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The small-r, asymptotics of the self-energy 3 (k,w) of the homogeneous electron gas (HEG) is studied in
terms of the Feynman diagrams involving the noninteracting one-body Green’s function G, and the static bare
Coulomb repulsion v. The lowest-order approximation to 3(k,w) is given by the product of G, and v. The
nature of the proper ring-diagram summation (equivalent to the random-phase approximation) for % (k, w) that
affords the correct small-r, single behavior of rf In r, is investigated. Reexamination of ring-diagram summa-
tions for several properties of the HEG proves in a rigorous manner that the product Gyv,, where v, is the
ring-diagram-summed dynamically screened repulsion, yields the correct lowest-order asymptotics, whereas
G,vg, where G, is the ring-diagram-summed Green’s function, contributes only to higher-order terms.
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I. INTRODUCTION

Although an artificial construct, the homogeneous elec-
tron gas (HEG) constitutes an important model system for
electronic structure theory.! The ground state of the spin-
unpolarized HEG is characterized by only one parameter,
namely, the radius r, of the Wigner-Seitz sphere that contains
one electron on average.” This radius determines the Fermi
wave number as kp=(ar,)”! {where a=[4/(9m)]"3}, and
measures simultaneously the interaction strength and the par-
ticle density; high density corresponding to weak interaction
and hence weak correlation (for recent papers on this limit,
see Refs. 3-6). One could naively expect that at the weak-
correlation limit the bare Coulomb repulsion vy(q)=ar,/¢*
(where momenta and energies are measured in units of kg
and klz:, respectively) can be treated as perturbation. How-
ever, already in his early work on the HEG, Heisenberg’
showed that ordinary perturbation theory fails in this case.
With ey=3/10 being the energy per particle of the ideal
Fermi gas and ex=—%ar3/ 7 being the exchange energy in the
lowest (first) order, the total energy e=ep+e,+e, defines
the correlation energy e.=e,+es;+:-:, where e,~ (ar,)"
[note that =kge=e/(ar,)? gives the energy in atomic units].
In the second order, there is a direct term e,y and an ex-
change term e,, so that e,=e,4+¢,,. The direct term e,y di-
verges logarithmically near the Fermi surface (i.e., for the
vanishing transition momenta ¢ — 0, e,q— In ¢). This failure
of perturbation theory has been remedied by Macke® with an
appropriate partial summation of higher-order terms up to an
infinite order that describes screening effects and the collec-
tive mode plasmon with a cutoff momentum g¢,=\4ar,/ .
This ring-diagram summation, which is equivalent to
the random-phase approximation (RPA), vyields e,
=(ar)*(alnrg+b+--+), where a=(1-1n2)/7>=~0.031 091,
for the correlation energy at the weak-correlation limit. This
result has been subsequently confirmed by Gell-Mann and
Brueckner.’ The logarithmic behavior of e, at the weak-
correlation limit carries over to its kinetic and potential com-
ponents through the virial theorem!®
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(1.1)

d
Ve=Ty €= (ar)?[Ralnrg+(a+2b)+ ---].
N

Note that ty=¢,, 1,=0, v,=e,, and e.=f.+v.. It has been
shown’ that these small-r, nonanalyticities result from the
ring diagram summation for the momentum distribution
n(k)''-13 and for the static structure factor S(g).'* In the
lowest order, n(k) diverges near the Fermi surface,
n(k—1)~ ¥ (k=1)72 for k=1, and S(gq) diverges for ¢—0,
making #,; and v,y diverge correspondingly. The ring-
diagram summations remove this unphysical behavior.>:!!14
The chemical potential p= g+ uy+ e, Where py=1/2 and
Muy=—ar /m, enters our considerations through the Seitz
theorem, !’

_<§ l i) _( )2 1 +( C_l+b)+...
Me = 3 3rsdrx e.=(ary)"|alnr 3 .

(1.2)

In this paper, the small-r, behavior of the self-energy
3(k,w) for k=1 and w=1/2 is investigated. Here and in the
following, we use the term “small-r,” with the meaning of
“RPA in the lowest order,” i.e., we derive and discuss only
the terms containing In r, or those related to them. In particu-
lar, we determine which terms have to be included in the
partial summation for 2 (k,®) in order to ensure its correct
small-r; asymptotics. To achieve this objective, which sheds
light on the mathematical complexity of a weakly correlated
HEG and disproves some recent claims concerning 2 (k, w),
we employ several well-known theorems on the self-energy.
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II. RIGOROUS THEOREMS INVOLVING THE SELF-

ENERGY X (k,w)
The self-energy 2(k, ) is defined by
G= GO + G()EG,
o1 -k Ok-1
Golk,w) = ( ) + ( ) , 60— 0%,

1 1
w-—kK-id w-—-k*+is
2 2

(2.1)

where G, and G are the Green’s functions of the ideal Fermi
gas and the HEG, respectively. Limiting the summation of
the Feynman diagrams for X (k, ) to those terms that afford
correct results for r,— 0 allows one to apply several rigorous
theorems, which yield (i) the condition for w through the
Luttinger theorem Im 2(1, 1) =0,'¢ (ii) the momentum distri-
bution

n(k)zJ d—(l).ei‘“‘sG(k,w), (2.2)
277

(iii) the quasiparticle weight (through the Luttinger-Ward
formula'”)

1 .. (k,w)

ReXii T 2

Ip=

(iv) the potential energy (through the Galitskii-Migdal
formula'®)

1 d
v=5fd(k3)f2

—w,ei‘”‘SG(k, )2 (k,w).
i
Note that =3, +3, 3.=3,+33+ -, and 3,=3,,+3,,. In
the lowest order, one has X,=Gyv, and v,=Gy2,. With
vo(q)=ar,/¢* [compare Eq. (A5)], this produces

(2.4)

1- 42 1+k)ar< ar
k=-11 1 s (D ==—,
2x(k) <+2k nl—k T () T
3 ar,
=———. 2.5
b= 2.5)

Note that 2, (k) does not depend on w. With G,=G-G,,, the

correlation part of the potential energy reads
U.=(Gy+G )2 + G2, =Gp2 + G(2,+2,). (2.6)

However, our main interest is in the Hugenholtz—van Hove
(the Luttinger-Ward) theorem,!”-1%-20

1
Me=2c(L ), = o+ py+ i, Ho= 7
T
My =— = >, =(ar)’alnr+ - (2.7)
ar

The right-hand side (RHS) of the above equation depends on
r, through both 2 (k,w) and . At the limit of r;—0, u can
be replaced by uy=1/2.
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The ring-diagram summation is equivalent to setting
U,=Vo+0oQu,, where Q(q,w) is the polarization propagator
[in the lowest order, see Eq. (A1) in the Appendix]. For the
self-energy, this means that X'=Ggv,. It is easy to show that
employing the correlation part 2 =G(v,—v,) of 2 in con-
junction with Egs. (2.2) and (2.4) results in the RPA approxi-
mations for n.(k),>!! and vZ,>!* respectively.

In the following, we show that X7 is also the proper RHS
for Egs. (2.3) and (2.7) at the limit of r,— 0, the remainder
M=% -3 contributing only to the higher-order terms. We
also investigate whether 3F=(G-G)v,, which appears in
Ref. 22, is an alternative candidate for the RHS of Eq. (2.7).
In fact, we find that the “remainder” 3"™F=3 -3HF
=37+ determines the lowest-order term and EHF contrib-
utes only to the higher-order ones, thus contradlctlng the
conjecture that EgHF(l ,)=0.

III. THE RING-DIAGRAM SELF-ENERGY X{(k,w)

According to the diagram rules, the ring-diagram-summed
self-energy is given by

d’q _ 0(g.,n)
Sk, w ar)r— f J
c(kw)=(ar) 27 ¢* + q20(q, )

Ok +q| - 1)

1
—q~<k+5q>+i5

(1 — |k +q|)

X

1
W+ n—Ekz

+ n 0 (3.1)

—12 - ;
w+7n 2k q <k+2q) i0
If in the above equation the term qgQ(q, 77), which describes
the RPA screening of the bare Coulomb repulsion of ar,/q?,
is deleted, Xl(k,w) simplifies to 2,4(k,w). Whereas
S,4=Re 2,4(1,1/2) diverges with an artificial cutoff ¢, ac-
cording to (ar,)?f 0d9/q, the ring-diagram sum X
=Re 2{(1,1/2) is nondivergent, as it effectively replaces ¢,
by the “natural” cutoff g.~ \r,, producing '~ (ar,)*Inr,.
We follow the procedure of Gell-Mann and Brueckner for
the correlation energy.” Upon the substitution n=iqu and
contour deformation from the real to the imaginary axis, one
arrives at

Sro_ (ary)’? f f R(q,u) 2(x+q/2)
- q* q +qCR(q,u) u?+ (x+ql2)?
=—(ar) J f R(q’u)

™ q >+ q:R(q,u)

24 (g2 +1)?
u?+ (g2 -1)*

The asymptotic behavior for r,— 0 is determined by the
lower integration limit of ¢— 0, which allows for the ap-
proximate replacements of R(q,u) with Ry(u) [setting
Ro(u) # 0 makes the Coulomb repulsion effectively screened]
and In[- -] with 2¢/(1+u?) that yield

XIn (3.2)
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:(arQ{(%f dufi(z)z)ln r + const + :|
0

(3.3)

[see Eq. (A4) in the Appendix for the integral]. The resulting
3f=(ar,)*(aln ry+const+---) is in full agreement with the

LHS of the Hugenholtz—van Hove theorem [Eq. (2.7)].
The frequency derivative 7 =37 (1,1/2) can be treated

similarly,?!

oot [0 Ry s s
¢ 17'4 3 ¢* + ¢*R(q,u) du v + (x + g/2)?
~ (ar f dq f __R(qu)
B 4’ +4:R(q.u)
X a—i%(arctan ! +uq/2 + arctan ! _uq/2>5' (3.4)

Note that a thin layer of a vanishing thickness & has to be
, making integration by parts possible.
The small-g replacements R(q,u) with Ry(u) and
arctan(1+¢/2)/u with arctan 1/u yield

2”_<ﬂlf d”m(u) amni)“o“‘z’) o

[see Eq. (A4) in the Appendix for the integral]. Combining
this equation with Eq. (2.3) affords the well-known RPA

result of zp=(1-3")"'=1+3" +---=1-0.18r,+- 1!

IV. THE HARTEE-FOCK SELF-ENERGY X7 (k)

Since the bare Coulomb repulsion v((g) is a static one, the
Hartree-Fock (HF) self-energy 3MF=(G-G)v, is given by
the momentum distribution n(k) alone,*

arg 1 k—k'
KK In x
7Tk0

ne(k) =n(k) -

In the above equation, the factor in front of n (k) arises from
the Coulomb repulsion. Because E?F (k) does not depend on
w, it cannot contribute to the deviations of n(k) from
6(1-k) and of zp from 1 according to Egs. (2.2) and (2.3).
Such deviations are caused by the non-HF part EL‘HF
=3 —SMF=ST4... For n(k) set to 6(1—k), the Galitskii-
Migdal formula [Eq. (2.4)] yields the lowest-order exchange
energy vxz—%ars/ ar, whereas for the actual n(k) it produces
the full exchange or Fock energy,

o= 2 s f dk f Ak n(K)n(k')kk' In

EHF(]C)

ne(k'),

o1 —k). (4.1

k+k’
k- k’

b}

(4.2)

which constitutes only one component of the exact potential
energy v [see Eq. (43) of Ref. 12]. Consider the (dimension-
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less) pair density g(r) and its cumulant partitioning
g(N=1-2£2(n—=h(r)>> where f(r) is the (dimensionless)
one-body reduced density matrix [i.e., the Fourier transform
of n(k)] and A(r) is the cumulant pair density [i.e., the diag-
onal part of the cumulant (nonreducible) two-body density
matrix]. The potential energy v=vg+0v.,, follows from the
full pair density g(r). The Hartree term g,(r)=1 is compen-
sated by the positive background, whereas gx(r)=—% 2(r)
and g.m(r)==h(r) give rise to vp of Eq. (4.2) and vy,
respectively. Consequently, the knowledge of the non-HF
part EEHF=2£+ -+ is essential for proper evaluation of n(k),
Zg, and v. One may enquire whether it is nevertheless pos-
sible to employ the expression (4.1) in Eq. (2.7). Within per-
turbation theory, the leading term of n.(k) is proportional to
72, requiring that 3F(1) ~r?, which contradicts the scaling
of u.~ rf. The following analysis demonstrates that this con-
tradiction remains after the ring-diagram summation, which
turns out to yield, respectively, rf In r; and r?(ln ry)? as the
leading terms for the LHS and RHS of Eq. (2.7).
Because of the availability of exact nc(k),11 the RHS of

SH() =22,
m

1 +k‘ ’
(4.3)

I=fwdknc(k)f(k), f(k)=kIn -
0

can be readily computed at the weak-correlation limit of
ry— 0. In the following, the approach previously employed
in relating the small-r, nonanalyticities of 7, and v, to the
peculiarities of n (k) and the static structure factor S.(¢g) at
the limit of r;— 0 (Ref. 5) is used.

The small-r; behavior of the RHS of Eq. (4.1) is deter-
mined by the behavior of n.(k) near the Fermi surface. As
shown by Daniel, Vosko, and Kulik,'! and reiterated in later
works,* two functions are needed to describe this behavior,
namely, F(k) with the properties

F(k— 0)=4.11234 + 0(k?),

9 k87 T\
7 1-In2
Flk—1 , 4.4
k= 1=T o 44)
and G(x) with the asymptotics
771 In2 1
G(0)=3.35334, G(x>1)= >—+0| .
X X
(4.5)

Near k=1, n (k) is given by
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.
- F(k), 0<k<l1-¢,
27 1 1-k
2\ 2 ——sz , 1-¢E<k<1,
n(k>:<i> xq deto T
¢ 4 2wl (k-1
+ 556 — |, 1<k<1+§
qck qc
L+ F0), 1+é<k,
(4.6)
where 1>§>¢g.> The function F(k) contributes to

I=Ip+1; through the expression
Ip=1I; + 15,

2\2 o
1?=(ﬁ> f dk FR)F(K),
4 1+¢

2\2 =g
1;=—(ﬂ)JO dk F(R)f(K).

py (4.7)

With a fixed positive number A sufficiently small to assure
that F(k) can be replaced by its asymptotics (4.4), one ob-
f dk F(k)f(k)

tains
2\2
(2
d 4m ( 1+A
1+A f(k) )

+7’2(1 In2) dk
- —1n
3 e K(1-k)?

41—1n2fAdkf(1+k)
a8 ), T

The result for I is similar, the above integrand being re-
placed by —f(1—-k)/(1-k)?k?. Therefore

1-In2 (" dk
Ip= 0(9) +q: ¢ f 2,

=0(r?) + (4.8)

fa+k)  fA -k
(1+k)?* (1-k?>

w(k) = (4.9)

The contribution of G(x) to I=Iz+1 is treated analogously,

Ig=1Ig+1Ig,

2 rl+¢
Ig=ﬂf1 dk— G<|kq |)f(k)

8

1<=_q—§J dk— G('k |)f(k)
¢ 87mJ ¢ K q.

With a fixed positive number B sufficiently large to assure
that G(x) can be replaced by its asymptotics (4.5), it follows
that

(4.10)
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1+q.B 1+¢ _
=L el e
8 l+q.B qc

+ 1-1n2 (¢ dkf(1+k
zﬁj de(x)f( qcxz+qz1 . f —2f( g
81, (I+gx) 48 J, gk (1+k)

(4.11)

The result for Ié is similar, the respective parts of the first
and second integrands being replaced by —f(1-gx)/
(1-g.x)? and —f(1-k)/(1-k)?. Therefore,

3 B

q. 1-In2 dk

I= 3o | dx Gwlg) + 43 f Z
0

Combining the above estimates, one obtains

3 (B A
1-In2 dk
1= 0(?) +-L= f dx GEOW(q.x) +qi— f 2 w(k).
8 0 q.B

48 k
(4.13)
Since for a sufficiently small positive k
1 k 1 k
w(k) = In - In ~-2kInk,
l+k |24k| 1-k |1-k
(4.14)
the integrals of Eq. (4.13) yield the leading terms of
@ [t
- dx G(.X)(— 2qc‘x)1n(qc‘x)
™o
41—1In
==d: 5, lnqL InB+Cylng.+ = (lnB)
(4.15)
where the constant Cy does not depend on B, and
1-1n2 (* dk
4
. 2k)In k
T, f 2o
41- 2 2
=q. [(ln q.+InB)"—(InA)*] (4.16)

(note the cancellation of the terms dependent on B in the
combined integrals). Thus 3MF(1)=(ar,/7)*[(1-1n2)/12]
X[(In r,)>~4CyIn r,]+- -, which clearly demonstrates that
for r,— 0 the non-HF term 3"(1,1/2)=35(1,1/2)+- - has
to be used in the RHS of Eq. (2.7). In summary, the terms
that correctly describe the small-r,; behavior are contained in
EEHF(k,w)zzz(k,w)+~--.23 However, together with vp—vy,
E?F(l) can serve as a measure of the correlation strength; see
also Refs. 12 and 24 for entropy measures of electron
correlation.

V. CONCLUSIONS

The correct small-r, behavior of the correlation contribu-
tion 3 (k,w) to the self-energy is given by the ring-diagram-
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summed X (k,w). The summation eliminates the divergence
of 354(1,1/2) ~r2[odg/q and of n,y(k) at the Fermi surface.
Upon application of the Galitskii-Midgal formula, the
correct potential energy v.=2a(ary)*Inrg+--+ results.
The derivative d35(1,w)/dw|,-;,» used in conjunction
with the Luttinger-Ward formula affords the correct
zg=1-0.18r+-++ for r,—0. Finally, 2(1,1/2)
=(ar)*(alnr,+const+---) is in full agreement with the
Hugenholtz—van Hove formula u,=2.(1, u) with u—1/2 at
the limit of r,—0, contradicting the previously published
conjecture that 3"F(1, u)=0.2
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APPENDIX: THE POLARIZATION PROPAGATOR

In the lowest order, the polarization propagator is given
b

1

1
k+5q>—7]—i5

y
&k
q

+ ! 01 -k 0|k +q|-1).

q<k+ —q) +n-id
2

(A1)

For n=iqu, the real function R(q,u) arises,"!
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L+u? g4 (gl2+ 1) +u?
n
2¢q (g2 -1)*+u?

( 1+q/2 1-g/2 ) }
— ul arctan + arctan ,
u u

which is even in u. The function R(g,u) has the small-¢
expansion R(g,u)=R,(u)+0(g*) with

R(g.u) = Q(giqu) = %{1 .

(A2)

1
Ro(u) =1 — u arctan —. (A3)
u
The integrals
N ¢
f duLu)z = Z(1-1n2) =~ 0.482 003
o l+u" 2
and
“  Ri(u 1
f du olt arctan — =~ — 3.353 337 (A4)
o Rou) u
appear in Sec. II of this paper. The integrals
f ‘k+k’ -k 1+k’
dk'k’ In| —— | =k+ In| —
0 k—k' 2 1k
and
Lo k+k"| 1
dk | dk'kk' In| — | = = (A5)
o Jo k—k'| 2

appear in Secs. I and III.
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