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We consider two interacting electrons in a semiconductor quantum dot structure, which consists of a small
dot within a larger dot, and demonstrate a singlet-triplet filtering mechanism which involves spin-dependent
resonances and can generate entanglement. By studying the exact time evolution of singlet and triplet states we
show how the degree of both filtering and spin entanglement can be tuned using a time-dependent gate voltage.
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In semiconductor quantum dots which can be formed for
example at the interface of a gated GaAs/AlGaAs hetero-
structure, we can trap electrons and control their number
precisely down to 1.1–4 The fact that the electrons in the dots
are well confined within a region of some nanometers, and
they are therefore isolated from the remaining environment
of the host material, offers not only the opportunity to ex-
plore atomiclike effects and electron correlations2,3,5,6 in the
solid state, but also to consider the quantum dots as promis-
ing candidates for nanoelectronic applications. For instance,
the proposal for realization of spin and charge qubits in
double quantum dots7,8 has attracted a lot of interest both
theoretically9–13 and experimentally14–17 and the demonstra-
tion of entanglement, which is a necessary ingredient for
two-qubit gates, is one of the main goals. Many systems
which include quantum dots make use of the Loss and
DiVincenzo7 exchange-energy mechanism based on the Cou-
lomb interaction and Pauli exclusion to generate spin-
entanglement. For example, Burkard et al.18 proposed the
use of quantum dot structures as efficient entangler devices
in solid state. In addition, spin filtering was proposed in
quantum dots19 and spin entanglement creation via Coulomb
scattering was studied in Refs. 20 and 21. Furthermore, fly-
ing qubits in surface acoustic wave based quantum dots22–25

and static-flying qubits in quantum wires25,26 have been sug-
gested and studied as means of entanglement generation be-
tween electron spins. The singlet-triplet qubit in a double
quantum dot is also a promising candidate for quantum com-
putation. The two-electron singlet-triplet �Sz=0� states con-
stitute the two-level quantum system and as has been shown
this scheme, which is also under experimental
investigation,17 is efficient for universal quantum gates.27,28

In this paper we propose and investigate a semiconductor
dot structure which can induce a mechanism to filter singlet-
triplet states and thus to generate maximal spin entanglement
between two electrons. The operation is controlled by a time-
dependent gate voltage which can tune the degree of filtering
and entanglement.

To be specific, we choose material parameters for GaAs
and consider the quasi-one-dimensional �1D� quantum dot
structure which is shown in Fig. 1�a�, loaded with two elec-
trons. It consists of a small open dot which is formed in the
center of a much larger dot. The small dot is such that it can
bind only one electron and this means that the Coulomb
interaction forces the second electron to occupy the region of

the large dot. The latter has width L=800 nm�80aB
* , where

aB
* is the effective Bohr radius for GaAs. In this regime the

two electrons are in the strong correlation regime,29,30 i.e.,
the Coulomb interaction dominates over the kinetic energy
and in the ground state the two electrons are localized in
regions for which the electrostatic repulsion is minimized.
Note that this is the case for both singlet and triplet states
which give virtually the same electron distribution and they
are separated with a very small antiferromagnetic exchange
energy J.

To explicitly demonstrate and analyze these effects we
have studied the two-electron problem with exact
diagonalization31 considering the parabolic-band Hamil-
tonian

H = �
i=1,2

�−
�2

2m*

�2

�xi
2 + Vd�xi�� + Vc�x1,x2� , �1�

where m*=0.067mo is the effective mass of the electrons for
GaAs. We have modelled the quantum dot with the
Gaussian confining potential Vd�x�=−Vo exp�−x2 /2lo

2�, for
−400 nm �x�400 nm and Vd�x�=� otherwise. The param-
eters Vo, lo determine the depth and width of the small dot,
respectively, and they are chosen to give only a single bound
energy level �−1.5 meV. A realistic well depth for the large
dot would be a few tens of meV and since for the chosen
width of dot the energy scale of the relevant singlet and
triplet states is a few meV, the infinite well approximation
has only a small quantitative effect on the results. In practice,
the hard wall would be replaced by finite barriers but, again,
these may be chosen such that tunneling out of the large
dot is negligible for the time scales of interest. The
Coulomb term is given by Vc�x1 ,x2�=q2 /4��r�or, with r
=��x1−x2�2+�c

2 and �r=13 the relative permittivity in GaAs.
This simplified form of the Coulomb interaction assumes
that all excitations take place in the x direction, whereas in
the y, z directions the electrons occupy at all times the lowest
transverse modes. To satisfy this assumption we choose for
all the calculations �c=20 nm, which gives a physical
confinement length in the transverse y, z directions much
smaller than that in x. The two-electron time-independent
Schrödinger equation is solved numerically by the configu-
ration interaction method. The low-energy eigenstates consist
of two closely spaced singlets and two triplets with a some-
what larger energy gap to higher-lying states. Figure 1�b�
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shows the lowest triplet eigenstate �o
T�x1 ,x2� �antisymmet-

ric� and Fig. 1�c� shows typical energy levels. The corre-
sponding effective charge density of �o

T�x1 ,x2� which is de-
rived by integrating the two-electron charge density over the

spatial coordinates of one of the two electrons, i.e.,
	T�x�=2q� 	�o

T�x ,x��	2dx� is shown in Fig. 1�a�. For this dis-
tribution one electron is bound in the small dot, whereas the
second electron is at the left and right corners with equal
probability due to the symmetric potential. The charge den-
sities associated with all states in the low-lying manifold are
in fact virtually identical to that shown in Fig. 1�a�.

This can be understood from a simple Heitler-London pic-
ture using one-electron states derived from a Hartree
approximation in which we replace the trapped electron in
the small dot with an effective Hartree potential
VH�x�=�Vc�x ,x��	
c�x��	2dx�, where 
c�x� describes the
single-electron state of the small dot. The second electron
feels the approximate potential VH�x�+Vd�x�, which for the
lowest two-electron states of interest acts as a double-well
potential. The two lowest single-electron states, 
−�x�, 
+�x�
�bonding-antibonding�, of this potential have a small energy
splitting and peak in the left and right corners. Using the
one-electron Hartree states we may form the two lowest elec-
tron states �independent of spin� �o�x1 ,x2�=
−�x1�
c�x2�
and �1�x1 ,x2�=
+�x1�
c�x2� and similarly for the next
higher pair. Within the Hartree model this means that not
only the lowest singlet, triplet eigenstates have a distribution
of the form of Fig. 1�a�, but also the first excited eigenstates
which indeed agrees with the results that we derive from the
exact diagonalization. Note that even though the Hartree
model gives great insight into the two-electron energies and
distributions of the low-lying states, with remarkably little
effort, the symmetric and antisymmetric combinations
�S,A�x1 ,x2�= 
�o�x1 ,x2�±�o�x2 ,x1�� /�2 give a poor ap-
proximation to the singlet-triplet splitting, with even the in-
correct sign. This is little improved by using more accurate
one-electron states, e.g., from Hartree-Fock or density func-
tional theory �DFT�, being a consequence of strong correla-
tions requiring accurate solutions of the two-electron prob-
lem. However, as we discuss later, the system may be
described accurately by an extended Hubbard model.

We point out that the restriction to a 1D system is mainly
for simplicity of presentation and a 2D structure, with a num-
ber of channels in the transverse direction, would be more
realistic for a device based on a GaAs heterostructure. How-
ever, it is straightforward to generalize the 1D results to 2D
for rectangular dots with high aspect ratio for which the Cou-
lomb interaction again leads to peaks in probability density
near the opposite boundaries of the dots and a pair of isolated
singlets and triplets, as has been shown in Ref. 32 for a
related two-electron system in a square confining potential.

For the dynamics that we describe below it is important to
introduce left and right states which are formed by combin-
ing the two lowest eigenstates for singlet �L

S =�o
S+�1

S, �R
S

=�o
S−�1

S and triplet �L
T=−�o

T+�1
T, �R

T =�o
T+�1

T �unnormal-
ized�. For these states one electron is bound in the small dot
whereas the second electron is localized to the corresponding
corner as we demonstrate in Fig. 2 for the triplet.

Although the effective charge density of the low-lying
singlets and triplets is virtually identical, the wave functions
are quite different and give rise to effective interactions be-
tween spins, responsible for their entanglement. To demon-
strate how these states can generate spin entanglement and

FIG. 1. �Color online� �a� Quantum dot confining potential and
effective charge density �in arbitrary units� of the lowest triplet
eigenstate. �b� Contour plot of the lowest triplet eigenstate. �c� The
two-lowest singlet and triplet pairs.
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give rise to singlet-triplet filtering, we first prepare the sys-
tem such that one electron is located on the left with spin up
and the other in the central dot with spin down. A suitable
nonentangled state of this type may be written as a superpo-
sition of the left singlet and the left Sz=0 triplet state,
i.e., �↑↓= ��L

S�↑↓
S +�L

T�↑↓
T � / �2, with the spin eigenstates

�↑↓
S/T�1,2�= 
�↑�1��↓�2��↓�1��↑�2�� / �2. An approximation

to this state may be obtained in principle by applying a small
source-drain bias Vsd across the quantum dot structure to
separate the electrons with negligible overlap. The spins may
then be initialized using magnetic fields and a microwave
pulse, as suggested for scalable qubit arrays.7,14 If Vsd is
removed, then oscillations �in a similar fashion to a double
dot system� and entanglement will develop with a typical
time for the triplet component of the wave function on the
order of �� /�ET�1 �s, where �ET=E1

T−Eo
T is the energy

splitting of the two lowest triplet eigenstates when Vsd=0
�similarly for the singlet�. To speed up the process we can
apply a time-dependent gate voltage that will tune in such a
way the dot potential so as to increase this energy splitting.
In this work we have modelled the gate voltage potential
using the expression Vg�x , t�=−Vp�t�exp�−x2 /2lg

2� �lg

�130 nm�, which is driven by a triangular pulse of the form

Vp�t� = �
2Vb

Tp
t , 0 � t � Tp/2

−
2Vb

Tp
t + 2Vb, Tp/2 � t � Tp, �2�

where Tp is the period of the pulse and Vb is the maximum
gate voltage. We have studied the case for which the gating
rate �= 	dVp /dt	 is such that to a good approximation only
the two lowest singlet and two lowest triplet states are in-
volved in the dynamics. During the first half of the cycle
�0� t�Tp /2� the effect of the voltage is to decrease the
effective width of the dot thereby increasing the energy split-
ting and the interaction, whereas during the second half of
the cycle �Tp /2� t�Tp� the process is reversed. Investiga-

tion of the optimum pulse shape and possible nonadiabatic
effects are beyond the scope of this work.

The dynamics of the two electrons is governed by the
time-dependent Schrödinger equation with the Hamiltonian
�1� and for a total potential Vd�x�+Vg�x , t� which is the sum
of the dot confining potential and the time-dependent gate
potential. For t�0, the spin eigenstates are unchanged for
singlet or triplet components, whereas the evolution of the
corresponding orbital states is given directly by the solution
of the time-dependent Schrödinger equation which is imple-
mented numerically using the staggered-time algorithm pro-
posed by Visscher.33 The time evolution of the initial state
�↑↓ is then determined by adding the separately determined
singlet and triplet components. In Fig. 3 we show two ex-
amples of the final electron distribution for singlet and triplet
components. Specifically, in Fig. 3�a� the singlet corresponds
to a good approximation to the right state, whereas the triplet
corresponds to the left state. This is the ideal filtering regime
�together with the opposite limit� in which at the final time
the two components occupy different spatial regions. Note
that in this regime the two electrons are fully entangled pro-
vided the measurement domain is restricted either to the left
or right region, detecting the singlet or the Sz=0 triplet state,
respectively, which are fully entangled states. Performing an
additional measurement but initializing the electron spins to
a purely triplet state �either of Sz= ±1� reveals the occupation
region of the triplet state hence offering a way to discrimi-
nate between singlet and triplet components. Note that in the
most general case which is shown in Fig. 3�b� the final two-
electron state is a superposition of left and right states for
both singlet and triplet components. Clearly, a measurement
with restriction to either the left domain or the right domain
would probe a partially entangled state.

To understand the dynamics and the difference between
singlet and triplet components we can write the time depen-
dence, for example of the singlet, using the corresponding
two lowest energy states at all times, i.e., �S

=CL
S�L

S +CR
S�R

S in the left-right basis with the amplitudes
CL

S =e−i�S
cos �S and CR

S = ie−i�S
sin �S. The parameters �S

FIG. 2. �Color online� Effective charge density for �a� left and
�b� right triplet states. The quantum dot confining potential is also
shown. FIG. 3. Effective charge density for singlet and triplet compo-

nents at the final time for �a� a case in the filtering regime and �b�
the most general case.
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=�0
t 
E1

S�t��+Eo
S�t���dt� /2� and �S=�0

t 
E1
S�t��−Eo

S�t���dt� /2�
depend on the two lowest energy levels and change with
time. Note that �S determines the amount of filtering because
it determines the period of the oscillations between left and
right states, whereas both �S and �S determine the degree of
entanglement as we demonstrate below. In Fig. 4 we show
the energy splitting of the two lowest levels �the energies are
calculated from instantaneous solutions� as a function of
time for one cycle in the filtering regime which gives fully
entangled electrons in time Tp�0.3 ns �for Vb�2.8 meV�.
We see that the splitting is larger for the singlet and this
means that �S��T, i.e., the singlet component oscillates
faster than the triplet. We can understand this effect with a
Hartree approximation: because the small dot has only one
bound energy level �c, the tunneling time �the time that the
electron in the left corner needs in order to move to the right
corner� for the triplet is longer due to the Pauli blocking.
Within the Hartree model the electron in the large dot needs
to tunnel through an effective double barrier due to the Cou-
lomb repulsion from the trapped electron in the small dot,
which has only one resonance energy level ��c+Uc �with Uc
the Coulomb energy when both electrons occupy �c� and
corresponds to a singlet state. For a triplet resonance to exist
the small dot needs to have at least two bound levels due to
the Pauli principle. It is worth noting that the efficiency of
this singlet-triplet filtering mechanism and the induced en-
tanglement has been also demonstrated in scattering prob-
lems between a static and a flying qubit.25,26

To quantify the degree of entanglement which arises as a
consequence of the interaction when the electrons are close
together we have calculated concurrence34 at the final time,
from spin-flip, Psf, and non-spin-flip, Pnsf, probabilities. For
example, at the right region the amplitudes for these prob-
abilities are

Cnsf =
CR

T + CR
S

2
, Csf =

CR
T − CR

S

2
, �3�

which are derived by writing the corresponding final state
�↑↓�tf� in the basis of spin eigenstates. Concurrence at the
right region is then given by

CR =
2�PnsfPsf�1/2

Psf + Pnsf
, �4�

with Pnsf = 	Cnsf	2 and Psf = 	Csf	2, thus

CR =

�PR

S + PR
T�2 − 4PR

S PR
T cos2 ��1/2

PR
S + PR

T , �5�

where we have set PR
S = 	CR

S 	2=sin2 �S and PR
T = 	CR

T	2
=sin2 �T and the relative phase �=�S−�T. A similar expres-
sion can be derived for the left and even for the total region.
Note that by definition 0�CR�1 where the limit CR=0 cor-
responds to unentangled electrons, whereas the limit CR=1
to fully entangled electrons. The measurement in the right
region is meaningful only when PR

S �0, and/or PR
T �0, i.e.,

when the right state is occupied for singlet and/or triplet. We
see from Eq. �4� that CR=1 when Psf = Pnsf or equivalently
from Eq. �5� when cos �=0 and/or when PR

S =0 and simulta-
neously PR

T �0 or vice versa.
In Fig. 5 we present the dependence of probabilities,

phase shift, and concurrence as a function of maximum gate
voltage Vb for a fixed gating rate ��18 meV/ns which en-
sures that to a good approximation only the two lowest
eigenstates for both singlet and triplet components are in-
volved into the dynamics. Figure 5�a� shows the probabilities
PR

S , PR
T and the absolute magnitude of the quantity cos � cal-

culated at the final time vs Vb. We see that the probabilities
PR

S , PR
T do not oscillate for small gates voltages Vb

�2.5 meV �but rather they increase� because the energy
splitting of the two lowest levels in this limit remains rela-
tively small and therefore the tunneling time is long. Further
increase of the gate voltage induces well-defined oscillations.
In particular the probability of the singlet component oscil-
lates faster than the triplet because the energy splitting which
determines the frequency of the oscillations is larger for the
singlet. Note also that the frequency of oscillations increases
with gate voltage for both components following the increase
of the energy splitting. Figure 5�b� shows the concurrence CR
and the spin-flip Psf and non-spin-flip Pnsf probabilities cal-
culated at the final time. When these probabilities are equal
the entanglement is maximum whereas when one of them is
zero the electrons remain unentangled. For a gate voltage
Vb�2.8 meV we have an example of the ideal filtering re-
gime for which PR

S �0, PR
T �1, and Psf = Pnsf giving CR=1,

since only a triplet state occupies the right region. The ge-
neric condition for ideal filtering is when sin �S=1 and si-
multaneously sin �T=0 or vice versa. Other filtering cases
�nonideal� which give CR=1 occur when one of the compo-
nents is zero, say PR

S =0 and the other is nonzero PR
T �0, but

not, however, equal to 1. Finally an interesting limit is when
PR

S = PR
T for which the concurrence reduces to the simple ex-

pression CR= 	sin �	 which depends only on the relative
phase between singlet and triplet components.

Figure 6 presents the dependence of various quantities as
a function of the pulse duration time for two different gate
voltages. As we see by comparing Figs. 6�a� and 6�b� the
period of the oscillations can be controlled with the value of
the maximum gate voltage with the larger Vb inducing faster
oscillations due to the larger energy splitting.

FIG. 4. Energy splitting of the two lowest levels for singlet and
triplet components, as a function of time for one cycle in the filter-
ing regime.
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Finally, we point out that the low-lying spin states rel-
evant to the dynamics of this entangler which involve virtu-
ally identical charge distributions at the left, center, and right
of the dot structure suggest that this charge-spin system may
be modelled by a three-site Hubbard model of the form

Hef f = ��nL + nR� + �cnC + � �
�,i=L,R

�Ci,�
† CC,� + H.c.�

+ U�nL,↑nL,↓ + nR,↑nR,↓� + UcnC,↑nC,↓ + V�nLnC + nCnR� ,

�6�

where ni=��ni,�=��Ci,�
† Ci,�, i=L ,R ,C, and Ci,�

† �Ci,�� cre-
ates �destroys� an electron on site i with spin �. The on-site
orbital energy for the left and right sites is � and for the
central site is �c. The on-site Coulomb energy is denoted by
U for the left and right sites and by Uc for the central site.
The nearest site Coulomb energy is V and finally � expresses
the hopping between nearest sites. Note that all the physical

parameters �� ,�c ,U ,Uc ,V ,�� may be estimated from the
Hartree approximation described earlier. Working within the
restricted subspace for which the two-electron basis states
consist of six singlets and three triplets, we can extract the
correct energy splitting of the two lowest eigenstates �for
both singlet and triplet�, the corresponding eigenstates and
the antiferromagnetic exchange energy. Solution of this time-
dependent model Eq. �6� does indeed show qualitatively the
same behavior as the original continuous problem but with
considerable saving in computer time once the time-
dependent parameters are known. The analysis based on the
effective Hamiltonian Eq. �6� indicates that the physical be-
havior that we have demonstrated can also be realized in a
triple quantum dot structure. More importantly, the Hubbard
model gives insight into the behavior of the system since it is
readily mapped onto an effective charge-spin model for the
low-lying manifold of two singlets and two triplets. In par-
ticular, for singlets there are two processes by which an elec-
tron may tunnel from left to right, as shown in Fig. 7. The
process �a�, that is only allowed for singlets, has amplitude

FIG. 5. �Color online� Dependence �at the fi-
nal time�, as a function of maximum gate voltage
for fixed gating rate, of �a� absolute value of
cos � and right probabilities for singlet and triplet
components, and �b� concurrence, spin-flip, and
non-spin-flip probabilities calculated for the right
region.

FIG. 6. �Color online� Dependence �at the fi-
nal time� of quantities in Fig. 5 as a function of
pulse duration time for two different maximum
gate voltages. �a� Vb=2.75 meV and �b� Vb

=5 meV.
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�1=�2 / �U−V+�c−���J where J is the Heisenberg ex-
change energy between an electron spin on the central site
and one on either the left or the right site. On the other hand,
process �b� is valid for both singlets and triplets and has

amplitude �2=�2 / ��−�c−V�. The relative rate of tunneling
for singlet and triplet is thus tuned by the gate by changing
�c, since making �c more negative the energy denominator in
�1 decreases whereas that of �2 increases.

In summary we have presented a quantum dot structure
and described the two-electron distribution for the lowest
singlet and triplet states. By studying the electron dynamics
due to a time-dependent gate voltage we showed how we can
induce a singlet-triplet filtering based on the Pauli blocking
effect for the triplet state. This can generate full spin en-
tanglement within the order of �0.3 ns. Both the degree of
filtering and entanglement can be efficiently controlled with
the gating rate and the maximum applied gate voltage.

G.G. thanks UK EPSRC for funding. This work was sup-
ported by the UK Ministry of Defence.
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