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I. INTRODUCTION

The Josephson effect provides a fundamental signature of
phase-coherent transport through mesoscopic samples with
time-reversal symmetry.1 Here, we reconsider the theory of
the Josephson effect through a quantum dot �QD� in a two-
dimensional electron gas �2DEG�, taking into account
Rashba and/or Dresselhaus spin-orbit �SO� couplings.2,3 De-
spite the large recent interest concerning SO effects in QDs,
mainly caused by quantum information4 and spintronics
applications,5 the question of how the Josephson current is
modified by SO couplings has barely been addressed. Na-
ively, since SO couplings do not break time-reversal symme-
try, one may expect that they will not affect the Josephson
effect at all. This expectation seems basically confirmed by
the existing theoretical studies. In Ref. 6, the Josephson cur-
rent through a perfectly contacted 2DEG with Rashba cou-
pling is predicted to show SO-related modifications only in
the simultaneous presence of a Zeeman field. In Ref. 7, the
same conclusion has been reached for a single-channel con-
ductor with arbitrary contact resistance. Moreover, in Ref. 8,
by a generalization of earlier scattering approaches,9,10 the
case of a wide 2DEG with arbitrary contact resistance was
studied, where the semiclassically averaged Josephson cur-
rent is again found to be insensitive to Rashba SO couplings.
However, the presence of a Josephson current through the
mesoscopic system necessarily breaks time-reversal invari-
ance and therefore we reexamine this expectation in the
present paper.

As 2DEG devices based on InAs-related materials are
known to exhibit strong gate-tunable11 Rashba SO couplings,
and possibly Dresselhaus SO couplings, we study this prob-
lem here from the perspective of multilevel QD physics. Su-
percurrents through related devices have been probed by sev-
eral experiments; for recent work �see Refs. 12–16�. It is thus
not only of academic interest to quantitatively examine the
effects of Rashba and/or Dresselhaus SO couplings on the
equilibrium Josephson current. Moreover, very recently,
gate-tunable supercurrents through thin InAs nanowires have
been reported,17,18 revealing complex current-phase relations
such as �-junction behavior. Although we study a 2DEG
geometry, our results are also relevant for such nanowires:
the transport channels reside in a surface charge layer, and
Rashba terms due to narrow-gap and strong-confinement

fields dominate over all other SO couplings. In those experi-
ments, Josephson currents through few-level dots have al-
ready been achieved.

In the present work, we arrive at the surprising conclusion
that SO couplings have huge effects on the Josephson current
in nanoscale multilevel dots. Depending on the parameter
regime, the critical current can be greatly suppressed or en-
hanced. In a single-level dot, SO effects on the Josephson
current vanish unless there is also a Zeeman field, but in
multilevel dots no such restriction applies. The predicted
strong dependence on SO couplings should be observable in
state-of-the-art experiments. We also show that oscillations
in the critical current Ic as a function of the distance L be-
tween the lead contacts appear under suitable conditions, re-
sembling Datta-Das5 spin precession effects.

The structure of the remainder of this paper is as follows.
In Sec. II, the model is described. The Josephson current is
calculated in Sec. III, and results are presented in Sec. IV for
the simplest cases of one and two spin-degenerate levels. We
conclude in Sec. V. Some details concerning the derivation
of the Josephson current have been delegated to an Appen-
dix.

II. MODEL

We study a QD formed by a confinement potential V�r�
within a 2DEG, r= �x ,y�. The total Hamiltonian reads

H = HD + HT + HL + HR, �1�

and using the QD fermion creation operator d�
†�r� for spin

�=±, the isolated QD is described by �we put �=kB=1, and
spin summations are often left implicit�

HD =� dr d†�r�� �− i � + a�2 − 2�2

2m
+ b · �� + V�d�r� ,

�2�

where d= �d↑ ,d↓�T, m is the effective mass, b= �bx ,by ,bz� is a
constant external Zeeman field �including gyromagnetic and
Bohr magneton factors�, and �� = ��x ,�y ,�z� with standard
Pauli matrices. Orbital magnetic fields can also be taken into
account in our formalism but give no qualitative changes. In
Eq. �2�, the x �y� component of the operator a= �ax ,ay� acts
in spin space,
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a = ��sin � �x − cos � �y, cos � �x − sin � �y� , �3�

and contains the combined effect of Rashba ��R� and linear
Dresselhaus ��D� couplings via

� = ��R
2 + �D

2 , sin � = �D/� . �4�

These two are generally the most important SO couplings in
QDs based on 2DEG geometries. The superconducting banks
are described as 3D s-wave BCS models. The Hamiltonians
of the left and right superconducting electrodes have the
standard BCS form,

Hj=L/R = �
k,�=↑,↓

�k� jk�
† � jk� + �

k
�	e
i�/2� jk↑

† � j�−k�↓
† + H.c.� ,

�5�

with �k=k2 / �2m�−� and electron creation operators
�L/R,k,�

† , and carry the relative phase �. For simplicity, we
assume the same BCS gap 	 on both banks; in experiments,
both contacts are typically created by the same lithographic
process. Finally, HT describes tunneling between the leads
and the QD,

HT = �
L/R,k,n

tL/R,n�L/R,k
† UL/Rdn + H.c., �6�

where for now UL/R=1 �but see below�, and the index n
labels the QD eigenstates for �=b=0,

�−
1

2m
�2 + V�r��
n�r� = �n
n�r� , �7�

with d��r�=�n
n�r�dn�. To simplify our expressions, we
make the inessential assumption of k- and spin-independent
real-valued tunnel amplitudes tL/R,n between the L �R� banks
and the QD state 
n. Although the connection between the
superconducting leads and the dot appears in the form of a
tunneling Hamiltonian, we treat these terms below to all or-
ders by integration over the lead degrees of freedom. This
provides justification for ignoring Coulomb interactions on
the QD. Over the last decade, several works19 have shown
that in the limit of high transparency, i.e., for tunneling rates
large compared to the dot charging energy, charge quantiza-
tion �Coulomb blockade� effects are strongly suppressed due
to large charge fluctuations. Note also that an observable
Josephson current usually requires high-transparency con-
tacts.

Without loss of generality, we now choose a coordinate
system where the tunnel contacts are located at �x ,y�
= �
L /2 ,0�. It is then convenient to eliminate the ax term by
a unitary transformation on the dot fermions,20

d�r� → e−ixaxd�r� . �8�

When expanded into the basis �7�, the transformed HD is

HD = �
n
��n −

�2

2m
�dn

†dn + �
nn�

dn
†�Ann� + Bnn�� · �� dn�, �9�

where the transformed ay is encoded in

Ann� = − i
�

m
� dr 
n

*�r���y
n��r�	

�
 cos � �1 − 2 cos�2��sin2��x�	
− sin � �1 + 2 cos�2��sin2��x�	

− cos�2��sin�2�x�
� , �10�

and the Zeeman field leads to

Bnn� · �� =� dr 
n
*�r��b · eixax�� e−ixax�
n��r� . �11�

Since the dot electron wave function 
n�r� in Eq. �7� can
always be chosen real valued, the Ai,nn� �Bi,nn�� with i
=x ,y ,z represent antisymmetric �symmetric� Hermitian ma-
trices in the QD level space. Finally, the transformation �8�
yields the 2�2 spin matrices

UL/R = � cos��L/2� 
sin��L/2�e−i�

±sin��L/2�ei� cos��L/2�
� �12�

entering HT in Eq. �6�. The oscillatory dependence on the
length L between the tunnel contacts appearing for ��0 is
due to a spin precession phase.5

III. JOSEPHSON CURRENT

The equilibrium Josephson current at temperature T fol-
lows from the free energy −T ln Z via

I��� = −
2e

�
T�� ln Z��� , �13�

where the superconducting phase difference enters the BCS
Hamiltonian �5�. We adopt a functional-integral representa-
tion of the partition function Z, which here requires a slightly
nonstandard formulation due to the spin-flip terms. Given the
fact that the Hamiltonian is quadratic in the fermion opera-
tors, the calculation should proceed in a straightforward
manner. In the absence of spin flips, such quadratic Hamil-
tonians are typically dealt with by introducing Nambu
spinors. For the present case �see the Appendix�, the pres-
ence of spin-flip processes makes it necessary to introduce
two types of Nambu spinors to describe the dot. In the end,
the effective action describing the quantum dot coupled to
the leads can nevertheless be written in terms of Grassmann

fields dn���� and d̄n���� for the dot fermions �� is imaginary
time�. For a multilevel dot, we thus form the Nambu spinor
for dot level n,

�dn↑���

d̄n↓���
� = �T�

�

e−i��Dn��� , �14�

with fermionic Matsubara frequencies �= �2l+1��T �integer
l�. Similarly, we define the Nambu multispinor

D��� = „D1���,D2���, . . . …T, �15�

and then integrate out the lead fermions. As a result of this

operation, Z=�D�D̄ ,D�e−S with the action
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S = T �
��0

„D���,D̄�− ��…Ŝ�� D���

D̄�− ��
� . �16�

The apparent doubling of spinor space reflects our above
discussion. This doubling does not create a double-counting
problem, since only positive Matsubara frequencies � appear
in Eq. �16�. After straightforward but lengthy algebra, with
A±,nn�=Ax,nn�± iAy,nn� �and likewise for B� �see Eqs. �10� and
�11�	, we find

Ŝ� = �G�
−1 + Az�z + Bz A−�x + iB−�y

A+�x − iB+�y − �G−�
−1 	T + Az�z − Bz

� . �17�

The 2�2 structure refers to this doubled space, where each
of the four entries represents a matrix in multispinor Nambu
space, i.e., the Pauli matrices in Eq. �17� act in the Nambu
�spin� sector, while A and B operate on the level space. Spin-
flip transitions caused by SO processes are described by the
off-diagonal entries A± and B±. Finally, G� denotes the QD
Green’s function after integration over the leads but in the
absence of SO couplings. This Green’s function is derived
and specified in the Appendix using the wideband approxi-
mation �see Eq. �A2�	, with the leads characterized by a con-
stant normal-state density of states � �assumed identical in
both banks�, and with the hybridization matrix

�L/R,nn� = ��
tL/R,ntL/R,n�
 . �18�

Note that eventually the UL/R factors do not contribute to the
action �see Eq. �17�	, and thus the precession phase �L can
appear only via A and B. We finally obtain from Eq. �13� the
equilibrium Josephson current-phase relation,

I��� = −
2e

�
T �

��0
�� ln det Ŝ�. �19�

We stress that this result �given the model� is exact and does
not involve approximations. The calculation of the Josephson
current requires only a simple numerical routine and allows
for a quantitative comparison to experimental data.

IV. APPLICATIONS

In order to get insight into the relevant physics, we here
analyze the simplest cases of a single and of two spin-
degenerate QD levels with symmetric hybridization matrix
�L,nn�=�R,nn���nn� /2. While our conclusions are general,
some coefficients below are model dependent. They are de-
rived for V�r� given as hard-box confinement along the x
axis, −L /2�x�L /2, plus a harmonic transverse confine-
ment of frequency scale ��. The level index n= �nx ,ny� then
contains the respective integer quantum numbers nx�1 and
ny �0, with eigenenergy �up to an additive constant related
to a gate voltage�

�n =
��nx/L�2

2m
+ ���ny + 1/2� �20�

in Eq. �7�. Note that Eq. �19� not only contains the contribu-
tions of Andreev bound states but represents the full Joseph-

son current. The necessity of computing the full current for
finite L has been stressed recently.21

A. Single dot level

Let us first address a single QD level, where we reproduce
and extend previous results.6,7 The antisymmetry of Ann� im-
plies A=0, and thus SO couplings do not affect the Joseph-
son current in the absence of a Zeeman field.6 With B= 
B

given by

B2 = �bx sin � − by cos ��2 + Fnx
„bz

2 + �bx cos � + by sin ��2
… ,

�21�

where Fn is defined as

Fn��L� = � sin��L�
�L�1 − ��L/�n�2	�

2

, �22�

the determinant entering Eq. �19� is

det Ŝ� = 4��
2 B2 + ��2 + ��

2 +
�2	2 cos2��/2�

�2 + 	2 − B2�2

,

�23�

where ��=��1+� /��2+	2�. Here we consider a situation
where transport proceeds through a single resonant level
with longitudinal quantum number nx�1, i.e., ���nx
−�2 /2m is close to zero, while the dot stays in the transverse
ground state ny =0. Under the condition ������ 
b
 for the
level spacing ��, i.e., for a quasi-1D situation, all states be-
sides the nx state close to resonance can be neglected, and
one effectively has a single-level dot. Clearly, SO effects
now can only enter via the effective magnetic field �21�.
Compared to the Andreev level spectrum of the �=b=0 QD
connected to superconducting electrodes, the combination of
SO and Zeeman couplings gives rise to a splitting of the
Andreev levels, giving in total four distinct levels. Each level
carries a definite spin with both spin up �down� levels above
�below� the chemical potential. Superficially, the structure of
this Andreev spectrum is somewhat analogous to the one of
Ref. 22. However, it is actually different because in Ref. 22
the levels refer to zero spin, spin up, spin down, and a spin
singlet state, respectively. With Eq. �23� the Josephson cur-
rent appears in precisely the form of the mean-field solution
of the interacting Anderson dot problem obtained by Vecino
et al.23 This implies that their results can be taken over �with
their exchange energy Eex being our B�. In particular, the
phase diagram in the B-� plane exhibits rich behavior with
four different phases including �-junction behavior �see Fig.
3 of Ref. 23�. In Fig. 1, the Josephson current is plotted as
function of the phase difference. For simplicity, we consider
�=0 and gradually increase the effective magnetic field B
given in Eq. �21�. The transition to a � junction with nega-
tive critical current occurs when B���2+�2.

For bx=by =0, the oscillatory behavior of B due to the
dependence of Fn on the spin precession phase �L is most
pronounced, with B=0 for �L=2�l �integer l�. This oscilla-
tion may then persist in the Josephson current, suggesting the
appearance of Datta-Das like oscillations in the critical cur-
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rent. These oscillations are displayed in Fig. 2; for nx=1,
such oscillations are not yet observable, but they become
visible for nx�1. Note that, for convenience, the plots in
Fig. 2 ignore the �2 / �2m� shift of �nx

, as is appropriate for
small �; alternatively, one could adjust a gate voltage on the
quantum dot in order to bring the level into resonance. For
��	 , 
b
, the amplitude of the current oscillations, is of the
order of �e	 /���
b 
 /��2. The oscillation period in the critical
current is roughly set by �L=�, similar to the normal-state
case of the Datta-Das transistor.5 Moreover, by systematic

variation of the magnetic field �b� direction within the x-y
plane, one could measure the SO angle � from the Josephson
current �see Eq. �21�	.

B. Two-level dot

In order to get SO-related effects on the Josephson current
without a magnetic field, b=0, we study a QD with two
levels as a minimal model. As a concrete example, consider
the dot states given by the first two oscillator eigenstates
�ny =0,1� in the longitudinal ground state �nx=1�, such that
the energy levels are encoded in �2−�1=�� and �0= ��1

+�2� /2. �Note that ny �ny� is necessary for Ann��0; see Eq.
�10�.	 Now all matrix elements of B and A are zero except
for A12=−A21, with A�
A12
 given by

A2 =
�2��

2m
�sin2�2�� + F1��L�cos2�2��	 . �24�

One easily checks that det Ŝ� and therefore the Josephson
current now depends on � and � exclusively through Eq.
�24�.

Figure 3 shows typical numerical results based on Eq.
�19� for the critical current Ic as a function of � for two
choices of the hybridization parameters �nn, with �12
=��11�22. Here we consider a pure Rashba coupling ��=0�,
and the dot levels are determined by �0=0 and ���

=20 meV. The shown range for �L can be realized in InAs-
based devices,11 and thus the supercurrent can be strongly
modified by experimentally relevant SO couplings in multi-
level quantum dots, with pronounced minima or maxima in
Ic. The apparent cusplike maximum in Fig. 3 is smooth and
does not represent singular behavior.

Note that the results displayed in Fig. 3 are for large � /	,
where the Josephson current is predominantly carried by the
Andreev bound state contribution IA���. The latter can be
analytically evaluated from Eqs. �17� and �19� for ��11

FIG. 1. �Color online� Josephson current in units of e	 /�
through a single-level QD with �=0, T=0, �=2, for B=0 �solid
curve�, 0.4� �circles�, 0.8� �squares�, and 1.2� �triangles�.

FIG. 2. SO-induced oscillations of the critical current Ic �in units
of e	 /�� in a single-level dot as a function of �L for b
= �0,0 ,0.2��T, �=10	, T=0.05	. The dot is taken in the transverse
ground state ny =0, with only one resonant level �nx

=0, for various
nx.

FIG. 3. Zero-field critical current as a function of � in a two-
level quantum dot. We take �0=0, ��=20 meV, �=0, 	=1 meV,
L=20 nm, m=0.035me, and T=0.01	. �These values are appropri-
ate for Nb contacts.� Results are shown for two cases �where �12

=��11�22�, namely either �11=20	 and �22=0 �only one level
couples to the leads, solid line� or �22=�11=10	 �“democratic tun-
neling,” dashed line�.
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+�22� /	�1, and �at T=0� is expressed in terms of an effec-
tive transmission probability T0 as in Refs. 1 and 8,

IA��� =
e	

2�

T0 sin �

�1 − T0 sin2��/2�
, �25�

where we find T0=1/ �1+z2� with

z =
A2 + ��

2 /4 − ��0 − �2/2m�2

��11 + �22���0 − �2/2m� + ��11 − �22���/2
. �26�

The minimum in Ic is thus expected when T0�0, in accor-
dance with the values seen in Fig. 3. �For the dashed curve in
Fig. 3, the Ic minimum is at �=0.� On the other hand, the
maximum in Ic �where Ic may exceed the �=0 value� is
found for T0=1, again explaining the numerical result in Fig.
3. Here the level shift �2 / �2m� brings one dot level into
resonance and thereby causes the enhanced supercurrent.
This simple reasoning also explains why the position of the
Ic maximum depends only very weakly on the �nn�.

The resonance condition, however, depends trigonometri-
cally on the SO coupling � via A2 �see Eq. �24�	. It results
from the interplay between SO couplings and the multilevel
nature of the QD. By the description in terms of Andreev
bound states, we can also understand why for large dots
�long or wide�, the effect of the SO coupling is negligible.
First, for a “long” dot, taking �=0, A2 decreases as L−2, and
therefore the SO effects on the Josephson current vanish as
L→�. Second, when the lateral dimension of the dot is
large, the confinement frequency �� becomes small. Now A2

contains �� as a prefactor, and hence is once again sup-
pressed. In both situations, the effect of the SO interaction is
merely reduced to a shift of energy levels.

A qualitative argument in favor of such a resonance
process can be reached as follows. Schematically, when a
Cooper pair enters the dot from the left, either its electrons
occupy the same transverse level or they can choose different
“paths” �different transverse levels�, in a manner quite simi-
lar to a cross-Andreev scattering process.24 The SO interac-
tion acts differently in these two levels because the longitu-
dinal momenta of both states are not identical. Two electrons
entering the QD from, say, the left electrode have initially
antiparallel spins, but their respective spins now precess at
different rates because of this mismatch in longitudinal mo-
mentum. Depending on the value of �L, the two electrons
which then exit the QD at the right side may, however, be
brought back to an antiparallel configuration, leading to a
resonance in the critical current caused by the presence of
SO couplings. On the other hand, if the spins do not reach
the antiparallel configuration, the Josephson current will be
reduced.

Note that more than one resonance can be achieved by a
careful choice of parameters. This effect is illustrated in Fig.
4. For a multilevel dot with small confinement frequency, the
multiple resonances associated with all possible pairs of
paths �pairs of levels� will start to overlap significantly. It is
then natural to expect that, in the limit of very wide quantum
dots, these averaging effects will wash out any SO-related
structures in the Josephson current, consistent with the re-
sults of Ref. 8 for infinite width.

V. CONCLUSION

To conclude, we have studied the Josephson current
through a multilevel quantum dot in the presence of Rashba
and Dresselhaus spin-orbit couplings. In the absence of
electron-electron interactions on the dot, this problem is ex-
actly solvable, a simple consequence of the fact that the
Hamiltonian is quadratic in the creation and annihilation op-
erators. �Our model consists of a noninteracting quantum dot
including spin-flip processes and connected to BCS super-
conducting leads.� Nevertheless, the combination of super-
conducting leads and spin-flip terms renders a calculation of
the Josephson current a quite technical task, which we chose
to address via functional integral techniques. We have explic-
itly shown results for one and two levels, but our general
expressions can be applied to arbitrary situations.

For a single dot level, spin-orbit effects cancel out unless
a magnetic Zeeman field is included. In this case, we predict
spin precession �Datta-Das� effects in the Josephson current,
i.e., oscillations as a function of the effective length of the
dot. These oscillations have amplitude of the order of a few
tenths of the nominal critical current, which should be ob-
servable. They result from the interplay between the period
of the oscillating effective magnetic field �caused by the
combined effects of the Zeeman and Rashba interactions�
and the wavelength of the longitudinal modes in the dot.

More interestingly, for the case of a double dot, spin pre-
cession effects show up even in the absence of an external
magnetic field. This is an interesting effect in the field of
Josephson physics for devices subject to spin-orbit coupling.
The supercurrent can be drastically modified, either contain-
ing sharp peaks or being largely suppressed. The experimen-
tal observation of such peaks could constitute evidence for
spin-orbit effects in a superconducting transistor.

Possible extensions of this work could include Coulomb
interaction effects in the dot, which will be important when
the tunneling rates become comparable to the dot charging
energy. While the inclusion of such effects is beyond the
scope of this paper, the present formulation of the problem
with functional integral techniques can be adapted to include
them in an approximate manner. Nevertheless, we stress
again that the high-transparency limit considered here is in
fact quite relevant in the light of recent experiments where
quantum dots are embedded in a Josephson setting using
InAs nanowires.17,18

FIG. 4. Same as Fig. 3, but for �0=15 meV.
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APPENDIX

In this appendix, we provide some details concerning the
derivation of the action in Sec. II. The partition function is
here calculated by using the path integral approach. For this
purpose, we rewrite the Hamiltonian in terms of Grassmann-
Nambu spinors. We introduce two types of Nambu spinors
�“spin up” and “spin down”� for the QD fermions,

dn = �dn↑

d̄n↓
�, dn

c = �dn↓

d̄n↑
� ,

while the BCS leads are described by the conventional

spin-up Nambu spinor � jk= �� jk↑ ,�̄ j�−k�↓�T. With the nota-
tion introduced in Sec. II, we can then effectively write

HD = �
nm

d̄n���n −
�2

2m
��nm�z + Az,nm�z + Bz,nm�dm

+
1

2�
nm

�d̄n�A−,nm + B−,nm�z�dm
c + d̄n

c�A+,nm + B+,nm�z�dm	 .

In spinor notation, the tunneling Hamiltonian reads

HT = �
j=L,R

�
kn

��̄ jk�Tjndn + T jndn
c� + H.c.	 .

After gauging out the phase � from the leads,

Tj=L/R=±,n = cos��L/2�e±i�z�/4�tjn 0

0 − tjn
* � ,

T j,n = 
 sin��L/2�e−i�e±i�z�/4�tjn 0

0 tjn
* � .

After integrating out the � jk and taking into account the
relation between the Fourier-transformed spin-up and spin-
down Nambu spinors for the QD �see Eq. �14�	,

Dn��� �
1
�T
� d� ei��dn��� ,

�xD̄n�− �� �
1
�T
� d� ei��dn

c��� ,

we obtain the effective action

S = SD − T�
�

�
nm

�D̄n���Dn�− ��	

��
j
� Tjn

† g�Tjm Tjn
† g�T jm�x

�xT jn
† g�Tjm �xT jn

† g�T jm�x
�� Dm���

D̄m�− ��
� ,

�A1�

where g� denotes the Green’s function of the uncoupled
leads,

g� =
��

��2 + 	2
�i� + 	�x� .

Notice that there is no contribution from the gauged-out
spin-flip terms describing spin precession along the transport
direction, since in the second term of Eq. �A1�, all dd terms
vanish. Finally, the action of the closed QD is

SD = T�
�

�
nm

�D̄n�����− i� + ��n −
�2

2m
��z��nm + Az,nm�z

+ Bz,nm�Dm��� +
1

2
�D̄n����A−,nm�x + iB−,nm�y�D̄m�− ��

+ Dn�− ���A+,nm�x − iB+,nm�y�Dm���	� .

To simplify calculations, we now assume tjn
* = tjn. Introducing

the multispinor �15�, after some algebra, we then find the

effective action �16� with Eq. �17�, where Ĝ� is the full
Green’s function of the QD for �=0 �except for the shift in
energy�,

G�,nn�
−1 = �− i� + ��n − �2/�2m�	�z��nn� +

��L + �R�nn�
��2 + 	2

�− i�

+ 	 cos��/2��x	 +
��L − �R�nn�
��2 + 	2

	 sin��/2��y �A2�

with the hybridization matrix given by Eq. �18�.
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