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We study the excitation spectrum of strongly correlated lattice bosons for the Mott-insulating phase and for
the superfluid phase close to localization. Within a Schwinger-boson mean-field approach we find two gapped
modes in the Mott insulator and the combination of a sound mode �Goldstone� and a gapped �Higgs� mode in
the superfluid. To make our findings comparable with experimental results, we calculate the dynamic structure
factor as well as the linear response to the optical lattice modulation introduced by Stöferle et al. �Phys. Rev.
Lett. 92, 130403 �2004��. We find that the puzzling finite frequency absorption observed in the superfluid
phase could be explained via the excitation of the gapped �Higgs� mode. We check the consistency of our
results with an adapted f-sum rule and propose an extension of the experimental technique by Stöferle et al. to
further verify our findings.
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I. INTRODUCTION

The prime example of a strongly correlated Bose system
is 4He—it exhibits normal, superfluid, crystalline, and possi-
bly even supersolid phases1–3 and is attracting interest to this
day.4 Dilute cold bosonic atoms reside generically in the
weakly interacting limit but their tunability through quantum
optical techniques allows for the realization of strongly cor-
related states. One way to achieve the strongly interacting
limit is to reduce the kinetic energy by the application of an
optical lattice, thereby effectively enhancing the effects of
interactions. The broken translational symmetry then leads to
effects in the superfluid phase not present in 4He. The present
paper is devoted to a study of the dynamical properties of
lattice bosons within this strongly correlated regime.

Jaksch et al.5 pointed out that bosons in optical lattices are
accurately described by the Bose-Hubbard Hamiltonian.6 De-
pending on the value of the nearest-neighbor hopping ampli-
tude J, the on-site interaction U, and the chemical potential
�, the Bose-Hubbard model exhibits a superfluid or an insu-
lating �with n0�N particles per site� ground state, separated
by a quantum phase transition.7 The phase diagram has been
investigated on a mean-field level,6,8 using perturbation
theory9 and with numerical quantum Monte Carlo
methods.10,11 Apart from one dimension, the qualitative
structure of the phase diagram is correctly described by
mean-field calculations, cf. Fig. 1; however, fluctuations tend
to shift the lobes to lower values of J /U in two dimensions.11

The dynamical properties of the Bose-Hubbard model
were studied in both the Mott and the superfluid phase. In the
Mott phase, the excitation spectrum was studied
numerically,9,12,13 on a mean-field level,8 in a slave-particle
approach,14,15 and in strong coupling perturbation theory.16,17

All these approaches yield two gapped modes describing
hole- and particle-type branches. For the weakly interacting
superfluid �J�U� the Gross-Pitaevskii18,19 equation and Bo-
goliubov theory20 produce reliable results for the sound
mode. However, for the superfluid close to localization the
character of the spectrum is still unclear. We will show below

that this spectrum involves two distinct modes: �i� a sound
mode characterized by a combined phase and density modu-
lation, and �ii� a gapped mode describing exchange between
condensate and noncondensate at fixed overall density.

The excitations of strongly correlated lattice bosons have
been probed in two experiments. In the experiment by
Greiner et al.7 the whole lattice has been subjected to a glo-
bal tilt. As this perturbation spoils the translation invariance,
it is difficult to infer bulk properties from their results; the
observed resonant response has been discussed in Ref. 21.
Second, in their recent experiment, Stöferle et al.22 deter-

FIG. 1. The mean-field phase diagram of the Bose-Hubbard
model involves disconnected incompressible Mott-insulating phases
�grey shaded areas at small hopping J� where the density is pinned
at integer values n0, and a connected superfluid phase in between
and at larger values of J. The lines ��c

± mark the second order
quantum phase transition separating these phases. The commensu-
rate filling in the Mott lobes is exported into the superfluid along the
lines ��n0

�bent downward� where particle-hole symmetry is pre-
served. In our analysis we use a truncation scheme allowing us to
discuss one lobe at a time. The black dots mark the positions in
phase space where the spectra of Fig. 2 have been evaluated. The
chemical potential difference �� is measured away from the lobe
midpoint at J=0.
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mine the energy absorption due to a modulation of the lattice
depth. They find a gapped continuum of excitations for small
J /U and a broad feature in the superfluid. The appropriate
response function has been calculated in the framework of
the Gross-Pitaevskii equation23 and for one-dimensional sys-
tems �1D�, both numerically13,24 and analytically.25,26 A more
powerful method to investigate this system is Bragg
spectroscopy,27 described by the dynamic structure factor
S�q ,��. As compared to the above lattice modulation tech-
nique, Bragg spectroscopy allows for a nonzero momentum
transfer and hence reveals the full structure of the excitation
spectrum. However, the nonzero momentum transfer requires
to apply two additional lasers at a finite angle to the system;
so far, the limited optical access has hindered an experiment
using Bragg spectroscopy on strongly correlated lattice
bosons. On the theory side, the structure factor S�q ,�� has
been calculated in mean-field theory28 and for 1D systems
using numerical methods.29,30 Below, we calculate both re-
sponse functions within the Mott insulator as well as in the
strongly correlated superfluid, making use of one unified de-
scription.

Our method is based on a technique previously introduced
by Altman and Auerbach31 describing the particle-hole sym-
metric limit of the Bose-Hubbard model at large particle
numbers n0�1. Here, we generalize this approach to deal
with the experimentally relevant regime of Mott insulators
with one and two particles per lattice site. The method in-
volves a truncation of the Hilbert space to three states per
site and a spin-wave technique within a slave-boson lan-
guage to describe fluctuations above a mean-field ground
state. The truncation limits the validity of our results to a
single Mott lobe and its surrounding superfluid environment.

In the following Sec. II, we introduce the variational
mean-field method outlined above. After proper truncation of
the Hilbert space, we construct the mean-field phase diagram
using a variational ground state. We proceed with the deri-
vation of an effective Hamiltonian describing residual par-
ticle fluctuations using a method motivated by the mapping
to a spin-1 Hamiltonian. We diagonalize this effective
Hamiltonian with the help of a generalized Bogoliubov
transformation and find the spectra in both insulating and
superfluid phases. Section III is devoted to the study of the
response functions: we discuss the dynamic structure factor
�density-density correlations� in the Mott phase as well as in
the superfluid and compare our findings with previously ob-
tained theoretical results. In addition to Bragg spectroscopy,
we analyze the lattice modulation technique which is de-
scribed in terms of a dynamic modulation of the tunneling
amplitude J and calculate the corresponding response func-
tion �hopping correlator� in both phases and for varying di-
mensionality of the excitation. We summarize and conclude
our work in Sec. IV.

II. VARIATIONAL MEAN-FIELD

A. Method

The Bose-Hubbard Hamiltonian in a notation suitable for
our approximation scheme takes the form

HBH = − J�
�i,j�

ai
†aj +

U

2 �
i

�ni
2 − ���

i

ni, �1�

where ai
† is the bosonic creation operator for a Wannier state

at site i, ni=ai
†ai is the number operator and �ni=ni−n0 mea-

sures deviations of the particle number from a mean filling
n0. The chemical potential �� is measured from the middle
of the lobe �cf. Fig. 1�.

Our goal is the determination of the dynamical properties
of the Bose-Hubbard model in the limit of strong interac-
tions. In particular, we are interested in finding the excitation
spectra and eigenstates in the Mott-insulating as well as in
the superfluid phase nearby. Note that weakly interacting
theories such as the Gross-Pitaevskii equation or the Bogo-
liubov theory cannot capture the physics close to localiza-
tion. On the other hand, strong coupling perturbative ap-
proaches are often incapable to correctly describe the broken
U�1�-symmetry phase.16 Altman and Auerbach31 introduced a
Hilbert space truncation method for large filling n0�1, i.e.,
the particle-hole symmetric case, which we extend to low
fillings where particle-hole symmetry is broken. The basic
idea is to truncate the bosonic Fock space to only three local
states. In this truncated space, we first find a variational
�mean-field� ground state and then derive an effective Hamil-
tonian Heff for the excitations above this ground state.

The truncation to three local states with particle numbers
n0 and n0±1 is motivated by the strong suppression of par-
ticle number fluctuations in, and close to, the Mott phase; its
validity is discussed in Sec. II C, below. We introduce
bosonic operators that create “particles” in the retained three
states

t1,i
† �vac� =

�ai
†�n0+1

	�n0 + 1�!
�vac� ,

t0,i
† �vac� =

�ai
†�n0

	n0!
�vac� ,

t−1,i
† �vac� =

�ai
†�n0−1

	�n0 − 1�!
�vac� , �2�

where �vac� denotes the state with no particles present. The
original bosonic operators ai can be expressed in terms of the
t�,i-operators ��=−1,0 ,1�,

ai
† = 	n0 + 1t1,i

† t0,i + 	n0t0,i
† t−1,i. �3�

The Hilbert space spanned by the t�,i operators is too large
and the physical subspace is obtained by imposing the con-
straint

�
�=−1

1

t�,i
† t�,i = I . �4�

The possibility to map the above truncated bosonic prob-
lem to a spin-1 Hamiltonian �see Appendix A� motivates a
strategy inspired by the spin-wave theory above a ferromag-
netic or antiferromagnetic ground state:32 starting out by ex-
pressing the spin operators S± and Sz via Schwinger bosons
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aSB
† , bSB

† : S+=aSB
† bSB, S−=bSB

† aSB, and Sz= �aSB
† aSB

−bSB
† bSB� /2, the constraint aSB

† aSB+bSB
† bSB=2S is used in the

ordered phase to go over to Holstein-Primakoff bosons bSB
†

→bHP
† and aSB

† →	2S−bHP
† bHP, with subsequent expansion

of the square root in bHP
† bHP. In order to realize this program

in the present situation, we first have to find the ground state
playing the role of the ordered state in the spin problem. In a
second step, we implement the holonomic constraint �4� via
a procedure analogous to the change from Schwinger to
Holstein-Primakoff bosons.

In order to find a proper ground state of the truncated
problem we introduce the following variational operators:

b0,i
† = cos��/2�t0,i

† + sin��/2��cos���t1,i
† + sin���t−1,i

† � ,

b1,i
† = − sin��/2�t0,i

† + cos��/2��cos���t1,i
† + sin���t−1,i

† � ,

b2,i
† = − sin���t1,i

† + cos���t−1,i
† , �5�

where the Gutzwiller-type ground state shall be given by

�	��,��� = 

i

b0,i
† �vac� . �6�

The parameter � controls the admixture of particle number
fluctuations in the ground state, whereas a deviation from
integer filling is accounted for by a nonvanishing 
=� /4
−�. As the transformation �5� is unitary, the bm,i operators
�m=0,1 ,2� obey the constraint

�
m=0

2

bm,i
† bm,i = I , �7�

cf. �4�. The relevant energy scale in the Mott phase is given
by the interaction strength U. For the discussion of the phase
diagram all energies are rescaled and denoted with a bar, e.g,

J̄=J /U. Combining the Hamiltonian �1� and the ansatz �6�
provides us with the variational energy per lattice site

�̄var�� ,
�= �	�� ,
��H̄BH�	�� ,
�� /N which is given by

�̄var��,
� = sin ��/2�2�1

2
− ��̄ sin�2
�� −

J̄z

4
sin2���

�n0 + 	�n0 + 1�n0 cos�2
� +
1

2
�1 + sin�2
��� ,

�8�

where z=2d is the coordination number and N denotes the
number of sites. In the Mott-insulating phase, particle num-
ber fluctuations are absent within a mean-field approximation
and thus �=0; the parameter 
 then drops out of the varia-
tional energy �̄var�� ,
� and can be set to zero. In the super-
fluid case, ��0 turns out to be a convenient order parameter
and hence 
 is eliminated via minimization of the variational
energy �8� with respect to 
,


��� =
1

2
arctan 4��̄ + J̄z�cos��� + 1�

2J̄z�cos��� + 1�	n�n + 1�
� . �9�

This allows us to write �̄var�� ,
� as a function of �
alone. Within a Ginzburg-Landau treatment of the phase
transition, we reexpress � in terms of the superfluid order
parameter parameter �= �	�� ,
��ai�	�� ,
�� /N=sin���
�	n0+1 cos�� /4−
�+	n0 sin�� /4−
�� /2 and expand the
variational energy �8� in �,

�̄var„�,
���… � ā�J̄,��̄��2 +
b̄�J̄,��̄�

2
�4. �10�

The calculation of the coefficients ā�J̄ ,��̄� and b̄�J̄ ,��̄� is

straightforward. The sign change of ā�J̄ ,��̄� marks the phase

boundary and the roots of ā�J̄ ,��̄�=0 provide us with the
known mean-field lobes

��̄c
±�J̄� =

1

2
�− J̄z ± 	1 − 2J̄z�1 + 2n0� + �J̄z�2� , �11�

cf. Fig. 1. The tip of the lobes can be found by equating

��̄c
+=��̄c

−, providing the critical hopping zJ̄c=1/ �	n0+1
+	n0�2. Due to particle-hole asymmetry, the line of integer
density �
=0� is bending down according to �cf. Fig. 1�

��̄n0
= −

1

4
�J̄z + �	n0 + 1 + 	n0�−2�; �12�

we refer to this line as the particle-hole symmetric line,

which starts out from the tip of the lobe ��̄c
±�J̄c� as expected.

The above determination of the ground state �6� has pro-
vided us with the phase diagram of the Bose-Hubbard model
and allows us to proceed with the second step of our pro-
gram, the implementation of the constraint �7� by going over
to Holstein-Primakoff–type bosons; thereby, the operator b0,i

†

plays the role of the Schwinger boson aSB
† and the remaining

operators b1,i
† , b2,i

† generate the excitations above this ground
state, as does the operator bHP

† in the spin problem. We then
eliminate one slave boson �b0,i� via the constraint

b0,i = 	1 − n1,i − n2,i, �13�

where nm,i=bm,i
† bm,i �m=1,2�. Having chosen a good “clas-

sical” ground state with potentially small fluctuations, we
can expand the square root in Eq. �13�,

b0,i = 	1 − n1,i − n2,i � 1 −
1

2
n1,i −

1

2
n2,i�; �14�

the validity of the expansion will be discussed later �cf. Sec.
II C�.

We express the Hamiltonian �1� in terms of the b bosons
and eliminate the b0,i with Eq. �14�. Collecting all terms up
to quadratic order in the bm,i provides the effective Hamil-
tonian
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Heff = Jz �
k�K

b�k
†�

g11,k
−1 g12,k

−1 f11,k
−1 f12,k

−1

g21,k
−1 g22,k

−1 f21,k
−1 f22,k

−1

f11,k
−1 f12,k

−1 g11,k
−1 g12,k

−1

f21,k
−1 f22,k

−1 g21,k
−1 g22,k

−1
�b�k, �15�

where b�k= �b1,k ,b2,k ,b1,−k
† ,b2,−k

† �T and K denotes the first
Brillouin zone. We have dropped a constant term to be dis-
cussed later. The coefficients of the normal grs,k

−1 and anoma-
lous frs,k

−1 terms are given in Appendix C. The appearance of
anomalous terms in the effective Hamiltonian �15� is analo-
gous to the situation where the corresponding spin problem
is characterized by an antiferromagnetic ground state. These
anomalous terms are removed via a Bogoliubov transforma-
tion which hybridizes creation and annihilation operators,
thereby generating a new ground state carrying particle num-
ber fluctuations. This is in contrast to the ferromagnetic case,
where the inclusion of quantum fluctuations does not impact
on the classical ground state. The presence of the anomalous
terms frs,k

−1 away from J=0 �cf. Appendix C�, shows that the
Mott-insulating state is “nonclassical” and carries fluctua-
tions for all finite values of J.

B. Diagonalization procedures

The diagonalization of the effective Hamiltonian �15� can
be achieved via a �real� Bogoliubov transformation

M�� k = b�k with D = MTHeffM �16�

diagonal, where �� k= ��x,k ,�y,k ,�x,−k
† ,�y,−k

† �T. In the Mott
phase x= p �y=h� stands for particle and hole excitations
respectively, whereas in the superfluid phase these indices
stand for sound �x=s� and massive �y=m� modes. Those
bosonic commutation relations that are not automatically ful-

filled are imposed by the additional condition

M�MT = � , �17�

where the matrix � is given by the outer product

� � �b�kb�k
†�T − �b�k

†�T�b�k�T = diag�1,1,− 1,− 1� ,

reminiscent of the metric tensor in Minkowski space. The
group O�2, 2�, given by all real 44-matrices M fulfilling
Eq. �17�, then shares many properties with the Lorentz group
O�1, 3�, namely its decomposition in terms of “boosts”
�transformations of coordinates with different signs in the
metric� and “rotations” �transformations in a sector of the
metric with equal signs�. It turns out that this decomposition
provides a useful strategy for the diagonalization of Heff in
the Mott phase, where the symmetries of Heff allow for an
efficient determination of the corresponding rapidities and
angles. On the other hand, in the superfluid phase, these sym-
metries are absent and the diagonalization of Heff is prefer-
ably done by mapping Eqs. �16� and �17� to a non-Hermitian
eigenvalue problem.33

�I� In the Mott state �
=0,�=0�, where no anomalous
mixing terms f12,k

−1 = f21,k
−1 =0 between the b1,k and the b2,k

bosons are present �see Appendix C�, the parametrization of
M in terms of boosts and rotations is suitable. To eliminate
the anomalous terms f11,k

−1 and f22,k
−1 one chooses a boost in

the bm,k−bm,k
† plane; a subsequent rotation in the b1,k−b2,k

plane leads to the mean-field dispersions8

�p�h��k� = � ��0�k�/2 + ��� + �̃�k� , �18�

where �̃�k�=	U2−U�0�k��4n0+2�+�0
2�k� /2 and �0�k�

=2J�l=1
d cos�k ·al� is the bare band dispersion. Here, al de-

note the vectors connecting nearest neighbors and we assume
square and/or cubic symmetry, a= �al�. The dispersions
shown in Figs. 2�a� and 2�c� characterize two modes, de-

FIG. 2. The panels �a�–�d� show the spectra for different points in the phase diagram �cf. Fig. 1� in the n0=1 lobe; all energies are
measured in units of U. We display the results for the two-dimensional case with the dispersion along the direction kx. Panel �a� and �c� refer
to the Mott phase, with the full line corresponding to the particle branch and the dashed line to the hole branch. �a� J=Jc /3; black lines
display dispersions on the line ��n0

, gray lines correspond to ��=0.2U; the change in chemical potential produces a shift in the spectra, cf.
Eq. �18�. �c� J=0.9Jc and ��=��n0

; note the reduction in the gaps �p�h� as compared to �a�. Panels �b� and �d� refer to the superfluid phase
with sound and massive modes given by dashed and dash-dotted lines, respectively. �b� J=1.5Jc; black and gray lines refer to the chemical
potentials ��=��n0

and ��=0.2U. �d� J=1.2Jc closer to the transition and with ��=��n0
. Panels �e� and �f� give the gap values �p, �h, �m

and the sound velocity vs for J� �0,2Jc� and ��=��n0
�e� and ��=0.2U �f�. The value J�0.719Jc corresponds to the phase boundary for

��=0.2U �cf. Fig. 1�.
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scribing particle- and hole-type excitations, both with nonva-
nishing gaps �p�h�=�p�h��0�, cf. Figs. 2�e� and 2�f�. In the
Mott phase, the relation between the t�,k and the bm,k opera-
tors is trivial and the rotation in the b1,k−b2,k plane takes us
back to the t�,k operators. We therefore write the eigenstates
in terms of the latter,

�p,k
† = A�k�t1,k

† + B�k�t−1,−k, �19�

�h,k
† = − A�k�t−1,k

† − B�k�t1,−k, �20�

with A�k�=cosh(arctanh�f11,k
−1 /g11,k

−1 � /2) and B�k�
=sinh(arctanh�f11,k

−1 /g11,k
−1 � /2), where we have used the rela-

tions g11,k
−1 =g22,k

−1 and f11,k
−1 =−f22,k

−1 , which apply for the Mott
phase �cf. Appendix C�.

�II� In the superfluid phase, the coefficients f12,k
−1 do not

vanish and furthermore, f11,k
−1 �−f22,k

−1 . The presence of such
terms renders a diagonalization via a parametrization of M as
in the Mott state impractical. We therefore resort to the map-
ping onto a non-Hermitian eigenvalue problem.33 The con-
straint �17� written as MT=�M−1� and inserted into Eq. �16�
yields

M−1�HeffM = �D , �21�

The problem of finding a matrix M �O�2,2� diagonalizing
Heff is now shifted to the problem of diagonalizing the non-
Hermitian matrix �Heff. The matrix M then is obtained from
the eigenvectors �ṽ� of �Heff via their proper normalization

�with respect to ��: let M̃ be the matrix with columns �ṽ�;
then M �O�2,2� is given by

M = LM̃ where L = diag�l1,l2,l3,l4� ,

with

l�
−2 = �M̃�M̃T���

�note that M̃�M̃T is diagonal, i.e., the eigenvectors �ṽ� are
automatically orthogonal with respect to the metric ��. After
diagonalization the effective Hamiltonian reads

Heff = �
k�K

�s�k��s,k
† �s,k + �m�k��m,k

† �m,k − CJ,U
�� . �22�

The optimization of the constant CJ,U
�� leads to a renormaliza-

tion of � and 
 and is discussed below. The eigenvalues
�s�m��k� can be calculated analytically �cf. Figs. 2�b� and
2�d�� and we find a sound �Goldstone� mode, which is lin-
early dispersing for k→0 with sound velocity vs=�k�s�k
=0� /� and a massive �Higgs� mode with a gap �m=�m�0�,
cf. Figs. 2�e� and 2�f�. Note the vanishing of the particle and
hole gaps and subsequent resurrection of the gap in the mas-
sive mode along the particle-hole symmetric line; for ��
���n0

the hole gap transforms into the gap of the Higgs
mode. The complete expressions for the dispersions of the
sound and massive modes turn out to be lengthy and are
given in Appendix C.

To further characterize the excitations we consider coher-
ent states of sound ��Bs,q�� and massive modes ��Bm,q��, re-
spectively,

�Bs�m�,q� = e−�Bs�m�,q�2/2eBs�m�,q�s�m�,q
†

�0� , �23�

where �0� denotes the vacuum with respect to the �s�m�,q
operators �i.e., the new ground state� and Bs�m�,q
= �Bs�m�,q�exp�i�s�m�,q� are complex numbers characterizing
the coherent states. In Fig. 3 we present the expectation val-
ues of the density operator �i= �Bs�m�,q�ai

†ai�Bs�m�,q� and the
order parameter �i= �Bs�m�,q�ai�Bs�m�,q� for �Bs�m�,q��1 and q
along x with q�� /a, i.e., we only add a small amount of
long wavelength excitations. The sound mode is given by a
modulation of the phase accompanied by a modulation of the
density, whereas the massive mode is given by a local con-
version of condensate and noncondensate. In an effective
theory for the order parameter �i, the sound mode corre-
sponds to the Goldstone mode, whereas the massive mode
corresponds to the Higgs boson. The latter is only accessible
for an effective theory which is second order in time. In Ref.
34, the author develops such an action for the superfluid to
Mott-insulator phase transition.

The eigenvectors can be calculated analytically as well,
however, for our purpose the numerical solution of Eq. �21�
is preferable. Hermiticity allows us to write the transforma-
tion M in the form

M�k� =  N�k� P�k�
P�− k� N�− k�

�; �24�

in addition, inversion symmetry renders the elements of the
22 matrices N�k� and P�k� independent of the sign of k
and we can write

b1,k
† = N11�k��m,k

† + N12�k��s,k
† + P11�k��m,−k + P12�k��s,−k,

�25�

FIG. 3. Expectation values for the modulus ��i� and the phase
�i=arg��i� of the order parameter and the total density �i for a
coherent state of a massive mode �upper panel� and of a sound
mode �lower panel�. We have chosen parameters n0=1, J=1.2Jc,
��=��n0

guaranteeing particle-hole symmetry, resulting in a
ground-state order parameter �0�0.47 marked by the faint gray
line. Both modes refer to a q value along x and q�� /a. The mas-
sive mode is given by a local conversion of condensate and non-
condensate at fixed density, whereas the sound mode modulates the
phase with a corresponding modulation of the density. In order to
bring ��i� ��i� in both panels in registry we have chosen a phase
difference �s,q−�m,q=� /2.
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b2,k
† = N21�k��m,k

† + N22�k��s,k
† + P21�k��m,−k + P22�k��s,−k.

�26�

The matrices N�k� and P�k� are calculated numerically and
all quantities of interest, e.g., response functions, are given in
terms of Nij�k� and Pij�k�.

The constant term

CJ,U
�� = Jz �

k�K

g22,k
−1 + g11,k

−1 − ��s�k� + �m�k��/2 �27�

needs further discussion. The shift can be interpreted as a
fluctuation-induced reduction of the ground-state energy. In
order to arrive at a self-consistent description, the parameters
� and 
 have to be determined by the condition that the
energy shift CJ,U

�� is maximal. This corresponds to finding a
new density and new superfluid density for a given set of
parameters J ,U ,��. Only if � and 
 are renormalized with
respect to their mean-field values do we obtain a gapless
sound mode, as demanded for the broken-symmetry phase.
In the Mott phase, CJ,U

�� is not vanishing, but has its maxi-
mum again at �=
=0, thus generating no renormalization.

C. Validity and expectation values

The above method involves two approximations. First, the
truncation of the Hilbert space: the quality of the truncation
is expected to be acceptable in the Mott-insulating state and
in the superfluid phase nearby, and turns bad in the weakly
interacting limit. The quality of the approximation can be
checked through comparison with experimental and numeri-
cal results, e.g., through testing the local number fluctua-
tions. The latter have been measured35 and found to be sup-
pressed due to strong interactions, at least in the vicinity of
the Mott phase. The data is consistent with subpoissonian
number statistics as predicted in Ref. 36 and supports the
validity of the truncation to three local states.31 The tech-
nique allows for systematic improvement by the inclusion of
further local states.37

Second, while the expansion of the constraint �14� is not
a priori valid, we can check its quality via the �a posteriori�
calculation of the ground state expectation values �bm,i

† bm,i�:
we have found values in the range from 0.18 �J̄→�� to 0.21

�J̄= J̄c�; fluctuations are largest at the phase transition and go
to zero in the Mott phase at J→0 for n0=1 which justify our
expansion in Eq. �14�.

The calculation of matrix elements involves both states
and the physical operator in question: so far, we have calcu-
lated the spectrum within the truncated Hilbert space, pro-
viding us with eigenvalues and eigenvectors of Heff. In addi-
tion, we need to express the operators in the eigenbasis
generated by the � operators. The specific step of replacing
“Schwinger bosons” by “Holstein-Primakoff”-type operators
involves the elimination of all b0,i operators. Depending on
the physical quantity under consideration, its expression
through the � operators may or may not involve an expan-
sion of the square root �14�; in particular, the operators in-
volving only b1,i, b2,i, and n0,i=b0,1

† b0,1 �e.g., the density op-
erator in the Mott-insulating phase� can be transformed

without requiring such an expansion. Otherwise, an addi-
tional imprecision has to be accepted due to the square-root
expansion of the constraint.

III. RESPONSE FUNCTIONS

While cold atoms in optical lattices excel in their tunabil-
ity, they do suffer from a limited number of tools available
for their characterization. In fact, so far only two experimen-
tal techniques are being used to determine the dynamical
properties of cold atoms in an optical lattice, Bragg
spectroscopy27 and lattice modulation.22 In Bragg spectros-
copy, two laser beams are focused on the system at an angle,
leading to an inelastic two-photon scattering process. The
system’s response is described by the dynamic structure fac-
tor �density correlator�

S�q,�� = �
n

��n���−q�0��2���� − ��n0� , �28�

where ��q is the density-fluctuation operator. The sum in Eq.
�28� is running over all eigenstates �n� of the system with �0�
denoting the ground state and ��n0 the excitation energy
associated with �n�. This method provides angle-resolved in-
formation on the system, a feature which, however, turns out
to be responsible for the method’s limitation in actual experi-
ments, as the optical access to the atom cloud is usually
restricted.

In the lattice modulation technique, recently introduced
by Stöferle et al., the depth of the optical lattice is modulated
with a frequency �, introducing side bands in the laser form-
ing the optical lattice. Within the framework of the Bose-
Hubbard model �1�, the lattice modulation corresponds to a
modulation in the hopping parameter J; the determination of
the energy transfer then boils down to a calculation of the
hopping correlator

S�x�
kin��� = �

n

��n�T�x��0��2���� − ��n0� , �29�

with T�x�=��i , j��x�
ai

†aj the hopping operator �the index x re-

fers to a restriction of the modulation along one direction,
here the x axis�. The energy absorption rate then is propor-
tional to �S�q ,�� and �S�x�

kin���, respectively. In order to
evaluate the response functions �28� and �29� we have to
express the operators ��q and T�x� in terms of the � bosons,
involving a first transformation to b bosons and subsequent
elimination of b0,i, cf. Sec. II C.

We first concentrate on Bragg spectroscopy in the Mott
and superfluid phases. In the Mott phase, where the local
density is pinned to an integer value in the ground state, we
expect to excite a particle-hole continuum spread in energy
as described by the bandwidth of these two-particle excita-
tions. Surprisingly, we find pronounced peaks within this
continuum which we can relate to the single-mode excita-
tions �h�p�+�p�h��k�. In the superfluid phase one expects
single-mode excitations, as breaking the U�1� symmetry is
leading to collective excitations, and their weights will be
determined.

Second, we proceed with the calculation of the hopping
correlator S�x�

kin��� in both the Mott-insulating and the super-
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fluid phase. Again we find a continuum in the insulating
phase. In the superfluid phase we do not expect to pump
energy into the sound mode, as no momentum is transferred
with this probe �up to a reciprocal lattice vector�. A signal at
finite energy will then give direct access to the massive
mode.

A. Structure factor in the Mott phase

We make use of the eigenstates obtained within the varia-
tional mean-field approach to calculate the dynamic structure
factor �28� in the Mott phase. In the truncated space the
density-fluctuation operator

��q = �
i

�ai
†ai − �ai

†ai��e−iq·ri �30�

takes the form

��q = �
k�K

t1,k
† t1,k+q − t−1,k

† t−1,k+q, �31�

where we have used the exact constraint �7� to eliminate t0,i
�=b0,i in the Mott phase�. Going over to � operators we ob-
tain

��q = �
k�K

A�k�B�k + q���p,k
† �h,−�k+q�

† − �h,k
† �p,−�k+q�

† �

and inserting this expression into the formula for the dy-
namic structure factor yields

S�q,�� =
1

2
�

K

dk

v0
P�k,q�� ��� − �h�k� − �p�q − k�� ,

�32�

with v0= �2� /a�d the volume of the Brillouin zone. The ma-
trix element P�k ,q� quantifies the coupling of each particle-
hole excitation to the density perturbation and is given by

1 + P�k,q�

=
�0�k��0�q − k� + U2 − U�2n0 + 1���0�k� + �0�q − k��

4�̃�k��̃�q − k�
.

�33�

The dynamic structure factor �32� is closely related to the
two-particle density of states �2DOS� given by

D�q,�� = �
K

dk

v0
� ��� − �h�k� − �p�q − k�� . �34�

They share the same bandwidth as well as the characteristic
total gap of the insulating state

�tot = �p + �h = 	U2 − 2JzU�2n0 + 1� + �Jz�2. �35�

Moreover, the van Hove singularities present in the 2DOS
influence the response function, see Fig. 4�b�.

In our discussion of the results,38 see Figs. 4�a� and 4�b�,
we concentrate on the two-dimensional situation where our
mean-field analysis is sufficiently accurate. In the Mott
phase, particle-hole excitations lead to a continuum, starting

with a finite gap �tot at zero momentum q. The bandwidth
decreases with increasing momentum transfer following the
support of the 2DOS and reaches a minimum at the zone
boundary, see Fig. 4�a�. Figure 4�b� shows the 2DOS D�q ,��
as well as S�q ,�� at q= �0.9� /a�ex: The van Hove singulari-
ties in the 2DOS are washed out in the response function
which is dominated by the matrix element P�k ,q�. The latter
generates the two pronounced peaks in S�q ,�� which we
find �numerically� to be located at �p+�h�qx� and �h

+�p�qx�. Hence, although Bragg spectroscopy generically ex-
cites a two-particle continuum, tracing these peaks allows for
the extraction of the single-particle energies. These peaks are
most prominent near the zone boundary and can be enhanced
at small values of qx by dividing out a global modulation of
the form �1−cos�qx /a�� �cf. Appendix B� from S�q ,��. Fur-
thermore, the peaks disappear deeper in the Mott phase
where the excitations are more localized. We note that by
expanding the integral �32� in J /U, we recover the results of
the perturbative treatment �see Appendix B�, hence the qua-
dratic expansion of the constraint �7� is consistent with
second-order perturbation theory; however, the two results
are comparable only for J�10−2Jc.

B. Structure factor in the superfluid phase

In the superfluid phase, the expression for the density
fluctuation operator �31� written in terms of the b bosons

FIG. 4. �a� Density plot of the dynamic structure factor S�q ,��
in the Mott phase along qx for J=0.9Jc �point �c� in Fig. 1, energies
are measured in units of U and n0=1, the chemical potential �� has
no influence on the structure factor�. The spectrum is gapped, the
spectrum’s bandwidth decreases towards the zone edge, while at the
same time developing a pronounced structure allowing for the iden-
tification of single-mode excitations. �b� Cut along the � direction
at qx=0.9� /a �dotted line in �a��. The dynamic structure factor
�solid line� exhibits marked peaks at the single-mode energies; the
dotted line shows the 2DOS exhibiting van Hove singularities. �c�
Single-mode weights of dynamic structure factor S�q ,�� in the su-
perfluid phase at J=1.2Jc and ��=��n0

. The sound mode �Gold-
stone, solid line� exhausts all the available spectral weight at long
wavelengths, allowing the massive mode �Higgs, dashed line� to
gain weight only towards the zone boundary.
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contains b0,i operators, which have to be removed via an
expansion of the square root �14�, leading to terms linear in
the operators bm,k

† as well as higher-order terms. Going over
to � operators we obtain the expression

��q = sin��/2���P21�q� + N21�q���m,q
†

+ �P22�q� + N22�q���s,q
† � + O��2� . �36�

Accounting only for terms up to first order, we ignore two-
and multiparticle excitations and we cannot expect to fulfill
the f-sum rule exactly, see the discussion in Sec. III C below.
Inserting Eq. �36� into the expression for the dynamic struc-
ture factor yields

1

N
S�1��q,�� = sin2��/2��S̃2�q�� ��� − �s�q��

+ M̃2�q�� ��� − �m�q���; �37�

this result reveals the two collective modes �22� characteriz-

ing the superfluid phase. Their weights are given by M̃�q�
= P21�q�+N21�q� for the massive mode and S̃�q�= P22�q�
+N22�q� for the sound mode and are shown in Fig. 4�c�. The
sound mode is dominating the response at low momenta,
with the massive mode acquiring weight only for higher mo-
menta, where the sound mode saturates; in fact, numerical

analysis confirms �q4 dependence of M̃2�q� at small q.
Besides the single mode contribution, ��q also yields two-

particle continua involving the excitations �m ,k ;s ,q−k�,
�m ,k ;m ,q−k�, and �s ,k ;s ,q−k�. Their weight is about
three orders of magnitude smaller than the single-particle
contribution, however.

C. Particle-number conservation

The dynamic structure factor is constrained by several
sum rules deriving from conservation laws. Gauge symmetry
and thus particle-number conservation is leading to the well
known f-sum rule

�
0

�

d��S�q,�� =
Nq2

2m
, �38�

which is modified in a one-band lattice description. The bro-
ken translational symmetry is leading to a nonquadratic dis-
persion, which can be characterized by a k-dependent effec-
tive mass tensor �2 /mij

* �k�=�ki
�kj

�0�k�. The f-sum rule29,39

adapted to the presence of a lattice then takes the form

�
0

�

d��S�q,��

=
1

2�2 �
k�K

��0�k + q� + �0�k − q� − 2�0�k���0�ak
†ak�0�

�
q→0

�
ij

qiqj

2 �
k�K

�0�ak
†ak�0�

mij
* �k� =

Nq2

2m
for

1

mij
* �k�

�
1

m
�ij� .

�39�

Unlike in translation-invariant systems the structure of the

ground state enters the f-sum rule via the nonuniversal pref-
actor

Iij�J/U� = �
k�K

�0�ak
†ak�0�

mij
* �k�

. �40�

The expression �39� predicts a �q2 behavior at small q,
which is trivially fulfilled in the superfluid phase �combine

the weight S̃2�q, see Fig. 4�c�, with the linear dispersion of

the sound mode; the �q4 dependence of M̃2 does not con-
tribute at small q� and can be easily verified in the Mott
phase via expansion of the matrix element P�k ,q�,

P�q,k� = P�2��k�q2 + O�q4� .

Unfortunately, our scheme does not allow for a precise cal-
culation of the prefactor �40� and hence an exact self-
consistency check �via particle-number conservation� of our
result is not possible.

The issue of number conservation has been raised in the
work of van Oosten et al.28 Their field-theoretic calculation
of the structure factor did not reproduce the required q2 be-
havior, which then has been enforced through the use of
Ward identities. However, it appears that the Green’s
function8 G�i�n ,k� used in this calculation already violates
number conservation in the Mott phase, i.e.,

�i = �ni� =
1

�
�
i�n

�
K

dk

v0
G�i�n,k� � n0.

The application of Ward identities, although guaranteeing
number conservation, generates other defects in the structure
factor, e.g, the appearance of linear terms in J spoiling the
J→−J symmetry present in bipartite lattice models.

D. Lattice modulation in the Mott phase

The lattice-depth modulation is a particle-number con-
serving probe and hence produces only particle-hole excita-
tions. While the lattice modulation has been uniaxial so far,22

here, we also discuss its extension to an isotropic modulation
�we discuss the case of equal modulation amplitudes but al-
low for mutual phase-differences between the various direc-
tions�. Expanding the constraint to second �i.e., leading� or-
der, we obtain the response function40

S�x�
kin��� =

1

2
�

K

dk

v0
P�x�

kin�k�� ��� − �h�k� − �p�− k�� , �41�

with

P�x�
kin�k� = 2n0�n0 + 1����x��k��2� U

�̃�k��2

. �42�

The interference generated by the different lattice modula-
tions is encoded in the sum

��k� = 2�
l=1

d

ei�l cos�k · al�; �43�

for the uniaxial modulation this reduces to
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�x�k� = 2 cos�k · ax� . �44�

The relative phase �l between the different lattice modula-
tions can lead to interesting interference effects, see below.

In Figs. 5�b� and 5�c� the results for isotropic and uniaxial
lattice modulation are shown for �l=0 and d=2. The band-
width is determined by the 2DOS �34� at zero momentum
transfer q. Energy is transferred to the system only at fre-
quencies � above the gap �tot /�, offering a simple way to
determine the gap value. A dramatic change is obtained when
going from the uniaxial to the isotropic modulation: the cusp
at ��=U disappears and is replaced by a zero in the absorp-
tion probability. As the matrix element Pkin�k� is non-
negative, the response �41� only disappears if Pkin�k��0 for
all k values on the line defined by the � function in the
integral �41�. At nonzero �l, a finite weight is assembled
away from the points �±� /2 , ±� /2�, leading to a finite re-
sponse at �=U. However, for �l�� an appreciable suppres-
sion is still observable.

The result �41� obtained here has to be compared with the
one obtained by Iucci and coworkers:25 in their perturbative
calculation the factor �U / �̃�k��2 does not show up. Instead,
the Bogoliubov transformation used here is equivalent to a
resummation of diagrams and leads to this factor generating
the interesting structure in the response function �41�.

Comparing our result with the experiment of Stöferle
et al.22 we have to consider the uniaxial case, i.e., Sx

kin���.

While Stöferle et al. observe a broad two-peak structure with
maxima around U and 2U, the present accuracy of our cal-
culation does not account for high-energy excitations resid-
ing around 2U. On the other hand, the current experimental
resolution does not allow to trace the interesting structure on
the scale of the bandwidth, see Figs. 5�b� and 5�c�. Thus,
both theory and experiment have to be developed further in
order to allow for a precise comparison. Furthermore, it is
worth mentioning that the current experiment may probes
nonlinear response.41

E. Lattice modulation in the superfluid phase

In the superfluid phase �with an order parameter ����0�,
the expansion of the constraint again provides terms linear in
the � operators and we obtain single mode peaks in the hop-
ping correlator Sx

kin at ��=0 and ��=�m due to sound and
massive excitations, respectively. Energy absorption is due to
the excitation of the massive mode only and its weight
Wmass� ���2 is given in Appendix C. In addition, we also find
a two-mode continuum �dominated by processes �s ,k ;m ,
−k�� with a weight suppressed by more than three orders of
magnitude in the entire parameter range.

In a trap, the sharp peak at �m will be smeared due to the
inhomogeneous density distribution. �Note that in the Mott
phase, the response is not changed by the trap as both exci-
tation energies �h�k�+�p�q−k� �18� and the matrix elements
P�k ,q� and P�x�

kin�k� are independent of ��.� The onset of
absorption is determined by the minimal gap �m

min which
occurs on the particle-hole symmetric line ��=��n0

and the
shape of the absorption profile depends on the distribution of
effective chemical potentials �eff�r�=�−Vtrap�r� in the trap.
Here, we analyze the shape for a quadratic trap with
�eff�0�=��n0

for a superfluid close to the Mott phase, J
=1.2Jc. The dependence of the gap �m on the chemical po-
tential �� can be calculated, see the inset of Fig. 5�a�, and a
convenient fit is given by �m−�m

min=w���−��n0
�2 with w

�2.06U−1. The hopping correlator then draws its weight at
frequency � from rings matching the local gap energy �m�r�,

Sx
kin��� =

1

�R2�
0

R

dr2�rWmass� ��� − �m�r��

�
1

	�� − �m
min

for �� � �m
min. �45�

The resulting tail then resembles the broad absorption profile
observed in the experiment of Stöferle et al.22,42 Note that the
precise shape depends on the actual density distribution in
the trap; in particular, the divergence at �m

min is removed
when �eff�0����n0

. Another potential source of broadening
is the finite lifetime of the massive mode due to the decay
into two phonons as considered by Altman and Auerbach in
Ref. 31. However, in two and more dimensions the effect of
the trap dominates over the lifetime broadening.

IV. SUMMARY AND CONCLUSIONS

We have generalized the truncation scheme, introduced by
Altman and Auerbach31 to deal with the Bose-Hubbard

FIG. 5. �a� Hopping correlator Sx
kin��� in the superfluid phase for

J=1.2Jc and n0=1 for a parabolic trap and commensurate filling in
the center �in a homogeneous system the response is nonzero only
at �=�m�. The inset shows the gap �m of the massive mode as a
function of the chemical potential with a minimum at commensu-
rate filling ��=��n0

. The triangles are the calculated gap values
and the solid line is a fit used in the calculation of Sx

kin��� in a trap.
�b� S�x�

kin�x� in the Mott phase at J=Jc /3. The response consists of a
particle-hole continuum with a gap �tot. The striking difference be-
tween the uniaxial �Sx

kin���, solid line� and the isotropic �Skin���,
dashed line� situation is due to interference effects. �c� The same as
in �d� for J=0.9Jc, where the gap �tot is larger and the available
bandwidth smaller.
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model in the particle-hole symmetric limit �large particle
numbers n0�1�, to the experimentally relevant situation of
small filling numbers n0 of order unity. The determination of
excitations consisting of small fluctuations about a varia-
tional ground state is inspired by the Holstein-Primakoff de-
scription of quantum-spin systems and corresponds to the
determination of spin-wave excitations above an antiferro-
magnetic ground state.43 We have determined the mean-field
phase diagram as well as the spectra and eigenstates in the
Mott-insulator and superfluid phases. These results then have
been applied to the calculation of two response functions, the
structure factor �density correlator� describing Bragg spec-
troscopy and the hopping correlator describing the lattice-
modulation spectroscopy.

A mean-field variational ansatz provides us with the usual
phase diagram valid in dimensions d�2. The inclusion of
two additional levels allows us to account for particle- and
hole-type excitations in the Mott phase and we determine,
using a Bogoliubov transformation, the dispersions of the
two gapped modes; at the same time, the Bogoliubov trans-
formation introduces a ground state carrying particle-hole
fluctuations. In the superfluid phase, we find a sound �Gold-
stone� and a massive �Higgs� mode and we determine the
characteristic velocity and gap parameters. The massive
mode describes a local counterflow of condensate and nor-
mal densities; this mode is absent in a Gross-Pitaevskii de-
scription where the dynamics involves a first-order time de-
rivative, but is allowed in a Klein-Gordon-type theory with a
second-order dynamics. The presence of the latter is due to
the underlying Mott physics providing “particles” and “anti-
particles” �holes� and has been shown to be relevant in the
Mott-insulator-superfluid transition in Ref. 21 �an additional
first-order derivative is present away from the particle-hole
symmetric line�. A similar �massive� mode was found for the
charge-density-wave compound NbSe2 below the supercon-
ducting transition temperature.44,45 The fate of this gapped
mode for U→0, where higher occupation numbers are of
importance, is currently under investigation.37

In the Mott phase, Bragg spectroscopy excites a particle-
hole continuum and provides information on the gap and
bandwidth of these two-particle excitations. To our surprise,
we find that the structure factor unveils the single-particle
excitation energies as well. In the superfluid phase, collective
modes �sound and massive� are excited and visible as sharp
peaks �to be smeared in a trap�; the massive mode gains
weight only at large momenta. The transition can be traced
watching the appearance of a gap when crossing from the
superfluid into the Mott-insulating phase.

The lattice-modulation scheme22 is presently the tool of
choice to gain spectroscopic information on atomic matter in
optical lattices. Our calculation of the hopping correlator
providing the system’s response reveals a two-particle con-
tinuum in the Mott phase which is sensitive to the details of
the excitation scheme, uniaxial versus isotropic. The re-
sponse in the superfluid is determined by the massive mode
which appears as a sharp peak at finite frequencies. In order
to better account for the experimental results we have ex-
tended our analysis to include the smearing due to the trap
and find that the precise shape depends sensitively on the
value of the chemical potential in the trap center. The experi-

mental detection of such an energy absorption at finite fre-
quency cannot be easily understood within a weakly interact-
ing theory as described by the Gross-Pitaevskii equation. On
the other hand, our strongly interacting theory provides a
massive �Higgs� mode which naturally accounts for such a
finite frequency absorption. Furthermore, a future experi-
ment could address the question of how this Higgs mode
disappears in the weekly interacting regime.
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APPENDIX A: SPIN HAMILTONIAN

Defining the spin-1 operators Si
+, Si

−, and Si
z in terms of the

t�,i operators via

Si
+ = 	2�t1,i

† t0,i + t0,i
† t−1,i� , �A1�

Si
− = 	2�t0,i

† t1,i + t−1,i
† t0,i� , �A2�

Si
z = t1,i

† t1,i − t−1,i
† t−1,i with �A3�

�Si
+,Si

−� = 2Si
z, �Si

z,Si
±� = ± Si

±, �A4�

we can write the Bose-Hubbard Hamiltonian �1� in the trun-
cated space as

HBH
spin = −

Jn0

2 �
�i,j�

Si
+Sj

− +
U

2 �
i

�Si
z�2 − ���

i

Si
z

−
Jn0�

2 �
�i,j�

�Si
zSi

+Sj
− + Si

−Si
zSj

+ + Si
−Sj

zSj
+ + Si

+Sj
−Sj

z

+ ��Si
zSi

+Sj
−Sj

z + Si
+Si

zSj
zSj

−�� , �A5�

where �=	�n0+1� /n0−1 is a measure of the “particle-hole
symmetry breaking.” In the work of Altman and Auerbach,31

� was set to zero.

APPENDIX B: PERTURBATION THEORY

For a perturbative treatment of the dynamic structure fac-

tor one starts from the pure Mott state �0̃� where all sites are
occupied by exactly n0 particles. A consistent expansion of
Eq. �28� in J /U is obtained by an admixture of virtual
particle-hole pairs in the ground state

�0��1� = − J�
i�j

�
�l,m�

�i, j�
�i, j�al

†am�0̃�
U

+ �0̃� , �B1�

where �i , j� denotes a state with n0+1 particles at i and n0
−1 particles at j. The excited states in Eq. �28� are to lowest
order given by the states
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�n� = �kp,kh� =
1

N
�
i�j

ei�kp·ri−kh·rj��i, j� , �B2�

with the energies

��kp,kh� = U − �n0 + 1��0�kp� − n0�0�kh� . �B3�

Inserting these perturbative states and energies into Eq. �28�
leads to the expression

S�2��q,�� = N J

U
�2

n0�n0 + 1��
K

dk

v0
�d��q − k�

− d��k��2� ��� − ��q − k,k�� , �B4�

where ��k�=1/z�l=1
d exp�ik ·al�. Both sides of the f-sum rule

can be calculated independently and they coincide with a
value given by

�
0

�

d��S�2��q,�� = 4
J2

U
Ndn0�n0 + 1��1 −

1

2
��q�� ,

which shows again the quadratic dependence on J and the
vanishing with q2 for small q.

APPENDIX C: EFFECTIVE HAMILTONIAN

1. Second-order expansion

Replacing all operators b0,i in Eq. �1� expressed in the b
bosons and collecting all terms second order in b1,i, b2,i is
leading to the effective Hamiltonian

Heff = 2Jz �
k�K

g11,k
−1 b1,k

† b1,k + g22,k
−1 b2,k

† b2,k +  f11,k
−1

2
b1,k

† b1,−k
†

+
f22,k

−1

2
b2,k

† b2,−k
† + g12,k

−1 b1,k
† b2,k + f12,k

−1 b1,k
† b2,−k

† + H.c.� ,

�C1�

where we extracted a factor 2Jz corresponding to the nonin-
teracting bandwidth from the definitions of the coefficients
given by

g11,k
−1 = −

��

2Jz
sin�2
�cos��� +

U

4Jz
cos��� +

1

2
�1 − cos2����

�n + 	n�n + 1� cos�2
� +
1

2
�sin�2
� + 1��

−
�k

2
�1

2
�cos2��� + 1��n +

1

2
�sin�2
� + 1��

−
1

2
	n�n + 1��1 − cos2����cos�2
�� ,

g22,k
−1 = +

��

4Jz
�3 − cos����sin�2
�

+
U

8Jz
�cos��� + 1� +

1

4
��1 − cos2�����

�n + 	n�n + 1� cos�2
� +
1

2
�sin�2
� + 1��

−
�k

4
�n +

1

2
�1 − sin�2
����cos��� + 1� ,

g12,k
−1 = −

��

2Jz
cos��/2�cos�2
� + cos��/2�

1

8
�1 − cos����

�cos�2
� + 2	n�n + 1� sin�2
�� −
�k

8
cos��/2�

��cos��� + 1�cos�2
� + 2	n�n + 1�

�1 − cos����sin�2
�� ,

f11,k
−1 =

�k

4
��1 − cos2�����n +

1

2
�sin�2
� + 1��

− 	n�n + 1��cos2��� + 1�cos�2
�� ,

f22,k
−1 =

�k

4
	n�n + 1��cos��� + 1�cos�2
� ,

f12,k
−1 =

�k

8
cos��/2���1 − cos����cos�2
�

+ 	n�n + 1��cos��� + 1�sin�2
�� , �C2�

where we defined again ��k�=1/z�l=1
d exp�ik ·al�.

2. Dispersion in the superfluid phase

In the superfluid phase the excitation energies are given
by

�s�m��k� = Jz	2�A��k� � 	A��k�2 − 4B��k�� , �C3�

and the coefficients are defined as

A��k� = �g11,k
−1 �2 + �g22,k

−1 �2 − �f11,k
−1 �2 − �f22,k

−1 �2 + 2�g12,k
−1 �2

− 2�f12,k
−1 �2,

B��k� = ��g11,k
−1 − f11,k

−1 ��g22,k
−1 − f22,k

−1 � − �g12,k
−1 − f12,k

−1 �2�

 ��g11,k
−1 + f11,k

−1 ��g22,k
−1 + f22,k

−1 � − �g12,k
−1 + f12,k

−1 �2� .

3. Massive mode weight the hopping correlator

The weight Wmass of the � peak at �m in Skin is given by

Wmass = sin ���2�cos ��/2�2�N21�0� + P21�0�� −
1

2
cos���

�	n0 + 	n0 + 1�2�N11�0� + P11�0���2

.
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