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We calculated the intraband and interband optical deformation potentials for semiconducting �-Te from
experimental data of the band gap shrinkage and softening of the A1-optical phonon mode in response to
femtosecond laser excitation. These potentials were obtained by applying first- and second-order perturbation
theory to the Frölich Hamiltonian describing the carrier-phonon interaction. The intraband optical deformation
potential is considerably smaller than previously estimated values; there are no previously reported values for
the interband optical deformation potential.
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I. INTRODUCTION

The development of femtosecond lasers in the early 1980s
enabled experimental studies of dynamics of coherent optical
phonons driven by electron-hole plasma excitation in semi-
conductors, semimetals, and metals.1–5 The resulting subpi-
cosecond oscillations in the crystalline structure modulate
the band structure and manifest themselves as quasiperiodic
oscillations of the isotropic or the anisotropic optical reflec-
tivity of the absorbing materials at the optical phonon fre-
quency �o.3,6 The oscillations are superimposed on a back-
ground component which includes contributions from the
Drude gas, and screening, exchange, and correlation band
gap renormalization effects from the photoexcited electron-
hole plasma �EHP�.7 The background component also in-
cludes a contribution from a quasistatic displacement of the
ion sublattice towards a new EHP-defined equilibrium
position.1,6 Surprisingly, this displacement drives the mate-
rial toward a more symmetric crystalline structure, usually a
metallic Peierls phase.4,8 At high electronic excitation the
coherent optical phonons exhibit EHP-induced softening, re-
ducing �o by up to 20%.3–5

The EHP-driven excitation and softening of the coherent
optical phonons and the phonon-induced band gap shrinkage
in many semiconductors and semimetals represent an initial
stage of dynamic displacive Peierls �Jahn-Teller� structural
distortions caused by deformation-potential electron/hole op-
tical phonon �e ,h-phonon� coupling.8 Such coupling can be
characterized by diagonal �intraband� and off-diagonal �inter-
band� matrix elements of the optical deformation potentials.
Optical deformation potentials are key parameters for the
understanding of electronic transport of “hot” carriers and
related lattice phenomena in semiconductors and
insulators.9,10

Few experimental techniques permit the determination of
optical deformation potentials in semiconductors. Examples
are Raman scattering and temperature-dependent hole
mobility.10,11 Consequently, for many materials, especially
for semimetals and narrow-gap semiconductors with compli-
cated band structures, these potentials are not known and
difficult to obtain theoretically. In particular, for crystalline

�-Te the only theoretical value for intraband optical defor-
mation potentials �averaged over k space in the first Brillouin
zone� was estimated12 using results of density functional
theory �DFT� calculations.13 In this paper we derive values
for the intraband and interband optical deformation potential
for tellurium from experimental data of phonon-induced
band gap renormalization and EHP-induced phonon soften-
ing.

II. THEORY

Deformation-potential e ,h-optical phonon interaction is
the major cause of Peierls metal-insulator structural
distortions8 because it is less sensitive to EHP screening than
the Frölich interaction between charge carriers �electrons and
holes� with IR-active phonons,11 particularly in a strongly
correlated state near the metal-insulator transition. Conse-
quently, for EHP densities Ne,h�1021 cm−3 only zone-center
Raman-active A1—and possibly infrared- and Raman-active
E1,2 �Ref. 14�—optical phonon modes can be coherently ex-
cited in �-Te by ultrashort laser pulses via the deformation
potential-like displacive excitation of coherent phonons
mechanism.1 These zone-center phonons have wave vector
q=0. Because of screening at high EHP densities, impulsive
stimulated Raman scattering is not an effective mechanism
for generating long-wavelength coherent optical phonons
with q�0, as required by the energy and momentum conser-
vation rules of the scattering process.11

Deformation-potential e ,h-phonon coupling is usually de-
scribed by the Frölich Hamiltonian,15,16 which, when adapted
to describe coherent optical phonons with q=0, can be writ-
ten as

HFrölich = �
��k

���kc�k
† c�k + Noh�obo

†bo + �
��k

M��k�bo
†

+ bo�c�k
† c�k, �1�

where k is the carrier quasimomentum. The first term in the
Frölich Hamiltonian describes the total energy of the elec-
tronic subsystem represented by the sum of corresponding
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diagonal terms with carrier self-energies ���k in band � and
electronic band occupation numbers n�k=c�k

† c�k, where c�k
†

and c�k are the second-quantization creation and annihilation
operators, respectively. The off-diagonal elements represent
real or virtual electronic transitions between arbitrary bands
� and �, separated by the gap ���k=���k−���k. The second
term describes the total energy of the coherent optical
phonons with energy quanta h�o and phonon second-
quantization creation and annihilation operators bo

† and bo,
respectively; No is a calibration constant corresponding to the
number of primitive unit cells, containing three six-valent Te
atoms each, in the excited region of the sample. The third
term is the deformation potential Hamiltonian HDP, which
represents the carrier-phonon interaction and which is given
by the diagonal and off-diagonal e ,h-phonon coupling ma-
trix elements M��k=�2V��kUo. The optical deformation po-
tential V��k is a matrix element of the Fourier transform of
the screened ion potential arising from the coherent optical
phonon lattice displacement; Uo= �h / �8�2��o��1/2 is the
zero-energy phonon oscillation amplitude, �=M /3 is the re-
duced mass of the A1-optical phonon in �-Te, and M is the
atomic mass.

The total energy of the electron-phonon system can be
written as E=Eo+E1+E2+¯, where the zeroth-order term
Eo=����kn�k+Nonoh�o represents the total energy of the
noninteracting electrons and phonons, and the Ei are higher-
order perturbation terms due to the electron-phonon interac-
tions. The first-order term, due to the deformation potential
Hamiltonian, contributes

E1 = �. . . ,n�k, . . . ,no + 1	HDP	 . . . ,n�k, . . . ,no


= �no + 1�
�k

M��kn�k, �2�

where the bra and ket state vectors �. . . ,n�k , . . . ,no+1	 and
	 . . . ,n�k , . . . ,no
, are electron and phonon number states with
occupation numbers n�k and no �or no+1�, respectively. Dif-
ferentiating E=Eo+E1 with respect to no and setting the de-
rivative equal to zero, we obtain a mechanical stability con-
dition for the ions in the EHP-induced equilibrium positions

�no + 1 = −

�
�k

M��kn�k

2Noh�o
, �3�

where the product �2�no+1�Uo defines a full oscillation am-
plitude of the ion sublattice Ufull which is nearly equal to the
quasistatic displacement Uqs of the ion sub-lattice to a new
EHP-defined equilibrium position.17 Using Eqs. �2� and �3�
we obtain for the renormalization of the carrier self-energies
	�aak= ��E1 /�nak� in band �

	���k = M��k
�no + 1 = −

M��k�
�k�

M��k�
n�k�

2Noh�o
. �4�

This renormalization results in a band gap change 	�a�k
=	�aak−	���k. According to group theory, the interaction
between free carriers and the fully symmetrical A1-phonon
mode in �-Te renormalizes all bands in proportion to their

diagonal e ,h-phonon coupling elements Maak because the
direct product of the irreducible representations characteriz-
ing these bands 
i and the identity irreducible phonon repre-
sentation A1 yields 
i � A1=
i. At high carrier densities,
Ne,h�1021 cm−3, another significant band gap renormaliza-
tion contribution is due to purely electronic screening, ex-
change, and correlation effects7 as discussed below.

The second-order contribution to the total energy comes
from coherent scattering of carriers by optical phonons to
intermediate electronic states and back to their initial elec-
tronic states without a change in phonon or electronic occu-
pation numbers.16 This process results in a change in the
phonon frequency �o. For the A1-phonon mode the second-
order contribution to the total energy E of the system is given
by16

E2 = No�. . . ,n�k, . . . ,no	HDP	�Eo − Ho�−1	HDP	 . . . ,n�k, . . . ,no


� 2no �
���,k

	M��k	2n�k

���k
+ �

���,k

	M��k	2n�k�1 − n�k�
No���k

. �5�

Differentiating E=Eo+E1+E2 with respect to no and substi-
tuting Eqs. �2� and �3� yields the renormalized phonon self-
energies

h� � h�o + 2 �
���,k

	M��k	2

���k

n�k

No
, �6�

where transitions �→� must obey the symmetry selection
rule 
i � A1=
i �see above� and are characterized by a set of
nondiagonal e ,h-phonon coupling matrix elements Ma�k
which are related to the corresponding nondiagonal �inter-
band� optical deformation potentials. The relative contribu-
tions of different transitions also depend strongly on the sign
and magnitude of the corresponding band gap ���k.

Equations �4� and �6� provide analytical expressions for
the coherent optical phonon-induced band gap renormaliza-
tion and phonon softening, respectively. The resulting ex-
pressions show how the band gap and phonon frequency
change as a function of electronic excitation. By comparing
these expressions to experimental data we will obtain values
for the intraband and interband optical deformation poten-
tials of �-Te �see Sec. IV�.

III. EXPERIMENTAL SETUP AND TECHNIQUE

The response of the dielectric function of �-Te to femto-
second laser photoexcitation has been measured with femto-
second time resolution using a dual-angle-of-incidence
pump-probe reflectometry technique.18 These experiments
were performed on a single-crystal Czochralski-grown tellu-
rium sample using 800-nm pulses from a multipass amplified
Ti:sapphire laser, producing 0.5-mJ, 35-fs pulses �full width
at half maximum� at a repetition rate of 1 kHz.19 Briefly, an
s-polarized excitation pulse �“pump”� excites the sample at
different absorbed peak laser fluences Fabs below the thresh-
old for permanent visible damage Fth=2.1 mJ/cm2, while
the transient reflectivity is measured using a p-polarized
white-light pulse �“probe”; q�=1.65–3.2 eV�. Two-photon
absorption measurements20 show that the time resolution of
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the pump-probe setup is better than 50 fs, while calculations
based on measurements of the spectrum and chirp of the
white-light probe indicate that the time resolution of the
probe varies from 20 fs near 1.7 eV to 60 fs near 3.2 eV.21

The entire system is calibrated to obtain absolute reflectivity.
The optic axis c of the tellurium sample lies in the plane

of the sample surface, perpendicular to the plane of incidence
of the probe. To measure the ordinary dielectric function
�ord���, the sample is oriented such that the electric field of
the excitation pulse Eexc�c �“ordinary probe geometry”�. The
ordinary dielectric function �ord��� can then be determined
from spectral reflectivity measurements at two angles of in-
cidence �68.4° and 80.4°�.3 Measurements at the same two
angles of incidence with the sample rotated so that Eexc�c
�“extraordinary probe geometry”�, allow determination of
values for the extraordinary dielectric function �ext���, given
measured values of �ord��� at each corresponding time delay.
For negative time delays, when the probe arrives before the
excitation pulse, the experimentally determined �ord��� and
�ext��� are in excellent agreement with corresponding litera-
ture data for �unexcited� tellurium.22 Further details on the
experimental technique can be found in Refs. 3 and 18.

The dynamics of the experimentally measured dielectric
functions are analyzed by a fit of a Drude-Lorentz model23 to
the data at each time delay. The Drude-Lorentz model for a
single oscillator can be written as

���� =
Ne2

�om

1

�res
2 − �2 − i�


, �7�

where the free parameters are the resonance energy Eres
=q�res, the resonance linewidth q
, and the oscillator
strength f =Ne2 /�om. While the imaginary parts of the di-
electric functions of tellurium are well-fit by this model,
resonances outside the spectral range of the probe give
roughly constant contributions to the real part of the dielec-
tric function within the probe range, so a real additive con-
stant C was included in the fit to �ord��� and �ext��� to ac-
count for this effect. The resonance energies from a fit of
literature values for �ord��� and �ext��� over the spectral
range of the probe pulse are Eres,ord�2.3 eV and Eres,ext
�2.1 eV.

Figure 1 shows the transient behavior of the resonance
energies Eres,ord and Eres,ext at Fabs=0.85Fth. Because of a
transient band gap renormalization each resonance energy
redshifts by an amount 	Eres�t�= �Eres�t�0�−Eres�t�� reach-
ing a maximum at a time delay of 0.1–0.3 ps and oscillating
at a time- and fluence-dependent frequency ���o, where
�o�3.6 THz is the A1-phonon frequency in �-Te at
295 K.24 The time-dependent frequency � can be deter-
mined from the oscillations in Fig. 1 for the time interval
	t�0.3–2 ps; from these data we extrapolated values of
�ord and �ext at 	t=0.1 ps, when we expect the carrier den-
sity to reach its maximum value. The fluence dependence of
these �ord,ext�	t�0.1 ps� frequencies shows the softening2

of the A1-mode as the excitation increases �Fig. 2�.
The maximum negative band gap renormalization �red-

shift� of the resonance energies 		Eres,max	, which is reached
for time delays 	t�0.1–0.3 ps, consists of two nonthermal

contributions. One is purely electronic and consists of
screening, exchange, and correlation effects in the electron-
hole plasma. The other contribution is due to the
deformation-potential e ,h-optical phonon interaction. We
will denote the electronic part by 	Eres

ee and the phonon part

FIG. 1. Transient shifts of the resonance energy Eres of the or-
dinary �top� and extraordinary �bottom� dielectric functions of �-Te
at absorbed laser fluence Fabs=0.85Fth. The shifts have an elec-
tronic component �	Eres

ee � and a phonon-induced component �	Eres
ep �.

FIG. 2. Fluence dependence of the A1-phonon oscillation fre-
quency � in �-Te, obtained by Fourier transforming �Ref. 12� the
transient shifts in resonance energy of the ordinary �circles� and
extraordinary �squares� dielectric functions of �-Te, evaluated
around t�0.1 ps.
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by 	Eres
ep . Because the excitation pulses are much shorter than

the phonon period �
exc�35 fs and Tph�0.3–0.4 ps, respec-
tively� the amplitude of the oscillations of the ions around
their displaced equilibrium positions is equal to their quasi-
static displacement: Uqs=Uosc �Ref. 15� and the total phonon
displacement is U�t�=Uqs�t�+Uosc�t�. According to Eq. �3�
the quasistatic phonon-induced component 	Eres

qs is thus
equal to the amplitude of the oscillating part 	Eres

osc�t�, and so

	Eres
ep �t� = 	Eres

qs �t� + 	Eres
osc�t� = 2	Eres

qs �t� . �8�

The pedestals in the 	Eres�t� curves in Fig. 1 are due to the
fast electronic component 	Eres

ee �t�. We estimate that the ti-
mescale for this electronic response is on the order of 50 fs
and therefore its contribution to the slope of the initial,
monotonically decreasing part of the 	Eres�t� curve, blends
together with the lattice response producing a smooth,
single-time-scale shape. This separation of 	Eres into elec-
tronic and phonon components is supported by recent theo-
retical results7 and shows the importance of both electronic
and phonon contributions during band gap collapse in semi-
conductors.

For the complex structure of the top valence band �VB3
or p-lone pair� and the bottom conduction band �CB1 or p
antibonding� of �-Te �see Fig. 3 and Ref. 24� 	Eres

ee and
	Eres

ep represent averages of individual band gap renormaliza-
tion subband shifts over the three VB3 and CB1 subbands
and over k space. As a result, we have

	Eres
ep = �k�

�	EVB3,k�
ep + 	ECB1,k�

ep � = �k�
�VVB3,k� + VCB1,k��

��Uqs + Uosc� = VC/V,k��Uqs + Uosc� �9�

and

	Eres
ee = �k�

�	EVB3,k�
ee + 	ECB1,k�

ee � , �10�

where the k� label the regions of the k-space that are sampled
in the ordinary and extraordinary probe geometries, while
VVB3,k�, VCB1,k�, and VC/V,k� correspond to the average va-
lence band, conduction band, and overall intraband optical
deformation potentials, respectively. The grey and black ar-
rows in Fig. 3 show the regions that are sampled by the
probe continuum. In the extraordinary probe geometry, selec-
tion rules limit the probing to the region near the A-point
�grey arrows�, while in the ordinary probe geometry, states
near the 
, H, K, and M points are probed �black arrows�.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

A. Determination of EHP density

In Sec. II we derived expressions for the band gap renor-
malization and phonon softening as a function of the elec-
tronic occupation number n�k, which is directly related to the
EHP density Ne,h �Eqs. �4� and �6��. In order to provide a
quantitative interpretation of the experimental data presented
in the previous section and to determine the intraband and
interband optical deformation potentials in �-Te, we need to
calculate the EHP density Ne,h near the sample surface as a
function of Fabs. Because the photon energy in the excitation
beam �1.55 eV� greatly exceeds the minimum band gap in
�-Te �Eg,H�0.33 eV Ref. 24�, the excitation pulse produces
“hot” holes and electrons in the VB3 and CB1 bands, respec-
tively. Two-particle impact ionization causes the photoex-
cited carriers within each band to relax on the femtosecond
scale, a rate that is comparable to that of the energy relax-
ation and thermalization in an electron-hole plasma via
screened Coulomb carrier-carrier �e ,h-e ,h� interactions.25

The reverse process, Auger recombination, occurs on a much
slower, sub-ps time scale at the moderate Ne,h /Nv ratios
achieved in this study, where Nv=1.8�1023 cm−3 is the total
density of valence electrons in �-Te. The ultrafast shrinking
of the band gap observed in �-Te after the arrival of the
excitation pulse �see Fig. 1�, further increases the role of
impact ionization. As a result, electrons and holes reach a
common EHP temperature Te,h during the excitation pulse,
populating the renormalized minimum and maximum of the
conduction and valence bands at the A and H points, respec-
tively �see Fig. 3�.

We can calculate the EHP density Ne,h generated by linear
absorption of a pulse with a given absorbed fluence Fabs from
the following energy and particle number balance equations.

Eabs�Fabs� =
Fabs

�exc
* = �

−�

�

�Dh���fFD��,Te,h�d�

+ �
�

+�

�De���fFD��,Te,h�d� , �11�

Ne,h�Fabs� = �
−�

�

Dh���fFD��,Te,h�d�

= �
�

+�

De���fFD��,Te,h�d� , �12�

FIG. 3. Renormalized band structure of the VB3 and CB1 bands
for �-Te �after Refs. 13 and 24�. The regions probed in the ordinary
probe geometry are marked by grey arrows; the length of the arrows
corresponds to the range of probe frequencies used �1.65–3.2 eV�.
The regions probed in the extraordinary geometry are marked by
black arrows. The grey shading in the valleys shows the free carrier
population in the conduction and valence bands at maximum
kBTe,h�0.28 eV. The light grey horizontal band shows the initial
H-point direct band gap of 0.33 eV.
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where Eabs is the absorbed volume energy density, De,h��� are
the electron �hole� density-of-states distributions at carrier
self-energies � above �below� the Fermi level �, fFD�� ,Te,h�
is the Fermi-Dirac distribution of carriers in the correspond-
ing bands, and �exc

* =�exc+�dif is the effective energy deposi-
tion depth which is determined by the absorption depth �exc
of the excitation pulse and the EHP ambipolar diffusion
depth �dif��Ddift�1/2 with Ddif the diffusion coefficient.

Because the excitation and probe beams are orthogonally
polarized, the electric field vector of the excitation pulse is
perpendicular to the c-axis �Eexc�c� in the extraordinary
probe geometry and so the �ordinary� index of refraction at
the excitation wavelength is nexc=nord �800 nm�=5.84
+1.06i �Ref. 22� yielding a penetration depth for the excita-
tion field of �pu�800 nm��60 nm. Using a carrier diffusion
coefficient Ddif=6–40cm2/s,2,13 we obtain a diffusion length
of �dif�10–30 nm over the time interval 	t�0.1–0.3 ps,
which is smaller than the penetration depth of the excitation
pulse and so �exc

* ��exc. At the Eres,ext peak wave-
length ��2.1 eV��600 nm the index of refraction is
npr=next �600 nm�=5.76+4.92i �Ref. 22� giving an effective
probe depth �pr

* ��pr �600 nm��10 nm. Therefore
�exc

* � 
�dif ,�pr
* �, which ensures that we are probing a nearly

homogeneously excited region near the surface of the �-Te.
Using a numerical fitting procedure we fitted Eq. �11� to

the experimental values of Eabs�Fabs� and the known values
for �exc with Te,h as a free parameter. For the nearly sym-
metrical electronic density of states distribution �constant
De,h���=0 at 	� 	 �Eg,H /2 and linearly increasing De,h���
�5�1022 � states/ �eV2 cm3� at Eg,H /2� 	�	�1 eV �Refs.
24 and 26��, the Fermi level � can be chosen exactly in the
middle of the H-point band gap Eg,H�0.33 eV. We further
assume that the maximum nonthermal, electronic and coher-
ent optical phonon-induced band gap renormalization for the
VB3 and CB1 bands symmetrically shrinks the band gap at
the H point. Because the band gap renormalization is ap-
proximately equal to 		Eres

ee 	+ 		Eres
ep 	, both the electron and

hole density of states distributions are shifted towards the
Fermi level by an amount equal to �		Eres

ee 	+ 		Eres
ep 	� /2. Fig-

ure 4�a� shows the values obtained from the fitting for kBTe,h
as a function of the absorbed fluence Fabs in the extraordi-
nary probe geometry.

The values of kBTe,h in Fig. 4�a� range from 0.2 to 0.3 eV
and represent an upper limit for the thermal energy of the
carriers due to impact ionization kBTe,h� 1

2 �Eg,H− 		Eres,ext
ee 	

− 		Eres,ext
ep 	�+�e,h

ef f, where the �e,h
ef f are the Ne,h-dependent dy-

namic Burnstein-Moss �band filling� energy shifts in the con-
duction and valence bands, respectively.27 The kBTe,h values
we obtain differ from the 0.05-eV value used in Ref. 13. The
range of values we find for kBTe,h indicate that almost 90% of
the excited carriers occupy an energy interval of 0.5–0.7 eV
near the edges of CV1 and VB3 bands, predominantly near
the main high-symmetry points �
 ,A ,H� of the first Bril-
louin zone �see Fig. 3�.

We can now determine the electron-hole plasma density
Ne,h by substituting values for kBTe,h from Fig. 4�a� into Eq.
�12�. The square symbols in Fig. 4�b� show the resulting
fluence dependence of the EHP density. The relation between
EHP density and fluence in Fig. 4�b� allows us to obtain the

EHP density dependence of � from the data �squares� shown
in Fig. 2. The result, shown in Fig. 5 as square symbols,
reveals a linear dependence of � on EHP density, in agree-

FIG. 4. Fluence dependence of �a� the calculated carrier thermal
energy kBTe,h in the ordinary excitation geometry and �b� the
electron-hole plasma density Ne,h in both the ordinary and extraor-
dinary excitation geometries.

FIG. 5. Dependence of the resonance frequency � of the ordi-
nary �circles� and extraordinary �squares� dielectric functions on the
electron-hole plasma density. The triangles represent theoretical
data obtained from Ref. 13. The value for �o for unexcited �-Te is
taken from Ref. 24.
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ment with Eq. �6�. The data in Fig. 5 also agree qualitatively
with the results from density functional theory calculations.13

In the ordinary probe geometry we cannot use the same
approach to determine values for kBTe,h and Ne,h because
significant ambipolar diffusion occurs in this configuration:
�dif�10–30 nm for Ddif=6–40 cm2/s �Refs. 2 and 13� and
	t��0.1–0.3 ps� on an initial steep Beer’s distribution of
Eabs characterized by �exc�800 nm��22 nm for nexc

=next�800 nm�=6.73+2.89i.22 Figure 2, however, shows that
excitation by “ordinary” ��exc�60 nm� and “extraordinary”
��exc�20 nm� excitation pulses results in similar values of
�, which leads us to conclude that the EHP densities are also
quite similar in both geometries. Therefore, we can use the
dependence of � on Ne,h from Fig. 5 to determine the EHP
densities for the �ord data obtained in the ordinary probe
geometry �circles in Fig. 2�. The circles in Fig. 4�b� show the
resulting dependence of Ne,h on Fabs in the ordinary probe
geometry.

B. Determination of intraband and interband optical
deformation potentials

The measured transient shifts 	Eres,ext�t� of the resonance
energy of the imaginary part of the extraordinary dielectric
function �Fig. 1� reveal the time-dependent band gap renor-
malization between the CV1 and VB3 bands around the A
point in the �-Te band structure �grey arrows in Fig. 3�. In
Fig. 6 we plot the maximum values of these transient shifts
as a function of the EHP density Ne,h. We can separate these
transient shifts into an electronic component 		Eres,ext

ee 	 and a
quasistatic phonon component 		Eres,ext

qs 	, as given by Eq. �8�.
The resulting range of values for 		Eres,ext

ee 	 �0.05–0.12 eV�
for EHP densities in the range 7�1020 cm−3 to 15
�1020 cm−3 is in agreement with theoretical calculations of
electronic band gap renormalization in GaAs and Si, which

show that 	Eg
ee�0.1 eV for Ne,h�1021 cm−3.7 These calcu-

lations also predict that the EHP-driven band gap renormal-
ization for photoexcited GaAs should depend linearly on Ne,h
at Ne,h�1021 cm−3.7 As can be seen in Fig. 6, our data for
		Eres,ext

ee �Ne,h�	 indeed depend linearly on the EHP density
with a slope Kext

ee = �0.95±0.03��10−22 eV cm3. The value of
this slope indicates that when 5% of the valence electrons in
�-Te are excited �Ne,h�1022 cm−3�, the average VB3-CB1
direct band gap at the A point only shrinks by about 50% �cf.
		Eres,ext

ee �1022 cm−3�	�1 eV vs �Eg,k�A
�Eres,ext�2 eV�. A
similar partial shrinkage due to electronic screening, ex-
change and correlation effects is expected for GaAs.7

The measured transient shifts 	Eres,ord�t� of the resonance
energy of the imaginary part of the ordinary dielectric func-
tion �Fig. 1� reveal the time-dependent band gap renormal-
ization averaged over the entire k space of the first Brillouin
zone of �-Te, excluding the region just adjacent to the A
point �Fig. 3�. When we plot the maximum value of the
electronic component of these shifts 		Eres,ord

ee 	 as a function
of the EHP density Ne,h �Fig. 6�, we obtain a line with a slope
Kord

ee = �0.99±0.03��10−22 eV cm3, which is close to the
slope Kext

ee . Therefore, we conclude that �i� in agreement with
theoretical results for GaAs and Si �Ref. 7� the electronic
band gap renormalization in �-Te is nearly isotropic and
homogeneous due to the high site symmetry of carrier-carrier
interactions and �ii� the procedure we used in Sec. IV A to
determine the electron-hole plasma density Ne,h in the ordi-
nary probe geometry is justified. Most importantly, the val-
ues for 		Eres,ext

ee �Ne,h�	 and 		Eres,ord
ee �Ne,h�	 in Fig. 6 represent

experimental data on dynamic electronic band gap renormal-
ization in a semiconductor.

The quasistatic phonon component of 		Eres,ext	 �open
squares in Fig. 6� exhibits a nearly linear increase with Ne,h,
in agreement with Eq. �4�. Its slope, Kext

qs = �0.8±0.1�
�10−22 eV cm3, is very similar to Kext

ee , which shows that
e ,h-phonon contributions to the band gap renormalization
around the A point in the �-Te band structure are important.
This Kext

qs value indicates that for the electron-hole plasma
density Ne,h�1022 cm−3 discussed above �5% of the valence
electrons�, coherent optical phonons provide the other 50%
shrinking of the average A-point direct VB3-CB1 band gap.
Together, the phonon and the electronic contributions induce
a total collapse of the band gap and an insulator-metal tran-
sition. The excitation threshold we obtain for an insulator-
metal transition in Te at the A point of the band structure
NBG,k�A�0.05 Nv, is close to the theoretically predicted
value �0.1 Nv� for lattice instability and metallization thresh-
olds in other semiconductors.28

When we fit the 		Eres,ext
qs �Ne,h�	 data to a straight line we

observe that the fitting line does not pass through the origin
of the axes �Fig. 6�. Indeed the point 		Eres,ext

qs �Ne,h�	=0 has a
large horizontal offset from the origin, ��3�1020 cm−3.
Conversely, the point 		Eres,ext

qs �0�	 exhibits a large vertical
offset of −0.03 eV, which is comparable to the vertical spac-
ing between the 		Eres,ext

qs 	 data points �open squares�. Ac-
cording to Eq. �3�, both of these offsets may be explained by
taking into account the quantization of 		Eres,ext

qs 	. Indeed, at
small phonon numbers no both the quasistatic displacement
and the amplitude of the coherent optical phonon 	Uqs�no�	

FIG. 6. Dependence of the transient dielectric function reso-
nance shifts 		Eres,ext

ee 	 �solid squares�, 		Eres,ord
ee 	 �solid circles�,

		Eres,ext
qs 	 �open squares� and 		Eres,ord

qs 	 �open circles� on the
electron-hole plasma density Ne,h �bottom axis� and on the phonon
amplitude Ufull �top axis�. The steplike curve represents a fit of
	Eres,k�A�Ufull� to the 		Eres,ext

qs 	 data.
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= 	Uosc�no�	��2no�1/2Uo exhibit quantum character when
they are described in the “shifted oscillator” approximation
at 
pu /Tph�1.15 Therefore the electron-hole plasma density
Nno=1=� corresponds to the threshold value for EHP-driven
emission of the first coherent A1-optical phonon. The offset
disappears when the 		Eres,ext

qs 	 data are plotted vs. the full
oscillation amplitude Ufull= �2no+1�1/2Uo, which includes the
zero-energy oscillation amplitude Uo in �-Te �top axis in
Fig. 6�, and fitted by a steplike function 	Eres,ext

qs �Ufull�
=	Eres,k�A

qs �Ufull�= �	VC,k�A	+ 	VV,k�A	��Ufull−Uo�. The differ-
ence �Ufull−Uo� is equal to Uqs�no�=Uosc�no� and by defini-
tion the deformation-potential e ,h-phonon interaction is ab-
sent at no=0. The slope of the step function represents a
modulus of the “effective” CB1/VB3 intraband optical defor-
mation potential 	VC/V,k�A	= 	VCB1,k�A	+ 	VVB3,k�A	. Its value
of 0.7±0.1 eV/Å is equal to the average of the A-point in-
traband optical deformation potentials of the CB1 and VB3
subbands that are sampled by the optical probe.

Likewise, one can represent the data 		Eres,ord
qs 	 �open

circles in Fig. 6� in the form 	Eres,ord
qs �Ufull�=	Eres,k−A

qs �Ufull�
= �	VC,k−A	+ 	VV,k−A	��Ufull−Uo�, where the slope 	VC/V,k−A	
= 	VCB1,k−A	+ 	VVB3,k−A	 corresponds to the “effective” CB1/
VB3 intraband optical deformation potential and represents
electronic states over the entire k space, excluding the
A-point region which is not probed optically. The value of
the slope 	VC/V,k−A	=0.5±0.2 eV/Å, is somewhat smaller
than 	VC/V,k�A	=0.7±0.1 eV/Å. Also, the slope of the
		Eres,ord

qs �Ne,h�	 curve �0.6±0.2��10−22 eV cm3 �not shown
in Fig. 6� indicates that the total collapse of the average
direct VB3-CB1 band gap �Eg,k−A
�Eres,ord takes place at
NBG,k−A�1.4�1022 cm−3, i.e., at an EHP density of approxi-
mately 0.07 Nv, including both the electronic and phonon-
induced band gap renormalization effects.

From the experimental data for 		Eres,ext
qs 	 in Fig. 6 we can

obtain data for Uqs�Ne,h�= 		Eres,ext
qs �Ne,h�	 / 	VC/V,k�A	 �see Fig.

7�. The dependence of Uqs on Ne,h, Uqs�Ne,h�
��2no�Ne,h��1/2Uo, can be described in terms of deformation
potentials, by dividing the number of carriers �n� and the
number of primitive unit cells No in Eq. �3� by the volume

Vexc of the excited material region. Because each primitive
unit cell contains three six-valent Te atoms, the volume den-
sity of cells in �-Te is

No

Vexc
=

NV

18 , and
�na

Vexc
=Ne+Nh=2Ne,h. Sub-

stituting these expressions and M��k=�2V��kUo into Eq. �3�
yields

Uqs�Ne,h� � Uo
2 �	VCB1,k	 + 	VVB3,k	�

h��Ne,h�
18Ne,h

Nv
. �13�

To further simplify this expression we can set the sum of the
moduli of the intraband optical deformation potential 	VCB1,k	
and 	VVB3,k	 equal to the modulus of an “effective” CB1/VB3
intraband optical deformation potential 	VC/V,k	= 	VCB1,k	
+ 	VVB3,k	. The Uqs�Ne,h� data in Fig. 7 thus allow us to obtain
this deformation potential for the photoexcited carriers that
occupy near-edge subbands of the CB1 and VB3 bands �Fig.
3� and that drive the coherent optical phonon displacement
U=Uosc+Uqs. The 	VC/V,k	 value obtained from the data in
Figs. 5 and 7 using Eq. �13�, is equal to 2.2±0.3 eV/Å,
considerably exceeding the values we found for 	VC/V,k−A	
and 	VC/V,k�A	 �0.5±0.2 and 0.7±0.1 eV/Å, respectively�.

As predicted by Eq. �6�, the �ext�Ne,h� and �ord�Ne,h�
data shown in Fig. 5 exhibit a linear dependence on
electronic excitation with a slope K�,exp�−�3.2±0.3�
�10−22 THz cm3. This slope is nearly two times smaller than
theoretically predicted.13 When we extrapolate the ��Ne,h�
data to ��Nsoft�=0 we estimate a threshold EHP density for
complete softening of the A1-phonon mode of Nsoft,exp�1.1
�1022 cm−3 �0.06 Nv�. This value is significantly lower than
the threshold of 3.6�1022 cm−3 �0.19 Nv� calculated in Ref.
2 accounting only for linear photoexcitation of carriers.
However, even though Nsoft,exp is being determined by a con-
siderable extrapolation of the experimental data, its value is
consistent with the average band gap renormalization
thresholds, NBG,k�A�1.0�1022 cm−3 and NBG,k−A�1.4
�1022 cm−3 �0.05 and 0.07 Nv, respectively� we determined
earlier. Thus, we estimate that the Peierls-like insulator-metal
transition in �-Te occurs at the same electronic excitation
level as the complete softening of the A1-phonon mode.

We can obtain interband optical deformation potentials in
�-Te from the �ext�Ne,h� and �ord�Ne,h� data in Fig. 5 by
rewriting Eq. �6� as

�o − ��Ne,h� �
4

h
Uo

2� 	VCB1,2	2

�CB2 − �CB1
+

	VVB2,3	2

�VB3 − �VB2
�18Ne,h

N
.

�14�

In deriving Eq. �14� only virtual CB1↔CB2 �average band
gap �	�CB2−�CB1	
�5 eV �Ref. 24�� and VB3↔VB2 �aver-
age band gap �	�VB3−�VB2	
�3 eV �Ref. 24�� transitions
were taken into account because these are the only allowed
transitions by the selection rule 
i � A1=
i; virtual
CB1↔VB3 and VB3↔CB1 �average band gap �	�CB1

−�VB3	
�1.5 eV �Ref. 24�� transitions of carriers to their
initial �unexcited� states and back were neglected to reduce
the number of unknown interband optical deformation poten-
tials. Taking an average value of ��	�CB2−�CB1	
+ �	�VB3

−�VB2	
� /2�4 eV in Eq. �14�, we obtain an approximate
value of about 1.3 eV/Å for each of the interband optical

FIG. 7. Dependence of the sublattice phonon displacement Uqs

on the electron-hole plasma density Ne,h. The open squares repre-
sent the data obtained in this paper; the closed triangles are from
Ref. 13.
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deformation potentials 	VCB1,2	 and 	VVB2,3	. If we include the
stabilizing effect of virtual lower-energy CB1↔VB3 and
VB3↔CB1 transitions, the values for 	VCB1,2	 and 	VVB2,3	
are likely to be higher.

V. DISCUSSION AND CONCLUSIONS

The values for kBTe,h and Ne,h in Figs. 4�a� and 4�b� were
obtained by solving Eqs. �11� and �12� assuming that the
band gap is renormalized by 		Eres,ext

ee 	+ 		Eres,ext
qs 	, where

		Eres,ext
qs 	= 	VC/V,k�A		Uqs	. To account for possible different

values of band gap renormalization between the main VB3
and CB1 bands, we also calculated kBTe,h and Ne,h using two
extreme band gap renormalization values: a minimum value
of zero �no band gap renormalization� and a maximum value
of 		Eres

ee 	+ 		Eres
qs 	, where 		Eres

qs 	= 	VC/V,k		Uqs	. The latter
value is a maximum because 	VC/V,k	 is the maximum defor-
mation potential we obtained in Sec. IV B, exceeding both
	VC/V,k−A	 and 	VC/V,k�A	 by a considerable amount. The error
bars in Figs. 4�a� and 4�b� reflect these extreme values for
kBTe,h and Ne,h and show that the dependence of kBTe,h and
Ne,h on the transient band gap renormalization is relatively
small. For this reason we used the values reported in Figs.
4�a� and 4�b� throughout this work to calculate the optical
deformation potentials for �-Te.

The maximum effective intraband optical deformation po-
tential 	VC/V,k	=2.2±0.3 eV/Å provides a reasonable esti-
mate for the total band gap renormalization in �-Te �Te-I�
during a Peierls-like EHP-driven structural transformation to
a high-pressure metallic phase. Such transformations may
occur when the A1-type displacement reaches certain critical
values. For example, a transition to a Te-III phase with a
rhombohedral13 or orthorhombic24 structure is expected for
an ionic displacement Ustr,III�0.3 Å �x= 1

3 , where x is the
internal structural parameter of �-Te, representing a fraction
of the inter-helical distance13�. Likewise, an ionic displace-
ment Ustr,II�1.1 Å �x= 1

2
� gives rise to a transition to a Te-II

phase with a monoclinic structure.24,29 If we extrapolate the
experimental curves in Figs. 5 and 6 to complete softening of
the A1-phonon mode and complete shrinkage of the average
direct band gap we obtain a threshold value for the EHP
density of 0.05–0.07 NV or 1–1.4�1022 cm−3 �see Sec. IV�.
If we now extrapolate the experimental Uqs�Ne,h� values in
Fig. 7 to the same threshold density Ne,h
��NBG,k�A,k−A ,Nsoft,exp�, we obtain a critical sublattice dis-
placement Uqs�1.2 Å, which is nearly equal to the above
mentioned theoretical value of Ustr,II�1.1 Å. Such a dis-
placement yields a coherent optical phonon-induced band
gap renormalization of about 1 eV near the A point and of
about 2.5–3 eV for the near-edge CB1 and VB3 subbands,
thus closing direct band gaps at most of the high-symmetry
points and mixing up the CB1 and VB3 subbands enough to
provide the required high degeneracy of the new structural
phase.1,13

The effective intraband optical deformation potential
	VC/V,k	=2.2±0.3 eV/Å is three times larger than the intra-
band optical deformation potentials 	VC/V,k�A	
=0.7±0.1 eV/Å and 	VC/V,k−A	=0.5±0.2 eV/Å. This obser-
vation suggests that the most important contributions to

	VC/V,k�A	 and 	VC/V,k−A	 come from electron �hole� states in
low-dispersion regions of CB1 �VB3� bands around the high-
symmetry A and 
 points �Fig. 3�. In contrast, the main
contribution to 	VC/V,k	 is due to highly populated electron
and, especially, hole states at the bottom and top near-edge H
point subbands of the CB1 and VB3 bands, respectively.
These bands contribute little to the shifts in the absorption
peaks at Eres,ext and Eres,ord near 2 eV because of the corre-
sponding high subband dispersion and transient band filling
effects. Therefore, the high value for the intraband optical
deformation potential 	VC/V,k	 may be attributed to the intra-
band optical deformation potential of hole states 	VV,k	 in the
H valleys of the two upper VB3 subbands of �-Te. This
conclusion is consistent with the observation that the crystal-
line lattice of �-Te—especially the nearest and second-
nearest neighbor distances—is most sensitive to electron
density changes in the H valleys.13 For this reason highly
occupied electronic states in the H valleys of near-edge CB1
and VB3 subbands, should exhibit the largest band gap
renormalization and drive the coherent A1-phonon mode.

The values we obtain for the intraband optical deforma-
tion potentials 	VC/V,k	, 	VC/V,k�A	, and 	VC/V,k−A	 of �-Te are
much smaller than those for wide band gap semiconductors,
such as Si, Ge, GaAs, and diamond, which are on the order
of 10–100 eV/Å.11 Optical deformation potentials represent
a crystalline potential energy change per unit displacement
and provide a measure of the lattice displacement per unit
electronic excitation �see Eq. �3��. Therefore, smaller intra-
band optical deformation potentials in a narrow band gap
semiconductor such as �-Te, with weaker covalent bonds
and a softer crystalline lattice ��o�1–4 THz �Ref. 11�� sup-
port an intuitively obvious fact: these materials are consider-
ably closer to a conducting, higher-symmetry Peierls phase,
than wide band gap semiconductors with more rigid lattices �
�o�7–16 THz �Ref. 11��, which would require much big-
ger lattice displacements in order to complete a structural
transformation.

No values have been reported to date for the interband
optical deformation potentials in �-Te. However, the values
for �th�Ne,h� obtained from DFT calculations �see triangles
in Fig. 5�13 are consistent with the corresponding experimen-
tal data we used to determine the interband optical deforma-
tion potentials 	VCB1,2	 and 	VVB2,3	. Furthermore, the intra-
band and interband optical deformation potentials for �-Te
obtained in this work are of the same order of magnitude, as
is usually the case for other semiconductors.10,11,24

In conclusion, we determined values for the effective in-
traband and interband optical deformation potentials of �-Te
from experimental data on the sub-picosecond shrinking of
its band gap and the softening of its fully symmetrical center-
zone A1-phonon mode. The values we obtain are consistent
with values obtained from theoretical studies.
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