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A generalization of the Aubry-André model in two and three dimensions is introduced which allows for
quasiperiodic hopping terms in addition to the quasiperiodic site potentials. This corresponds to an array of
interstitial impurities within the periodic host crystal. The resulting model is exactly solvable and I compute the
density of states and the ac conductivity. There is no mobility edge as in completely disordered systems but the
regular ac conductivity and the strongly reduced Drude weight indicate a precursor of the Anderson transition
as the Fermi energy goes from the center to the band edges.
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The description of electron motion in a nonperiodic po-
tential within the single-particle approximation is an elemen-
tary problem in solid state physics and still unsolved for the
case of a macroscopic number of impurities which break
discrete translational invariance. Especially the phenomenon
of Anderson localization in a tight-binding model with un-
correlated random site potentials defies exact analytical treat-
ment up to now. Therefore, several attempts have been un-
dertaken to study models with quasiperiodic potential, which
constitute a case intermediate between the perfect crystal and
a fully disordered system. The simplest realization of this
situation is a tight-binding Hamiltonian H1 where the site
energies vary in a quasiperiodic fashion:

H1 = H0 + �
m,n

gm�nm�n��n� . �1�

The �n� are local orbitals at site n of a d-dimensional hyper-
cubic lattice, H0 describes the Hamiltonian of the periodic
lattice and gm is a quasiperiodic function of m.

A possible choice for gm is

gm = 2g cos�Q · m� , �2�

with a vector Q whose components Qj are incommensurable
with �. This is the d-dimensional Aubry-André model and
unsolvable for d�1 despite its simplicity. Even in d=1 only
very limited results can be obtained exactly, e.g., the local-
ization property of the eigenstates if g�1.1

A general criticism applies to all models of type �1�: The
doping of the periodic host lattice with impurities is usually
not of the substitutional type but the additional atoms sit at
interstitial positions. They modify not only the site energies
but change locally the orbitals and in turn the overlap inte-
grals defining the hopping matrix elements. Furthermore, an
empty impurity orbital may serve as intermediate state for a
hopping process connecting distant sites of the host lattice.
These effects may be phenomenologically taken into account
by the following generalization of Eq. �1�:

H = H1 + �
m
��

n,n�

gm� �n − m,n� − m��n��n��� . �3�

The function gm� �n−m ,n�−m� depends on the position of
the impurity m and decays with growing distance of the sites
n ,n� from m. This generalization of Eq. �1� seems to be

more complicated than the Aubry-André model if both the
gm and the gm� vary quasiperiodically with m. It is therefore
surprising that one may construct such a model which is
completely analytically solvable and has a solution in arbi-
trary dimensions. “Complete solution” means here that the
Hamiltonian is diagonalizable and computation of the trans-
port properties can be done analytically. As in most non-
trivial soluble models, the solvability rests here on a relation
between the quasiperiodic functions gm and gm� . The starting
point is the periodic Hamiltonian

H0 = − t �
�n,n��

�n��n�� + H.c., �4�

where �n ,n�� denotes a pair of next neighbors on the
d-dimensional hypercubic lattice �=Zd with lattice constant
a=1. Its matrix elements read in momentum space

H0�p,p�� = − 2t�
j=1

d

cos�pj���p − p�� . �5�

with p ,p�� 	−� ,�
d.
We introduce two types of potentials related to the site m.
�I� A local potential term with matrix element Vm�n ,n�� in

position space:

Vm�n,n�� = gm�2��d�
j=1

d

��nj − nj����nj − mj� . �6�

�II� A nonlocal term

Vm� �n,n�� = gm� � 2

�
�d

�
j=1

d
�− 1�nj+nj�

�nj − mj − 1/2��nj� − mj − 1/2�
.

�7�

The functional form of Eq. �7� agrees with the general ex-
pression in Eq. �3� and can be interpreted as perturbative
description of a hopping process, where the electron goes
from site n first to the impurity site m+1/2 on the dual
lattice and from there to the site n�. The technical reason for
this choice of the non-local term is the fact that now both
potentials have the same form in momentum space:

Vm�p,p�� = gm exp	im · �p� − p�
 , �8�
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Vm� �p,p�� = gm� exp	im̃ · �p� − p�
 �9�

with m̃j =mj +1/2. Because both forms of the potential fac-
torize with respect to the dimension index j, also a mixed
type is possible, which is for some j of type I and for the rest
of type II. All of these possibilities can be parametrized
through a vector m with integer and/or half-integer compo-
nents, i.e. m���= �Z /2�d and we may drop the primes in
Eq. �9�. The generalization of the Aubry-André model in d
dimensions then reads

H = H0 +
1

�2��d �
m���

Vm �10�

and

gm = �2gloc cos�Q · m� , m � � ,

2gnloc cos�Q · m� , m � �� \ � .

 �11�

Here, Q denotes some vector in Rd such that Qj /� are irra-
tional. We may further assume that the numbers Qj /� are
linearly independent over Z. In this case, no point of the
lattice is equivalent to another. The original Aubry-André
model is recovered for gnloc=0. We set in the following
gloc=gnloc=g. The potential term VQ= �2��−d�m���Vm can
be rewritten in momentum space:

VQ�p,p�� = g	�4��p� − p + Q� + �4��p� − p − Q�
 . �12�

Here, �4��x� denotes the delta-function with fundamental pe-
riod 4�: �4��x+4n��=�4��x� for n�Z. The quasiperiodic
potential translates in momentum space to displaced delta
functions, which, however, do not have 2� periodicity but
4� periodicity due to the addition of the nonlocal terms of
type II. As a result, only finitely many points in momentum
space are connected through the potential term, even if Q /�
is irrational.

The simplest case is realized if just two sites in momen-
tum space are connected. This happens if one of the Qj lies
in the interval 	� ,2�
. The other components of Q can be
chosen at will. The Brillouin zone splits into three regions
R0, R1 and R2, where R0 contains points, which are not af-
fected by the potential �12� at all, whereas R1 and R2 are
mutually connected through the potential:

R1 = �
j=1

d

	− �,� − Qj
 ,

R2 = �
j=1

d

	− � + Qj,�
 ,

R0 = �
j=1

d

	− �,�
 \ �R1 � R2� �13�

�see Fig. 1 for the case d=2�.
It has to be emphasized that this splitting is equivalent to

a reduction of the Brillouin zone and concomitant generation
of subbands only if Q /� is a rational vector. In the general
case the model does not have a band structure.

Nevertheless, vectors p from R1 can be used to label the

two-dimensional invariant subspaces Hp, which are spanned
by �p� and �p+Q�. On these subspaces, the Hamiltonian can
be easily diagonalized:

�H�Hp
= �− 2t�

j

cos�pj� g

g − 2t�
j

cos�pj + Qj� � .

�14�

In the following we have set for simplicity t=1/2. Figures 2
and 3 give the density of states in two and three dimensions,
respectively. The total DoS is composed from two “bands,”
where the p band stems from the region R0, which is unaf-
fected by the quasiperiodic potential and the eigenstates of
Eq. �10� are the pure momentum eigenstates �p� for p�R0.
These are located in a region around E=0, the band center.
The q band is gapped and contains the eigenstates ��p

±� in Hp
for each p�R1 and energy eigenvalues Ep

±. It is located pre-
dominantly at the band edges.

To compute the conductivity, we first note that the p band
is not affected by the potential: The current commutes with
the Hamiltonian and we get a diagonal ac conductivity 	�
= �kT�−1
:

FIG. 1. The three regions R0 ,R1 ,R2 for d=2.

FIG. 2. Density of states for d=2. The potential is quasiperiodic
with Qx=2�−4 and Qy =2�−2�2. The coupling constant is g=2.
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Re	�kk�	�
 = �D0�����	� + �kk
reg�	� �15�

with vanishing regular part, �kk
reg�	�=0 and the Drude weight

D0��� of the pure system, which is only reduced because R0

does not cover the whole Brillouin zone.
In the q band, however, we obtain a nonvanishing �kk

reg

because the current J does not commute with H on the
spaces Hp:

�Jk�Hp
= e�sin�pk� 0

0 sin�pk + Qk�
� . �16�

The �anisotropic� Drude weight Dk
q��� of the q band is com-

puted as

Dk
q��� = ��

R1

dpnF�Ep
±����p

±�Jk��p
±��2 �17�

with the Fermi function nF�E�= 	1+exp ��E−EF�
−1. Dk
q ap-

proaches D0 for Qk→0,2�, i.e., when the potential becomes
periodic in the k direction. Figure 4 shows Dx

q /� for small
temperatures and EF located in the gap of the q band as
function of Qx and Qy.

The Drude weight Dk
q approaches a nonzero large cou-

pling limit g→
 with the exception of the �rational� value
Qk /�=1, where the expectation value of Jk in the eigenstates
of H goes to zero. This behavior is seen in Fig. 5.

Apart from Dk
q, which is reduced in the q band due to

scattering from the quasiperiodic potential, the regular part
of the ac conductivity does not vanish:

�kk
reg�	� = �

1 − e−�	

	
�

R1

dpnF�Ep
−����p

−�Jk��p
+��2��	 + Ep

− − Ep
+�

�18�

with EF�0. Because Ep
+−Ep

− is bounded from below by 2g,
the ac conductivity vanishes for frequencies below this
threshold. �xx

reg�	� is plotted in Fig. 6 for various values of �,
g, and Q in d=2. The form of �reg�	� in three dimensions is
very similar.

We have introduced and solved a tight-binding model
with quasiperiodic local and nonlocal potentials in arbitrary
dimension. The eigenstates fall into two groups, where one
group �states in the p band around E=0� exhibits the prop-
erties of the pure system but states at the band edges �q
band�, although still extended, have different transport prop-
erties due to the influence of the quasiperiodic potential: a
strongly reduced Drude weight and nonzero regular ac con-
ductivity. This can be interpreted as a precursor of the Ander-
son transition expected for lattices with uncorrelated site po-

FIG. 3. DoS for d=3. Here, Qx=2�−4, Qy =2�−2�3 and Qz

=2�−�5 with coupling g=2.

FIG. 4. Drude weight of the q band Dx
q /� for d=2. The maxi-

mum at Qy =� and Qx=0 corresponds to the Drude weight of the
pure system D0. The minimum along Qy =2� is due to the vanish-
ing area of R1 in this case.

FIG. 5. Drude weight Dx
q /� for d=3 and two different vectors

Q. The large coupling limit is zero for periodic Q= �� ,� ,�� and
nonzero for quasiperiodic Q= �2�−4,2�−2�2,2�−�5�.

FIG. 6. �xx
reg�	� for various parameters: C3 corresponds to g=2,

�=1, Q= �2�−4,2�−3�, C4 has the same g and Q but �=5, C2

and C1 both have g=2.5 and �=1 but different Q: �2�−4,2�−3�
and �2�−4.8,2�−2.5�. Although R1 has the same area in both
cases, the ac conductivity is quite different. EF=−2 in all cases; the
Fermi energy lies within the lower q band.
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tentials. For irrational values of Qj /� the system has no band
structure in the usual sense. Nevertheless, the density of
states is absolute continuous and therefore “bandlike.”2 This
feature has been found numerically in the two-dimensional
labyrinth tiling,2 the analogous three-dimensional model3

and the square Fibonacci tiling4 for a certain range of param-
eters. The “bandlike” spectra are prima facie closer to the
experimentally observed quasiperiodic systems5 than the
models which exhibit a singular continuous spectrum like
most of the one-dimensional examples.6 But this does not
mean that the present model is typical for real quasicrystals.
The main objection to the physical relevance of the form �7�
for the nonlocal term is the following: the hopping matrix
elements decay algebraically with distance from the impurity
site whereas the decay should be exponential. In this respect
the model resembles the Lloyd model, which describes un-
correlated disorder with a broad �Lorentzian� distribution of
the site potentials.7 However, only the disorder-averaged
DoS can be analytically calculated in the Lloyd model, not
the transport properties. It is therefore only partially solv-
able. Of course, the “long-range” nature of the quasiperiodic
hopping term has a delocalizing effect on the eigenstates and

is probably the reason for the absence of a mobility edge in
the generalized Aubry-André model.

In addition to the conductivity, one may study the tempo-
ral behavior of wave packets initially located at a single site
and the associated �anomalous� diffusion of the electrons.
This has been done numerically for several quasiperiodic
systems in two and three dimensions.2,3,8 Moreover, some
theoretical predictions relating spectral and diffusive proper-
ties have been made.9 These predictions can now be tested
analytically in the present model, which will be the subject
of a forthcoming paper. A second line of future investigation
is a perturbation theory around the exactly solvable point
gloc=gnloc. This introduces a 2�-periodic displaced delta
function with a weight proportional to gloc−gnloc, a quantity
which may serve as small parameter of the perturbative ex-
pansion. It is possible that localized states appear as soon as
gloc−gnloc becomes nonzero, in which case the localized re-
gime would be perturbatively accessible.

I wish to thank N. Andrei and K.-H. Höck for fruitful
discussions and the referees for important hints.
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