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We derive exactly all Green’s functions for the two-site Hubbard-Holstein model. We then study the bipo-
laron phase diagram, with emphasis on its unbinding into two polarons and on the crossover from a two-site to
a one-site bipolaron. The results are relevant for infinite-size systems.
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It is well known that electron-phonon coupling mediates
an effective attraction between electrons; this is responsible
for Cooper-pair formation in conventional superconductors.
With electron-phonon coupling, electrons also become
dressed by phonon clouds. The resulting polarons can have
properties quite different from those of bare electrons. If
electron-electron repulsion is screened, polarons tend to bind
into bipolarons due to the phonon-mediated attraction. The
interplay between this effective attraction and the electron-
electron repulsion is of significant interest for understanding
the properties of materials where polaronic and bipolaronic
effects are known to be important—e.g., transition-
metal-oxides1 and conjugated polymers.2 For cuprates there
is growing evidence that electron-phonon interactions are
rather important,3 and this is well known to be the case for
manganites.4

In this context, finding exact solutions even for simpler
models is useful, as they allow us to understand regions in
parameter space where perturbation theory fails. Here we
derive analytically all Green’s functions of the two-site
Hubbard-Holstein �HH� model, with emphasis on the bipo-
laron. These results are of interest for materials with highly
polarizable small clusters, such as Ti-Ti pairs in Ti4O7 and
V-V pairs in NaxV2O5. As we argue below, they are also
directly relevant for understanding polaron and bipolaron be-
havior on infinite lattices. Previously, the two-site HH model
was studied by numerical5 and variational6 means. The ana-
lytical solution for the polaron Green’s function was recently
found.7

The two-site Hubbard-Holstein Hamiltonian is

H = Hel + Hph + Vel-ph, �1�

where the electronic part

Hel = − t�
�

�c1,�
† c2� + H.c.� + U�n1↑n1↓ + n2↑n2↓� �2�

describes hopping and the on-site Hubbard repulsion,

Hph = ��b1
†b1 + b2

†b2�

describes longitudinal vibrations of the two sites, and

Vel−ph = g�n1�b1
† + b1� + n2�b2

† + b2��

is the Holstein electron-phonon coupling. Here ni�=ci�
† ci�,

ni=��ni� are electron occupation numbers, and we set �=1.
Using relative and center-of-mass �c.m.� bosons b= �b1

−b2� /�2, B= �b1+b2� /�2, we rewrite Hph+Vel-ph=��B†B

+b†b�+g /�2��n1+n2��B†+B�+ �n1−n2��b†+b��. In any
N-electron state the c.m. part is �B†B+Ng�B†+B� /�2

=�B̄†B̄−N2g2 / �2�2�, where B̄=B+gN / ��2��=XBX† with
X=exp�−gNB† / ��2���. From now on we assume that the

c.m. motion is frozen in its ground state �g.s.� �0̄�	X�0�, so
that Ec.m.=−N2g2 / �2�2�. This simply shifts all spectra. The
remaining terms are

Hph + Vel-ph = �b†b +
g
�2

�n1 − n2��b† + b� . �3�

As a first step to finding bipolaron Green’s functions, we
list the two-electron eigenstates of Hel. The three triplet
states �1,1�=c1↑

† c2↑
† �0�, �1,0�= �c1↑

† c2↓
† +c1↓

† c2↑
† � /�2�0�, and

�1,−1�=c1↓
† c2↓

† �0� are degenerate, Hel�1,m�=0. Since �n1

−n2��1,m�=0, Eq. �3� shows that the triplet sector of the
Hilbert space is not coupled to b bosons and so its spectrum
is unchanged. We ignore these states from now on. The sin-
glet �s�= �c1↑

† c2↓
† −c1↓

† c2↑
† � /�2�0� and doubly occupied states

�± �= �c1↑
† c1↓

† ±c2↑
† c2↓

† � /�2�0� give rise to the remaining three
eigenstates

Hel�− � = U�− �, Hel�s ± � = E±�s ± � ,

where

�s − � = cos ��s� + sin �� + �, �s + � = sin ��s� − cos �� + � ,

E± =
U ± �U2 + 16t2

2
, cos � =�1

2
1 +
U

�U2 + 16t2� .

For U�0 and ignoring the triplet eigenstates, �s− � is the
ground state, followed by ��� and �s+ � as excited states.

For these states, �n1−n2��s− �=2 sin ��−�, �n1−n2��s+ �
=−2 cos ��−�, and �n1−n2��−�=2�sin ��s− �−cos ��s+ ��.
Coupling to the b bosons mixes these states, therefore giving
rise to new bipolaron eigenstates. To find their eigenvalues
and eigenfunctions, we calculate the bipolaron Green’s func-
tions, which we define as

G f ,i
n,m��� = �f �bnĜ���b†,m�i� , �4�

where �i� and �f� are any of the �s± � and ��� eigenstates, and

Ĝ���= ��−H+ i��−1 is the Green operator. Note that to ac-
count for the c.m. contribution, we must replace �→�
−Ec.m.. We do this for all the results we show below.

Using a Lehmann representation in terms of the true bi-
polaron eigenstates H�2,	�=E2,	�2,	� results in
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G f ,i
n,m��� = �

	

�f �bn�2,	��2,	�b†,m�i�
� − E2,	 + i�

, �5�

showing that poles mark the bipolaron spectrum and wave
functions can be extracted from the residues. Also,
G f ,i�� ,T�= �1−e−
���n=0

� e−
n�

n! G f ,i
n,n��+n�� are temperature-

dependent bipolaron Green’s functions.
We show in detail the derivation of G−,−

n,m��� and
G−,s±

n,m ���. Other Green’s functions are derived similarly. The

calculation is based on Dyson’s identity Ĝ���= Ĝ0���
+ Ĝ���Vel-phĜ0���, where Ĝ0���= ��−Hel-Hph+ i��−1 has

the eigenvalues Ĝ0���b†,m�s± �=gs±��−m��b†,m�s± � and

Ĝ0���b†,m�−�= �g−��−m���b†,m�−� with

gs±��� = �� − E± + i��−1, g−��� = �� − U + i��−1

being the two-electron Green’s functions for zero coupling.
For later convenience, we also introduce

g��� = gs−���sin2 � + gs+���cos2 � . �6�

First, we define

Fnm =
 �− �bnĜ���b†,m�− � , if n − m even,

�− �bnĜ���b†,m� + � , if n − m odd;
� �7�

i.e., Fnm=sin �G−,s−
n,m ���−cos �G−,s+

n,m ��� if n−m is odd. Using
Dyson’s identity, we find the recursion relations

Fnm = �nmn!f��� + gnm����mFn,m−1 + Fn,m+1� , �8�

where f���=g−��−n�� and

gnm��� = 
�2gg−�� − m�� , if n − m even,

�2gg�� − m�� , if n − m odd.
� �9�

Equations �8� is solved in terms of continued fractions.8 For
m
n, iterations starting from m=0 show that Fn,m−1
=An,mFn,m, while for m�n, iterations starting from m�n
show that Fn,m+1=Bn,mFn,m, where

An,m��� =
gn,m−1���

1 −
�m − 1�gn,m−1���gn,m−2���

1 −
�m − 2�gn,m−2���gn,m−3���

1 − ¯

, �10�

Bn,m��� =
�m + 1�gn,m+1���

1 −
�m + 2�gn,m+1���gn,m+2���

1 −
�m + 3�gn,m+2���gn,m+3���

1 − ¯

�11�

are finite and infinite continued fractions, respectively. Using
Fn,n−1 and Fn,n+1 in Eq. �8� with n=m then gives

Fn,n =
n!f���

1 − gnn����nAn,n��� + Bn,n����
. �12�

Then, if m
n, Fn,m=An,m+1An,m+2¯An,nFn,n while if m�n,
Fn,m=Bn,m−1Bn,m−2¯Bn,nFn,n.

G−,−
n,m���=Fnm if n−m is even. Otherwise, Dyson’s identity

gives

�− �bnĜ���b†,m�s� = cos �G−,s−
n,m ��� + sin �G−,s+

n,m ���

= g�2sin � cos ��gs−�� − m��

− gs+�� − m����mFn,m−1 + Fn,m+1� ,

which is known. Combining this with the also known Fnm

=sin �G−,s−
n,m ���−cos �G−,s+

n,m ��� then gives all G−,s±
n,m ��� for odd

n−m. Finally, interchanging the expressions for even and
odd cases in the definition of Fnm, it is straightforward to
show that G−,−

n,m���=0 if n−m is odd and G−,s±
n,m ���=0 if n

−m is even. This completes their derivation. Other bipolaron
Green’s functions are found similarly, starting with the ap-
propriate matrix elements in the equivalent of Eq. �7�. We list
here only the “diagonal” elements:

G−,−
n,n ��� =

n!g−�� − n��
1 − gnn����nAn,n��� + Bn,n�

, �13�

Gs−,s−
n,n ���

= n!gs−�� − n��

��1 +
sin2 ��2ggs−�� − n���nÃn,n��� + B̃n,n����

1 − g̃nn����nÃn,n��� + B̃n,n����
� ,

�14�

Gs+,s+
n,n ���

= n!gs+�� − n��

��1 +
cos2 ��2ggs+�� − n���nÃn,n��� + B̃n,n����

1 − g̃nn����nÃn,n��� + B̃n,n����
� .

�15�

Ãn,m��� and B̃n,m��� are given by Eqs. �10� and �11� but with
gnm replaced by g̃nm, where

g̃nm��� = 
 �2gg�� − m�� , if n − m even,

�2gg−�� − m�� , if n − m odd.
� �16�

The Green’s functions for the N=1 and N=3 electron
cases are found similarly. We quickly summarize the N=1
�polaron� case; N=3 can be mapped onto it. The spin of the
electron is now irrelevant, and we ignore it. Hel has two
eigenstates �e /o�= �c1

†±c2
†� /�2�0�, and Vel-ph couples one to

the other. Proceeding as before, we find all the polaron
Green’s functions—in particular,

Ge,e
n,n��� = �e�bnĜ���b†,n�e� =

n!ge�� − n��

1 − ḡnn����nĀn,n + B̄n,n�
,

where again Ān,n and B̄n,n are given by Eqs. �10� and �11�,
but now with gnm���→ ḡnm���, where
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ḡnm��� = 
gge�� − m��/�2, if n − m even,

ggo�� − m��/�2, if n − m odd.
� �17�

ge���= ��+ t+ i��−1 and go���= ��− t+ i��−1 are the free one-
electron Green’s functions. Go,o

n,n��� is obtained by exchang-
ing ge���↔go��� �or t→−t� everywhere.

Let us focus on the n=0 case—i.e., the T=0 polaron
Green’s functions. The different denominators of Ge,e

0,0��� and
Go,o

0,0��� signal two distinct sets of eigenstates. Indeed, in
Figs. 1�a� and 1�b� we plot the T=0 spectral weights
− 1

� Im Ge,e
0,0��� and − 1

� Im Go,o
0,0��� on a logarithmic scale, so

that peaks with small weight are visible. In Fig. 1�c� we trace
a few eigenstates versus the effective coupling �=g2 / �t��
�the coordination number 2d of infinite lattices is here re-
placed by 1�. Consider first g=0. Here we have two sets of
states with energies ±t+n� �only the ±t peaks are seen in
G0,0�. For small g, mixing gives some weight to the other
eigenstates and all become visible. Because Ge,e

n,m���
=Go,o

n,m���=0 if n−m is odd, eigenstates are either of type
�n�	nb†,2n�e�+
nb†,2n+1�o�� �these are shown by Ge,e

n,n���� or
�n��nb†,2n+1�e�+�nb†,2n�o�� �these are shown by Go,o

n,n����. As
� increases, interactions lower all energies. For �	1.5, the
two lowest states become almost degenerate, indicating that
small, one-site polarons have been formed �the two states are
the symmetric and antisymmetric combinations of Lang-
Firsov-type solutions�. For larger �, the low-energy spectrum
is similar to that of a polaron on an infinite lattice. This also
has kinetic energy, but the bandwidth is exponentially sup-
pressed and this contribution is negligible.11,12

The same holds true for a bipolaron. This enables us to
extract information about bipolaron behavior in the strong-
coupling limit, which is of direct relevance for infinite sys-
tems. We begin by studying the bipolaron ground state. In
Fig. 2�a�, we plot the g.s. �lowest pole of Gs−,s−

0,0 ���� and the
first excited state �lowest pole of G−,−

0,0 ���� versus �, for t=2,
�=0.5, and U=8. At g=0, the g.s. has energy E−, while
G−,−

0,0 ��� shows only a pole at +U �not shown�. For finite

small g, mixing between ��� and b†�s− � creates a state of
small weight and energy �E−+�, visible in G−,−

0,0 ���. This is
the first excited state at all finite g �like for the polaron, there
is an infinite sequence of higher-energy states which we do
not show here�. As the coupling increases, the energies of
both states decrease. Figure 2�a� shows two regimes: for �

2, both energies decrease with almost the same slope. The
energies are well fitted by E−−2g2 /� and E−+�−2g2 /�,
respectively �see Fig. 2�a��. This shows that here the bipo-
laron g.s. consists mostly of a two-site singlet �so a U penalty
for double occupancy is avoided� and each electron creates
its own polaron cloud on its site, so that energy is lowered by
2�−g2 /��. However, for larger �, it becomes advantageous
to have both electrons on one site. Here, the two eigenstates
become almost degenerate, corresponding again to symmet-
ric and antisymmetric combinations of bipolarons on the two
sites. The energy is well fitted by U−4g2 /�− t2� /g2 �see
Fig. 2�a��, where the first term is the penalty for double oc-
cupancy, the second term is the energy −�2g�2 /� of the pho-
non cloud created when both electrons are at the same site,
and the third term is a perturbational correction coming from
virtual hopping of one electron to the other site, leaving the
phonon cloud behind. The crossover from the two-site bipo-
laron �called S1; see Refs. 9 and 10� at smaller � to a single-
site bipolaron �called S0� at larger � is quite sharp especially
for larger U, as can be seen in Fig. 2�b�. When it occurs at a
fairly large �, this value should agree well with the value for
this crossover found in numerical studies of infinite lattices.
In the infinite lattice both types of bipolarons also have �dif-
ferent� kinetic energies associated with their center-of-mass
translation; however, at large � the kinetic energies are ex-
ponentially small9–11 and should not significantly shift the
crossover.

Interestingly, even the unbinding of the S1 bipolaron into
two polarons, at a smaller �, can be traced accurately using
these two-site model results. In Fig. 2�b�, the solid line
shows twice the g.s. energy of a polaron. At small �, two
polarons are energetically more favorable than a S1 bipo-
laron, suggesting bipolaron unbinding in an infinite system.

FIG. 1. �Color online� �a� − 1
� Im Ge,e

0,0���, �b� − 1
� Im Go,o

0,0���,
and �c� poles of Ge,e

0,0��� �solid lines� and Go,o
0,0��� �dashed lines� as

a function of �=g2 / �t��, for t=2, �=0.5.

FIG. 2. �Color online� Left: g.s. �circles� and first excited state
�squares� bipolaron energies vs �, for U=8. Lines are fits described
in the text. Right: g.s. energy �and its derivative with �, inset� for
U=0,2 ,4 ,6 ,8 ,10. The solid line is twice the polaron g.s. energy. In
all cases t=2, �=0.5.
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Again, we expect this unbinding value to be quite accurate as
long as it is in the range where polarons and bipolarons are
very heavy.

Based on these considerations, we draw a phase diagram
for bipolarons, shown in Fig. 3. We use t=�=1 so we can
compare with results obtained numerically for infinite 1D
and 2D Hubbard-Holstein models.9,10 There is good agree-
ment with the 1D values for the unbinding line �the S1
→S0 crossover was not studied numerically in Ref. 9�. The
agreement with the 2D results is poorer at weaker couplings,
but acceptable at stronger couplings. For the S1→S0 cross-
over, this may be due to a different “definition” of the cross-
over �we use the change of slope of the g.s. energy �see inset

of Fig. 2�, while they use the change in the effective mass�.
As U decreases, the crossover becomes less sharp, so differ-
ent criteria may give quite different results. The other impor-
tant point is that the two-site HH predictions are relevant for
an infinite system only if masses are exponentially large. The
crossover to heavy polarons occurs for g2 / ��t��2d.11 This
suggests that the two-site HH predictions should not be taken
seriously for �
2 �in 1D� and �
4 �in 2D�.

The S1→S0 crossover does not vary much with � / t
�dashed lines in the inset of Fig. 3�. It stays close to the
expected strong-coupling asymptotic value9,10 U−4g2 /��
−2g2 /�→U / t�2�. However, the unbinding line does
change significantly. As � / t→0, it approaches the expected
strong-coupling asymptotic value U / t=4� �dash-dotted line�.
For larger � / t, the unbinding line initially stays quite close
to the S0→S1 crossover until larger � values when it moves
towards U / t=4�. Thus, the region of parameter space inhab-
ited by S1 bipolarons expands as � / t decreases, as also
noted in Ref. 13.

In conclusion, it was shown that all Green’s functions for
the two-site Hubbard-Holstein model can be derived analyti-
cally in terms of continued fractions. From these, one can
calculate virtually any quantity of interest, such as eigenen-
ergies, wave functions, phonon statistics in different states,
temperature dependence, etc. These results are relevant for
materials containing two-site clusters and can also be used as
a starting point for cluster perturbation theories.14 Interest-
ingly, they also allow us to understand aspects of polaron and
bipolaron physics in infinite systems at strong couplings.
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