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We calculate the fine structure splitting of the near band edge donor-bound excitons in major cubic semi-
conductors using an approach inspired by an earlier one that consists in replacing the Morse potential by a
Kratzer one, in order to account for the repulsion between the donor and the hole. A regular trend is observed
when plotting the computed results in terms of donor binding energies for all these semiconductors. Second,
we extend the method to wurtzite semiconductors, namely CdS, GaN, and ZnO. The previously reported trend
is found again, but enriched with the strong anisotropy of the dispersion relations in the valence band of these
semiconductors. We end up in addressing a quantitative interpretation of the fine structure splitting of the donor
bound exciton complex which includes the j j coupling between the valence band Bloch and the envelope
nonrigid rotator hole states.
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Since the introduction of the concept of excitons by Fren-
kel and Peierls1 in the thirties of the last century, an impres-
sive amount of work has been consecrated to the importance
of these analogs of atoms in solids and in other light emitting
systems. Bulk and low dimensional semiconductors have
been elaborated and are the ad hoc solid state laboratories for
studying all possible forms of exciton complexes: free exci-
tons, impurity-bound excitons, excitons localized to potential
fluctuations, excitons coupled with phonons, with the elec-
tromagnetic field. All these kinds of excitons have specific
spectroscopic properties which are still not understood in all
details. Our present work focuses on neutral shallow donor
bound excitons �D0X�. These excitons have been found to
exhibit a fine structure splitting that was interpreted: first in
terms of a rigid hole-donor rotator model in CdTe,2,3 and
second in terms of a nonrigid hole-donor rotator model in
GaAs,4 InP,5,6 CdS.7 Similar features were later observed in
ZnTe,8 Si:Li,9 and ZnO.10 Regarding the technologically im-
portant semiconductor GaN, data are more recent. Neu
et al.11 and Kornitzer et al.12 have first reported the clear
observation of additional lines on the high energy side of the
D0X line. These lines were not correlated by these authors
with the existence of different donors in the GaN film nor to
the valence band splitting. Later, Neu et al.13 have published
a detailed comparison of the donor bound exciton spectros-
copy in both ZnSe and GaN. They have unambiguously
shown the existence of similar properties for ZnSe and GaN
and brought, in particular, the knowledge of the spectro-
scopic properties of donor bound excitons in GaN to the

degree of sophistication reached for the other materials. The
purpose of this paper is to attribute these additional lines to
excited states of the donor bound exciton built from a �9
hole. Our aim is to further give an explanation of some puz-
zling features of donor bound exciton recombination in GaN:
a change of the dominant two electron replica between 1.8 K
and 10 K, with a �1 meV blueshift,13 and an apparent decay
time of this replica much longer than that of the D0X ground
state.14 Before going further, we wish to outline the extreme
complexity of the theoretical treatment of the donor bound
exciton in cubic semiconductors due to the existence of the
fourfold degeneracy of the valence band at the zone center
and in �-GaN and �-ZnO wurtzitic semiconductors when
the donor potentials mixes �9 and �7 valence band states.
Last, it is difficult to get rid of relativistic �spin and
exchange-related� effects. In this paper, we restrict ourselves
to the decoupled band situation so that we have to deal with
a single band spinless Schrödinger equation rather than to
introduce a many-band approach similar to the one used by
Baldereschi and Lipari15 to treat acceptor states in cubic
semiconductors.

We first calculate the fine structure splitting of the near
band edge donor-bound excitons in major cubic semiconduc-
tors in an approach inspired from the one earlier proposed
which consists in replacing the Morse potential with a
Kratzer potential in order to account for the repulsion be-
tween the donor and the hole.6 A marked trend is computed if
plotting the results in terms of effective mass donor binding
energies for all these semiconductors. Second, we extend the
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method to wurtzite semiconductors, namely CdS, GaN, and
ZnO. A quantitative interpretation is achieved for wurtzite
and for cubic semiconductors, by introducing the j j coupling
between orbital angular momentum of the hole envelope
function and the Bloch valence band state. The magnitude of
such coupling is found to follow some kind of rough general
trend and is about one thirtieth of the donor binding energy.
Its value is larger in wide band gap semiconductors than it is
in GaAs, which probably explains why it was never consid-
ered before, to the best of our knowledge.

The energy splittings of the D0X bound exciton lines mea-
sured for several semiconductors relatively to the position of
the lowest energy feature of the series have been plotted in
Fig. 1 as a function of the effective mass donor binding
energy Ed. The data has been collected from the
literature.2–13 Some deviations from a general trend are found
since data were taken on samples grown by different meth-
ods, giving sometimes substantial scattering. We wish to em-
phasize the fact that we look for general properties here.
Sample purities were probably different from a material to
another one and some deviations may be found in the litera-
ture if considering data measured on the same semiconductor
compounds, but grown using different methods, due to
chemical shift effects. Demonstration of such data scattering
due to different impurities is quantitatively illustrated in the
figure, in the specific case of ZnSe. For this material, a re-
search group16 selectively incorporated several dopants in
the material during the growth and then performed a careful
analysis of the photoluminescence data which furnished
them an unambiguous correlation of the splittings with the
donor binding energy, that is to say a clear evidence of strong
chemical effects.

The donor bound exciton problem is a four-particle many
body problem dealing with electrostatic interactions be-
tween: �i� the static positive system that constitutes the
nucleus of the donor whose electrons except one are either
engaged to the chemical bound or constitute core levels, �ii�
the remaining electron that circulates at typically one Bohr

radius ae from this nucleus if in a 1S state, �iii� a hole arising
from the trapping of a free exciton by the donor, and �iv� an
electron arising from the trapping of a free exciton by the
donor. The conditions for having a stable state by balancing
electrostatic repulsions and attractions were elucidated by
Munschy.17 The two electrons are treated as identical par-
ticles giving, as demonstrated by Lavallard and Benoit à la
Guillaume,3 a low energy singlet state �antiparallel spins of
the two electrons� and a Pauli forbidden triplet state degen-
erate with the conduction band. In the case of a frozen lat-
tice, the spatial wave function of the D0X bound exciton is
written ��r⇀e ,r⇀e� ,r�h�=�1s�r�e��1s�r�e����r�h� as a function of the
positions r⇀e ,r⇀e� ,r�h of the two electrons and of the hole. The
hole motion is obtained as the solution of a Schrödinger
equation using a Morse potential.18 This Morse potential VM
writes in terms of the reduced unit x=rh /ae as follows:

VM�x� = −
e2

4��0�rae

1

x
�1 − 2e−2x�1 + x�� , �1�

which is minimized for x=1.337, ae is the electron Bohr
radius in the donor bound exciton complex. Due to the ex-
treme difficulty in handling analytical solutions of excited
states in case of a Morse potential, we assimilate, as usually
done, the Morse potential to a short range nonrelativistic
�spin-independent� Kratzer potential that we write here

VK�x� = − 2D� t

x
−

t2

2x2� �2�

with D= e2

8��0�rae
and t=1.337. It is worthwhile remarking

from the simple theory of the hydrogenic atoms that the
quantity − e2

4��0�rae
is nothing but twice the average effective

mass donor binding energy Ed. In the expression of the
Kratzer potential above, D is then the effective mass donor
binding energy.

Figure 2 illustrates the deviations between the Morse and
Kratzer potentials. We note a substantial discrepancy in the

FIG. 1. �Color online� Plot of the energy of different photolu-
minescence lines associated with the donor bound exciton relative
to the lowest fluorescent level versus effective mass donor binding
energies in major semiconductors.

FIG. 2. �Color online� Comparison of the Morse and Kratzer
potentials in dimensionless units.
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small x region and a subtle one for large x. Working in the
context of isotropic valence band dispersion, the Kratzer po-
tential problem is nothing but a Coulomb interaction prob-
lem for a particle with mass m, where the orbital terms
���+1�	2

2mrh
2 is rewritten as19

���+1�	2−4mEdt2ae
2

2mrh
2 =


�
+1�	2

2mrh
2 . � is the or-

bital quantum number of the traditional hydrogenic problem
and 
 is a real number. We therefore face an analytical solu-
tion for this problem. Working similarly to Puls, Hen-
neberger, and Voigt18 when treating the CdS case, we obtain
variationaly the total energy equation of the D0X complex. In
contrast with them, we write it

E�n,�,ae� = 2Eg + 2Ed��ad

ae
�2

−
11

8

ad

ae

−
t2mh

2me

1

	n +
1

2
+
�� +

1

2
�2

+
t2mh

me

ae

ad
�2� .

�3�

In the above equation, n and � are quantum numbers, ad is
the effective mass Bohr radius of the electron/donor complex
and ae is varied to minimize the energy. The principal quan-
tum number n runs from 0 and indicates the number of nodes
for the radial function. � runs from 0 to any integer value,
and does not need to keep being smaller than n. The radial
hole wave functions are confluent hypergeometric functions
of the kind M�−n ,2
+1,2�x�.19,20 Number 
 was previously

defined and �=
2mae�E�n,�,ae��

	2 . These radial functions have
2�+1 degeneracy. The total wave function of the hole is the
product of the valence band Bloch state with the rotator en-
velope state with quantum number n=0,1 ,2 , . . ., and usual
spherical harmonic Y�

m with quantum number �, m. We have
plotted in Fig. 3 some typical radial parts of the hole wave
functions computed for the GaAs case �Ed=6 meV, me
=0.067, and mh=0.51�. We have estimated the error made by
replacing the Morse potential by a Kratzer one by computing

the expectation value of VM −VK for the first levels. The re-
sult is a slight increase of the ground state binding energy
and a slight decrease of that of the excited states. Indeed, Fig.
2 shows that VM is less repulsive than VK when rh /ae
�1.337 �and less attractive when rh /ae�1.337�. Looking at
the relative wave functions spreading in Fig. 3 explains this
result. Anyhow, the error made by replacing the Morse with
a Kratzer potential is only weakly impacting the energies. We
note that, in the GaAs case, the ratio between the variational
parameter ae� that minimizes Eq. �3� and ad are 1.16, 1.21,
1.26, 1.32, 1.28, and 1.3 concerning �0,0�, �0,1�, �0,2�, �0,3�,
�1,0�, and �1,1�, states, respectively. However, after being
minimized at ae� which is an increasing function of �n ,��,
as shown above, energies E�n ,� , ae���E�n ,�� are obtained.
Figure 4 illustrates the energy differences E�n ,��−E�0,0�
that we compute for the major cubic semiconductors when
taking heavy hole masses. There is a good overall agreement
between the calculation and the experiment, but a careful
comparison of the experimental and computed data in Fig. 4
indicates that the calculation always overestimates by a fac-
tor �2 the splitting between the two low energy levels �0,0�,
and �0,1�. For higher quantum numbers, one reaches a situa-
tion where the variational calculation is not applicable with-
out making excessive errors.

Let us now consider the total hole wave functions and
their symmetries. The total angular momentum of the hole
state is written Jtot=J+�, with J being the angular momen-
tum of the periodic Bloch wave at k=0 and � the angular
momentum of the rotator state. The topmost valence band
heavy hole Bloch state is noted �J ,mJ� in terms of its angular
momentum J �J is 3 /2�, and in terms of its projection mJ �mJ
is ±3/2�. For the ground state �0,0� of the rotator, the total
hole wave function has the symmetry of the valence band,
Jtot=3/2 and may be written � 3

2 , ± 3
2 �.

The situation is more complicated concerning excited ro-
tator states. States resulting from coupling a valence J=3/2
state with a �=1 rotator state are represented as �Jtot ,mjtot� by
the value and projection of their total angular momentum Jtot
and are written as linear combinations of �mj ,m�� vectors
where mJ and m� are the projections of the valence band hole
and rotator state angular momenta, respectively

FIG. 3. �Color online� Typical rotator radial functions calculated
for GaAs.

FIG. 4. Calculated splitting of rotator states versus effective
mass donor binding energies in cubic semiconductors.
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These states have even parity since both �=1 and J=3/2
states are odd in real space.

We now discuss the selection rules for donor bound exci-
ton recombination from the basis of the simplest of the sym-
metry arguments: parity. We restrict our discussion to dipole
allowed recombination mechanisms. Since the dipole matrix
element has odd parity when the starting states have a given
parity odd �resp. even�, the final states should have even
�resp. odd� parity. The ground state of the donor bound ex-
citon complex has odd parity. When one of the electrons and
the hole recombine leaving the last electron in a nS state, the
final state has even parity. This recombination process is di-
pole allowed and efficiently couples with the electromagnetic
field. The first excited state correspond to the first excited
state of the hole rotator. The total wave function of the com-
plex is even and the most probable recombination process is
a complex process leaving the remaining electron in a 2p �or
other odd� final state. Recombination from the second ex-
cited state of the hole rotator is a dipole allowed process.
These selection rules predicted by using a spherical model
are not so strict in a real cubic or wurtzite semiconductor.
The above scheme of selection rules for two electron transi-
tions of neutral donor bound excitons is straightforward and
replaces earlier ideas, where transitions between states of the
same parity was argued to dominate if the D0X complex is
regarded as an exciton bound to the donor as an entity �see,
e.g., Ref. 8�.

The splitting energies of rotator states are in general of the
order of 1 meV in wide band gap semiconductors as it can be
seen in Fig. 1. At low temperatures, only the ground state of
the donor bound exciton is occupied whilst a slight increase
of the temperature will enhance the occupation rate of the
first excited state, improving the intensity of the two electron
replica from this state. This may explain the change of two
electron satellite spectrum in GaN with increasing tempera-
ture reported in Ref. 13. It could also be a possible explana-
tion of the long decay time of this replica relative to the
observed decay time of the D0X ground state,14 if it is the
excited state replica that is observed. Indeed, Neu et al.13

have shown that the lifetime of the first excited state of D0X

is about 5 times that of the ground state, in agreement with
the apparent decay time ratio.14

The effect of the temperature on the D0X recombination is
clearly revealed in Fig. 5 where the two electron satellite
spectra in a bulk GaN sample grown by hydride vapor phase
epitaxy �HVPE� that has about the same density of O and Si
donors �about 41015 cm−3 each� is shown. A similar set of
lines are observed for each donor, involving 2s, 3s, and 4s
final states connecting to the bound exciton ground state, and
2p, 3p states connecting with the excited D0X states �labeled
a, b, c , . . . .21 While the former dominate at low temperature,
the latter are mainly involved at the higher temperatures. We
conclude that the two electron satellites are extremely sensi-
tive to the temperature of the excitons or electron bath, in
other words, to the temperature at which the experiment is
performed. These reasons explain why we often observe two
electron transitions in wide band gap semiconductors, since:
�i� the large donor binding energies are favorable, �ii� per-
forming experiments at T�10–20 K, a temperature reached
when gluing the sample to a cold finger cryostat instead of
immersing it in superfluid liquid helium helps also. In the
advent of excessive inhomogeneous broadening, generally
encountered when working on heteroepitaxial films, it may
be unreasonable to expect the resolution of details of the
two-electron replica features.

Wurtzite semiconductors are in essence anisotropic mate-
rials. The Hamiltonian is much more complicated, compared
to cubic ones, since the kinetic energy part of the spherical

symmetry
Px

2+Py
2+Pz

2

2m must be separated in and has cylindrical
symmetry along the �0001� axis. The 2�+1 degeneracy of
the �n ,�� eigenstates of the spherical case is lifted and states
with similar �m�� values couple through the anisotropy of the
kinetic energy Hamiltonian. This is a “classical” situation,
typical of excitons met in anisotropic crystals, that
Faulkner22 has described in the 70’s, giving the most accu-
rate method for dealing with this problem. We have repro-
duced the calculation of Puls, Henneberger, and Voigt18 for
the CdS case and we extended it to GaN and ZnO. Obviously
the computed splittings are still higher than the experiment
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as seen in Fig. 6. Using the GaN values we get 2 meV be-
tween �0,0,0�, and �0,1,0� �we now have to label states
�n ,� , �m����, a value to be compared with the value of
1.3 meV experimentally reported by Neu et al.11,13 and Ko-

rnitzer et al.12 Without ignoring the fact that we are dealing
with some oversimplified calculation, we have computed the
splitting of the donor bound exciton energies for the high
energy excited states associated with quantum number �=1
of the rotator in the context of a j-j coupling scheme. In the
context of such model, the different levels are shifted of an

amount �
Jtot

2 −�2−J2

2 as sketched in Fig. 7 for spherical symme-
try. Such an interaction obviously decreases the total energy
of the excited levels and reduces the splitting with the donor
bound exciton ground state. The general disagreement be-
tween our calculation and the experimental data for all semi-
conductors treated here can be reasonably by-passed as
shown in Fig. 8, where are plotted using vertical bars the
experimental splitting between the first and second D0X re-
combination lines in semiconductors and our calculation �full
dots� corrected by introducing an ad hoc j-j-coupling term �
that is roughly connected to the effective mass donor binding
energy as follows:

FIG. 5. �Color online� Photoluminescence spectra taken for a
1 mm thick HVPE bulk GaN sample as a function of temperature in
the two electron satellite energy region. Two distinct donors are
identified in the sample, namely oxygen �O� and silicon �Si�. The
two electron transitions spectra are shown to experience a modifi-
cation of shape in favour of satellites with remaining donor elec-
trons in nP states when temperature increases. Also note the recom-
bination lines with energy relaxation via simultaneous photon and
phonon creations �E2 phonon� in the right hand part of the spectra.

FIG. 6. �Color online� Calculated splittings of rotator states ver-
sus effective mass donor binding energies in wurtzite semiconduc-
tors. �-GaN is indicated for the sake of the comparison.

FIG. 7. �Color online� Fine structure splitting of the �0,1� rotator
state due to jj coupling with the J=3/2 valence band in spherical
symmetry.

FIG. 8. �Color online� Plot of the splitting between ground states
and first excited stated of the donor bound excitons versus donor
binding energy. Vertical bars are used to represent experimental
values and their scatterings, full dots are used to represent the result
of the calculation corrected by the jj coupling interaction.
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� �
Ed

30
. �4�

This equation is some kind of analog to Haynes’ rule con-
necting the exciton binding energy to the binding energy of
the effective mass donor or acceptor.23

We estimate � to be about 0.5–1 meV in both CdS and
GaN, a value comparable with the value of the short range
spin exchange interaction for the free exciton in these
materials.24,25 In the case of ZnO, the experimental splitting
is 2 meV while the computed one is 4. This gives � to be
about 1.5 to 2 meV in ZnO, a third of the short range ex-
change interaction.26 At this stage, we would like to empha-
sise the extreme difficulty to achieve accurate calculations
for several reasons: �i� the effective masses are not known
with a sufficient accuracy; �ii� higher excited states having
similar symmetry anti-cross leading to an intricate pattern

out of the scope of calculation; �iii� a variational treatment is
valid for ground states only; �iv� a better description would
of course require a full relativistic calculation out of the
scope of our variational treatment, that is to say beyond the
aim of the present paper.

In conclusion, we have shown that the internal structure
of the donor bound exciton in GaN is understood, that it can
be accounted for as in all other semiconductors in the context
of a nonrigid rotator model. To describe the total and real
symmetry of the wave functions of the rotator states requires
taking into account of the j-j coupling between the angular
momentum of the envelope function of the rotator with the
angular momentum valence band Bloch states. This explains
selection rules for two electron transitions and the tempera-
ture dependence of the corresponding fluorescent features.

We acknowledge Nicolas Grandjean for interesting and
helpful scientific exchanges.
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