0.19 meV, respectively, are observed in the case of light-hole
binding energy maximum value �Eb=4.19 meV�. Finally, the
computed exciton binding energies reach the bulk limit val-
ues of GaAs for very thin and of InxGa1−xAs for very thick
well widths.

The binding energy trend, as a function of the well width,
is usually described as due to the squeezing that the confine-
ment produces on the Wannier exciton. This allows us to
describe the dynamics of the quantum-confined exciton as a
hybrid between two-dimensional and three-dimensional ex-
citon behaviors. As a consequence, excitons can be thought

to move in a space whose dimension can assume all the
values between 2 and 3. This dimensional behavior of exci-
tons in confined systems can be described by using the so-
called fractional-dimensional space.

The use of the fractional-dimensional space was intro-
duced by He36 in order to describe the dynamics of systems
that are supposed to move in a space with no integer dimen-
sion, as Wannier excitons in quantum-confining systems. In
this approach the anisotropy produced by the confining po-
tential in a three-dimensional space is reduced to an isotropic
problem but in a fractional-dimensional space, whose dimen-
sion Df depends on the degree of anisotropy37 produced by

FIG. 5. Energy bands �a� and density of states �b�, computed for
the hh-e in InxGa1−xAs/GaAs�001� SLQW: well thickness, 5 nm;
barrier thickness, 8 nm.

FIG. 6. Energy bands �a� and density of states �b�, computed for
the lh-e in an InxGa1−xAs/GaAs�001� SLQW: well thickness, 5 nm;
barrier thickness, 8 nm.

FIG. 7. Computed photonic dispersion curves. In the inset: an
enlarged view of the first photonic gap �full lines� is compared with
the first polariton gap �circles�.

FIG. 8. Upper �circles� and lower �squares� polaritonic energy
branches, computed for the first hh-e state �n=1� in
InxGa1−xAs/GaAs�001� SLQW. Bare exciton and photon dispersion
curves are also reported.
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the geometry of the confinement, namely, well width, barrier
height, image potential, and mass ratio.

For Wannier excitons in the fractional-dimensional space,
the formal solution of the Schrödinger equation, performed
by using the Laplacian operator proposed by Stillinger,38

gives, for the first state of the exciton binding energy, the
following scaling equation:

Eb�Df� =
4

�Df − 1�2Eb�3D� , �26�

where Eb�3D� is the binding energy of the lowest energy
state of the three-dimensional bulk exciton of Ga1−xInxAs
alloy �Eb=4.36 meV and Eb=3.65 meV, for hh-e and lh-e,
respectively�, and Eb�Df� is the corresponding value in the
fractional-dimensional space. Now, by using the computed
values of binding energy of Fig. 2 for Eb�Df�, we obtain from
the former equation the fractional dimension of Wannier ex-
citon confined in SLQW. This result is shown in Fig. 4. It
should be noticed that, for well widths smaller than 0.5 nm,
the exciton is nearly localized in the barriers and, therefore,
the Df =3 value can be achieved by using the bulk binding
energy of barrier material �GaAs� instead of the well material
�InxGa1−xAs�.

We have computed the exciton energy bands and the ex-
citon density of states for a SLQW with well width Lw
=8 nm. This value has been chosen in correspondence of the
first maximum of the binding energy of the hh-e, where the
exciton is very sensitive to the SLQW confinement. The
computed dispersion curves are shown in Fig. 5 for hh-e and
in Fig. 6 for lh-e, respectively. In the same figures, the pho-
ton dispersion curves, obtained from the solutions of Eq. �17�
by neglecting the exciton contribution �So=0�, are also
shown �dotted line�. The lowest energy dispersion curves of
hh-e are flatter than the corresponding lh-e curves due to the
heavier total mass and to the higher localization in the well
region. The Wannier exciton total mass shows different be-
haviors for higher energy dispersion curves; in fact, close to
the � point, the n=6 heavy exciton state shows a total effec-
tive mass lighter than that observed for the lowest light ex-
citon band �n=1�. Therefore, in this case, very large nonlocal
effects should be observed in the optical spectrum. Besides,
the effective total mass of hh-e becomes negative in the
zones where the dispersion curve changes its slope and the
group velocity goes to zero �see Fig. 5�; in these zones,
analogous to the high symmetry points of the BZ, high den-
sity of excitonic states is observed.

FIG. 9. Upper �circles� and lower �squares� polaritonic energy
branches, computed for the sixth hh-e state �n=6� in
InxGa1−xAs/GaAs�001� SLQW. Bare exciton and photon dispersion
curves are also reported.

FIG. 10. Upper �circles� and lower �squares� polaritonic energy
branches, computed for the first lh-e state �n=1� in
InxGa1−xAs/GaAs�001� SLQW. Bare exciton and photon dispersion
curves are also reported.

FIG. 11. Normal incidence reflectivity of
InxGa1−xAs/GaAs�001� SLQW.
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The energy dispersion curves, computed for the lh-e, are
shown in Fig. 6. Also, in this case, we observe large exciton
density of states at high symmetry points of the BZ and
where the dispersion curve changes its slope. Finally, the
light-hole exciton energy gaps look smaller than the heavy-
hole ones and this is essentially due to the lower exciton
localization into the wells experienced by this kind of exci-
ton �see Fig. 4�.

B. Polaritons in SLQW

The lowest energy photonic dispersion curves, obtained
by wiping out in the calculations the photon-exciton interac-
tion, are shown in Fig. 7. All curves look rather linear in this
energy scale, and the photonic gaps drop far from the exciton
transition energy range. Moreover, we want to emphasize
that the exciton-photon interaction does not affect the optical
gaps as can be seen in the inset of Fig. 7, where the com-
puted first photonic gap �full line� is shown together with the
corresponding polaritonic gap �circles�.

The solution of Eq. �17�, as a function of the wave vector
K values in the first BZ, gives the polariton dispersion
curves. The first and the sixth hh-e states �n=1,6�, and the
first lh-e state �n=1� are shown in Figs. 8–10, respectively.
In the same pictures, the excitonic �dashed line� and photonic
�dotted line� bands are also reported for the sake of compari-
son.

For excitons perfectly confined in a single quantum well,
the polaritonic splitting energy decreases by increasing the
transition energy; in the present case, we obtain about
1.2 meV for hh-e that has strong probability to be confined
in the wells �Fig. 8�, while it is about 6.2 meV for light
exciton �Fig. 10� and 7.3 meV for n=6 heavy exciton state
�Fig. 9�, which has a high probability to be confined in the
barriers. It should be noticed that for the latter exciton state
�n=6� the rather larger polariton splitting value is due to the
high spatial dispersion properties �high penetration in the
barriers, low exciton effective mass, etc.�. In fact, the spatial
dispersion scales as the inverse of the effective total mass
and, rather close to the � point of the reciprocal lattice, the
n=6 heavy exciton mass is lower than that of n=1 lh-e state.
Moreover, for photon energy values far from the radiation-
matter interaction range of energy, the computed polaritonic
branches quite exactly reproduce the bare exciton or the pho-
ton dispersion curves.

The reflectivity spectrum of SLQW at normal incidence,
computed by using a well width of 8 nm and nonradiative
damping values of 
=0.4 and 
=0.6 meV for hh-e and lh-e,

respectively, is shown in Fig. 11. In this spectrum, the exci-
tonic transitions are assigned to the couple of electron-hole
subband state that gives the major contribution �greater than
80%� to the total excitonic state. All peaks look rather asym-
metric and shifted a little with respect to the exciton energy
values.

The spatial dispersion removes the symmetry of parity of
the SLQW and allows polaritonic states that involve, forbid-
den for symmetry, odd excitonic states as those correspond-
ing to the peaks labeled hh2-e1, hh4-e1, and hh1-e2 in Fig. 11.
Indeed, the oscillator strength of the exciton transition de-
pends on the integral of the exciton wave function and its
value is always zero for odd states. Differently, the oscillator
strength of the polariton depends on the integral of the prod-
uct of the exciton wave function by the electrical field.
Therefore, due to the asymmetric slope of the latter, the in-
tegral does not vanish also for odd exciton states. This prop-
erty is often observed in experimental optical spectra, but it
is mainly attributed to the loss of symmetry due to the dis-
order of the heterostructure that, instead, is completely
missed in our model calculation.

IV. CONCLUSIONS

We have studied the optical response of a SLQW by self-
consistent calculations of the Maxwell and Schrödinger
equations in the semiclassical framework and in the
effective-mass approximation. The confinement properties of
heavy and light excitons in SLQW have been studied and
compared with analogous results computed in the single
quantum well. It has been observed that the behavior of the
exciton binding energy highlights different kinds of confine-
ment in the superlattice. Moreover, the results obtained for
the different bands emphasize a strong variation of the exci-
ton properties such as �i� exciton effective total mass, �ii�
spatial dispersion effect, �iii� exciton optical oscillator
strength, and �iv� polariton splitting energy that for suitable
values of the physical parameters �alloy compositions, well
and barrier widths� could be optimized for the tailoring of
the optical properties in semiconductor superlattices.

Finally, the present calculation scheme can be a useful
starting point for designing optical devices when an a priori
knowledge is required of the main effects produced by the
confinement properties and polaritonic interactions.
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