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First-principles density-functional calculations for graphene and defective graphene are used to examine
when the quasi-two-dimensional electrons near the Fermi energy in graphene could be represented by massless
fermions obeying a Dirac-Weyl �DW� equation. The DW model is found to be inapplicable to defective
graphene containing even �3% vacancies or N substitution. However, the DW model holds in the presence of
weakly adsorbed molecular layers. The possibility of spin-polarized phases �SPP� of DW-massless fermions in
pure graphene is considered. The exchange energy is evaluated from the analytic pair-distribution functions as
well as in k space. The kinetic energy enhancement of the sipn-polarized phase nearly cancels the exchange
enhancement, and the correlation energy plays a dominant residual role. The correlation energies are estimated
via a model four-component two-dimensional electron fluid whose Coulomb coupling matches that of
graphene. While SPPs appear with exchange only, the inclusion of correlations suppresses them in ideal
graphene.
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I. INTRODUCTION

Graphene and related materials �e.g., nanotubes,
fullerenes� have become a mine of technologies and new
horizons in physics.1,2 These include cosmological models
on honeycomb branes, superconductivity on bipartite
lattices,3 nanotubes,4,5 Hubbard models,6 spin-phase
transitions,7–9 nanostructures,10 and other aspects of strongly
correlated electrons.11 The carbon atoms in graphene form a
quasi-two-dimensional �Q2D� honeycomb lattice and con-
tribute one electron per carbon to form an unusual 2D elec-
tron system �2DES� with massless Fermions obeying a
Dirac-Weyl �DW� equation near the Fermi points.12–14 The
hexagonal Brillouin zone has two inequivalent points K
= �1/3 ,1 / �3� and K�= �−1/3 ,1 / �3�, in units of 2� /a0,
where a0 is the lattice constant. The simplest tight-binding
model with nearest-neighbor hopping t is sufficient to de-
scribe the valence and conduction bands �� and �*� near the
K, K� points, i.e., at the Fermi energy EF, where the band
gap is zero. The Dirac-Weyl 2D electron system �DW-2DES�
is nominally “half-filled,” with the �* band unoccupied �see
Fig. 1�, and has spin and valley degeneracies, with a Berry
phase associated with the valley index.14

The above picture assumes a perfect 2D sheet of C atoms
in a honeycomb lattice held in place by the �-bonding struc-
ture of the C framework. In practice, since defects are fa-
vored by the entropy term in the free energy, some carbon
atoms may be missing, forming vacancies; they may also be
substituted with other defect atoms. The surface itself may be
covered with adsorbed gases. Hence the nature of the density
of states �DOS� near the Fermi energy in systems with va-
cancies and substituted atoms needs to be considered.15,16

Removing a carbon atom effectively removes four valance
electrons from the system, and the resulting vacancy may or
may not lead to a magnetic, conducting or insulating ground
state. Replacing a C atom by, say, a nitrogen atom provides
five valance electrons. We find that at typical concentrations
of 3% or more, the Dirac-Weyl picture fails, and the Fermi

energy moves into a band gap or to regions with a high
density of states. However, if less extreme situations are con-
sidered �e.g., adsorbed gases on graphene�, the DW picture is
found to hold true.

The Fermi liquid found in metals and semiconductor in-
terfaces is characterized by the Wigner-Seitz radius rs of the
sphere �or disk in 2D� which contains one electron. When
expressed in atomic units �involving the effective mass m* of
the electrons�, rs becomes the ratio of the potential energy to
the kinetic energy, i.e., a measure of the strength of the Cou-
lomb interaction. Hence rs�1 provides a regime where

FIG. 1. �Color online� Linear dispersion bands near a K point
where the �* and � bands cross. In �a� we show a doped unpolar-
ized system with equal occupation of the up-spin ��u� and down-
spin states. In �b� the polarized system has only electron carriers. In
�c� both electron and hole carriers occur. This is the only possibility
for spin polarization if doping is zero �kF=0 and ku=kd�.
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Fermi-liquid perturbation theory is strictly valid. The vanish-
ing of the density of states and the effective mass of the
electrons in DW-2DES near the Fermi points implies that the
strict Fermi-liquid picture breaks down in perfect graphene.

An approach often used for strongly correlated electrons
is to resort to the Hubbard model. This is applicable to
narrow-band systems where exchange interactions are negli-
gible and the Coulomb interactions are between on-site sin-
glet pairs. Such models have been used9 to discuss possible
magnetic and charge-density-wave ground states of graphene
nanoribbons. However, the exchange interaction in graphene
is quite important, the bands are not narrow, and the Cou-
lomb interactions are not screened to within a single lattice
site. Hence the Hubbard model may be quite unreliable for
graphene.

The DW-2DES can be doped to contain carrier electrons
�in the �* band�, or holes as well �in the � band�, and pro-
vides a rich system which retains the massless-fermion char-
acter, as long as the material is not strongly modified. How-
ever, electron-electron interactions in the DW-2DES may
modify the � and �* bands, lift the sublattice �valley� degen-
eracies, or stabilize spin-polarized phases �SPP� in prefer-
ence to the unpolarized state, if the doping level or the
strength of the Coulomb interaction could be varied. The
effect of electron-electron interactions has been most exten-
sively studied in Fermi-liquid-like electron systems found in
GaAs/AlAs interfaces or Si/SiO2-inversion layers. The SPP
in such GaAs/AlAs-based 2DES, predicted to appear at low
coupling �rs�2–4� if perturbation methods are used, gets
pushed to high coupling �rs�26� if quantum Monte Carlo
and such nonperturbative theory �NPT�, were used.17,18 The
two-valley 2DES does not show a SPP in NPT, unlike for
one-valley systems, presumably because of the preponder-
ance of the �three times as many� direct Coulomb interac-
tions over the exchange interactions.19 The exchange and
correlation energy Exc in the four-component Si/SiO2 elec-
tron system were calculated in Ref. 19 using the classical-
map hypernetted-chain �CHNC� technique, accurately recov-
ering the quantum Monte Carlo �QMC� results in every
coupling regime.20 CHNC provides the pair-distribution
functions �PDFs� gij as a function of the coupling strength.
Then Exc is evaluated via a coupling constant integration,
providing a fully nonlocal, transparent approach. The method
has been successfully applied to the 2DES,21 3DES,22 the
2-valley 2DES in SiO2 interfaces,19 the thick quasi-2DES in
hetero-interface gated field effect transistors �HIGFETS�,23

and the electron-proton system.24 However, the full nonlocal
treatment of exchange and correlation in graphene involves
an 8�8 matrix of two-component PDFs because of the spin,
and valley indices as well as the presence of � ,�* bands.
Hence in this study we first consider the exchange energies
via an analytic evaluation of the noninteracting PDFs. The
correlation energies are estimated by appealing to our results
for the spin-polarized four-component two-valley 2D elec-
tron system �2v-2DES� of Si-MOSFETS. The noninteracting
PDFs of the DW-2DES, Gij

0 �r� involve two components, the
first being a Bessel function as in the ordinary 2DES, while a
second, associated with the cosine of the angle of e-e scat-
tering, involves products of Bessel and Struve functions. The
exchange-energy enhancement of the spin-polarized phase

nearly cancels the kinetic-energy enhancement, implying that
the correlation energy plays the dominant residual role. We
find that while there are stable SPPs in an exchange-only
approach, including the correlation energy using the 2v-
2DES data stabilizes the graphene-2DES in the unpolarized
state. This conclusion is not surprising since the Coulomb
coupling strength in graphene is �2–3, and no SPPs are
found in electron liquids at such low coupling, except as
artifacts of low-order theories.

In the following section we present first-principles calcu-
lations for pure graphene, graphene with �3%, and �12%
vacancy concentrations, and show that the DW model is in-
applicable to such systems. We also consider systems with N
substitution as the lattice distortion effects are smaller here.
Nevertheless, even here the DW model does not seem to be
applicable. However, if we consider a graphene layer having
a metastable sheath of N2 molecules adsorbed on it, with no
disruption of the �-bonding network, the DW-model does
remain applicable. Thus, having established the limits of the
DW model, we proceed to examine the exchange and corre-
lation effects among DW fermions, and show that a stable
spin phase transition is found only in “exchange only” mod-
els which neglect electron correlation effects.

II. DENSITY-FUNCTIONAL CALCULATIONS OF
GRAPHENE SYSTEMS

Simple tight-binding models �TBM� can be trusted only if
they are validated by more detailed calculations and experi-
ments. While TBM can be successfully exploited within a
limited energy window for pure graphene, the effect of va-
cancies and lattice substituants, etc., needs detailed consider-
ation. A vacancy removes four valence electrons, distorts the
bond lengths and angles around the vacancy, creating pen-
tagonal networks and compensating larger networks, localiz-
ing electrons near the vacancy and changing the structure of
the electronic density of states �DOS�. The bond lengths and
the network structure is better preserved with N substitution.
Here an extra electron is added to the graphene system for
every N substitution. Attempting to treat such effects using
tight-binding methods augmented by, say, T-matrix theory,
etc., to account for impurity effects are well known to be
strongly model dependent. Nevertheless, some insight has
already been gained from short-ranged scatterer models
where lattice relaxation and other very important issues are
not handled.25–27 However, density-functional theory �DFT�
has an excellent track record in just such problems where
electronic and ionic energy minimization can be carried out
until the Hellman-Feynman forces on atoms around the va-
cancy or the substituant are reduced to zero. There are a
number of such DFT calculations already in the
literature,15,16 mainly concerned with energetics and bond-
ing. Here we examine the bands and DOS of these systems,
with an eye on the limits of validity of the DW-2DES model.

We have used the Vienna ab initio simulation package
�VASP�28 which implements a spin-density-functional peri-
odic plane-wave basis calculation. The projected augmented
wave �PAW� pseudopotentials28 have been used for C and N.
The C pseudopotential has already been used in several
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graphene-type calculations �e.g., Ref. 15�. The N pseudopo-
tential was also further tested by a study of the N2 dimer
where an equilibrium bond distance of 1.11 Å was obtained,
in good agreement with other DFT calculations as well as
results from detailed configuration interaction studies, etc.,29

where a value of 1.095 Å is reached. The �3% and �12%
vacancy calculations were done with 32-atom and 8-atom
graphenelike unit cells. These systems are thus not truly dis-
ordered, but provide reference densities of states which ac-
quire smearing when some disorder is introduced by sam-
pling other configurations using larger simulation cells.30

When vacancies are introduced into graphene, the large
stresses are relieved by the neighbors �C atoms near the va-
cancy� moving towards the vacancy. The distortion persists
to at least the third neighbors, and generates a bond-length
distribution varying from about 1.39 Å to 1.45 Å. If the va-
cancies are replaced by N substitution, the structural distor-
tions are smaller but the changes in the DOS can be equally
drastic, as we show below.

Yuchen Ma et al.15 have found that N2 molecules may
form a metastable layer near carbon nanotubes and graphene.
Iyakutti et al.30 have also found similar stabilization, where
the N2 layer is less stable than if it were at infinity, but held
in place by a relatively weak energy barrier. Although this is
a weakly adsorbed state, the interaction energy between the
graphene layer and the N2 layer is about as strong as between
two graphene sheets. Hence we have looked at the band
structure and DOS of such a fully N2 covered graphene sheet
as well. Here the Dirac-Weyl �DW� behavior is preserved. In
Fig. 2 we show the band structure of pure graphene �top
panel�, and also a graphene sheet with a layer of N2 mol-
ecules, with each N2 aligned on every Kékulé-bond position
�bottom panel�. The sheet of N2 molecules is positioned
about 3 Å above the graphene sheet. The interaction energy
per carbon �or per N� is about 0.2 eV. The regime of DW
linear dispersion around the K point is reduced from that of
pure graphene. This is in contrast to the effect of the weak
interaction between two graphene sheets, where the bands
near the K-point become parabolic.31

However, when vacancies or N atoms are introduced into
the graphene network at relatively significant concentrations
�e.g., 3%–12%�, the DOS modifies and shifts to produce a
large density of states near the Fermi energy EF. This is
shown in the top panel of Fig. 3. The calculation is for an
ordered system with one vacancy site per eight sites of the
graphene lattice �i.e., 1/8, or �12% vacancy concentration�,
and one vacancy per 32 graphene sites �1/32, or �3% va-
cancy concentration�. The N substituted systems were also
similarly taken at 1/8 and 1/32 N concentrations. The calcu-
lations used exchange-correlation functionals based on the
Ceperley-Alder type,32 and no spin polarized states are ex-
pected for a conductive system with an enhanced DOS, as
seen in the figure. On the other hand, the existence of such
an enhanced DOS near EF in graphene with 12% vacancies,
would be of importance to possible superconductivity of
these systems.

The electronic density of states for a lower density va-
cancy system, i.e., with one vacancy per 32 grapene sites
�1/32 concentration�, is shown in the lower panel. Here the
system acquires a gap near EF, and the material is an insu-

lator. If the vacancy concentration is further decreased, we
expect the energy gap to slowly decrease and recover the
Dirac-Weyl model in the limit of pure graphene. But, as seen
from the DOS at 12% vacancies, we see that as the vacancy
concentration is increased from 3%, the energy gap closes
and EF positions to a high-DOS region. Meanwhile, an en-
ergy gap opens about 1 eV below the Fermi energy. Thus we
see that a vacancy induced metal-insulator transition is pos-
sible �see however, Ref. 33�. This picture becomes consider-
ably less sharp if the vacancies are not considered to form a
periodic array. In any case, our conclusion that the Dirac-
Weyl model is inapplicable even at 3% vacancy concentra-
tions probably remains valid. The observations of the quan-
tum Hall effect and other signatures of the DW model clearly
indicate that nearly perfect regions of graphene foils are the
subject of these experiments. Another aspect of low-density
vacancies or substituents in graphene is the issue of spin-
polarized ground states. The reported results depend on the
size and edge structure of finite sheet fragments,16 or the
possibility of further C-adatom adsorption on N-substituted
sites.15 The calculations are sensitive to the treatment of ex-
change and correlation, as is well known in first-principles
theories of magnetism in transition-metal oxides. Thus at-
tempts to deal with this problem using Hubbard models,9 or
via generalized Hook’s-law models of molecular
interactions,34 can lead to results which are merely sugges-
tive of possibilities. Clearly, a reliable discussion of magne-
tism in graphenelike systems would require an assessment of

FIG. 2. �Color online� Band structure of pure graphene �top
panel�, and that of fully N2 covered graphene. The Fermi energy is
at EF=0. The bands obtained from a standard sp3 tight-binding
scheme are compared with the DFT bands for graphene in the top
panel.
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Coulomb interactions in Dirac-Weyl electrons in regard to
exchange as well as correlation effects, i.e., without assum-
ing narrow bands and localized singlet “Hubbard U” interac-
tions which neglect exchange. Hence we revert to the main
object of the present study, viz., the nature of exchange and
correlation effects in pure graphene.

III. THE TWO-DIMENSIONAL ELECTRON SYSTEM IN
GRAPHENE NEAR THE FERMI POINTS

The band structure of graphene near the K points, i.e.,
close to the Fermi energy, are displayed in Fig. 2. The kinetic
energy near the K points is given by a Dirac-Weyl Hamil-
tonian of the form

Hk = VF�px�z�x + py�y� . �1�

Here �z= ±1 defines the degenerate valleys, and �x, �y de-
note the x and y Pauli matrices that act in the space of the
two atoms in each unit cell. The � ,�* bands of spin and
valley degenerate states �Fig. 1� show a linear dispersion E
= ±VF�k. This form requires a cutoff momentum Kc such
that the number of states in the Brillouin zone is conserved.
That is, if A0 is the area per carbon, then

Kc
2 = 4��1/A0� . �2�

The electron density Nc at half-filling is 1 /A0, with A0
=a0

2�3/2, since one � electron of arbitrary spin is provided
by each carbon atom. The Fermi velocity VF= ta0�3/2 is
thus the slope of the linear dispersion, with VF�5.5 eV Å. If
the DW-2DES is embedded in a medium with dielectric con-
stant �0, then we define

g0 =
e2/�0

�VF
=

e2

�0a0
�t � 3/2� . �3�

This is the ratio of a typical Coulomb energy to the hopping
energy and hence is usually taken as the Coulomb coupling
constant of the DW-2DES. This ratio plays the same role as
the rs parameter in electron-gas theory of nonrelativistic
finite-mass fermions, and is a measure of the strength of the
Coulomb interaction. The usual rs is not available for DW-
2DES since the effective mass m* is zero and there is no
effective Bohr radius. The coupling constant g0 is maximized
if �0 is unity, and consistent with this case we assume g0

=2.7, VF=5.39 eV Å, with e2 /�0=14.4, for our DW-2DES
studies.

The four-component-eigenfunction envelopes of the ki-
netic energy term are made up of two-component functions
U= �b ,ei	k�, U�= �ei	k ,b�, and O= �0,0� where 	k is the
angle of the vector k� in the 2D plane. Thus

Fb,k
K �r� = �2A�1/2�U,O�T
�, �4�

Fb,k
K��r� = �2A�1/2�O,U��T
�. �5�

Here b= ±1 is a �* ,� band index, �¯�T indicates the trans-
pose, and 
� is the spin function. Then, using v=1,2 as a
valley index, the Coulomb interaction term in the Hamil-
tonian may be written in the form

HI =
1

8A
�

vi,bi,�i

�
k,p,q

Vq�b1b4ei�	*�k�−	�k+q�� + 1�

� �b2b3ei�	*�p�−	�p+q�� + 1�

� ak,v1,b1,�1

+ ap+q,v2,b2,�1

+ ap,v2,b3,�2
ak+q,v1,b4,�2

. �6�

Here a+, a are electron creation and annihilation operators
and Vq=2�e2 / ��0q� is the 2D Coulomb interaction. The
phase factors introduce a cos��� contribution where � is the
scattering angle, not found in the usual jellium 2DES. The
resulting form of the exchange energy per carbon is

Ex/Eu = −
A0g0/kc

�2��2

1

4 �
b1,b2,�

�
0

2�

d�dkdp

� kp
1 + b1b2 cos���

	k − p	
nb1,��k�nb2,��p� . �7�

In the above we have included the intrinsic coupling constant
g0 and the energy unit Eu=VFkc in the expressions. Here kc
=Kc / �2= ��4�nc� is based on the electron density per spin
species, nc=Nc /2=1/ �2A0�. The above form of the exchange
energy can be reduced to an evaluation of a few elliptic
integrals.7 The normal “half-filled” DW-2DES can be doped

FIG. 3. �Color online� DOS of pure graphene compared with
�3% and �12% concentrations of substituted N atoms �top panel�,
calculated using a periodic substitution model. The Fermi energy is
set to zero. Bottom panel shows the effect of �3% and 12% vacan-
cies in graphene.
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with electrons or holes; but it is easy to show that symmetry
enables us to limit to one type of doping. However, given a
system, with an areal density of N� dopant electrons per val-
ley, with n�=N� /2 per spin, the carriers in the spin-polarized
system could be electrons only, or both electrons and holes,
as shown in Fig. 1 for the �* and � bands at one K point.
The intrinsic system with n�=0 can be an unpolarized state,
or spin-polarized state with electrons and holes. Such purely
exchange driven systems have been studied by Peres et al.,7

while the correlations effects have not been considered. Here
we evaluate the exchange energy Ex from the noninteracting
PDFs, and include the correlation energy Ec estimated from
the 2v-2DES with the same coupling strength �rs=g0� and
spin polarization.

A. Electron pair-distribution functions of the Dirac-Weyl two-
dimensional electron system

Although we are dealing with an intrinsically four-
component system �two-valleys, two-spin states�, as seen
from Fig. 1, we need to consider the redistribution of elec-
trons and holes among the �* and � bands when comparing
the energy of spin-polarized states with the corresponding
unpolarized state. The exchange energy is a consequence of
the antisymmetry of the Slater determinant made up of non-
interacting eigenfunctions. Thus only the noninteracting
PDFs are needed to calculate the exchange energy. They are
also the spring-board for calculating the interacting PDFs via
the CHNC method.

From Fig. 1 we see that the e-e interactions at a given
valley can be constructed from �i� interactions with a �*�u
band of up-spin electrons of density nu, filled to ku, �ii� a
�*�d set of electrons or a ��d spin-down holes, of density
nd, filled up to kd, �iii� the ��u band, with electron density
nc, filled to kc, and �iv� the ��d band, density nc, filled to kc.
There will also be similar intervalley terms. Each term in this
4�4 matrix, denoted by Gij�r� where i, j=1, . . . ,4, will have
two components associated with those in U� and U
= �b ,ei	k�. Thus Gij�r�=gij

b �r� ,gij
s �r�, where the superfixes b ,s

indicate that the noninteracting forms are Bessel-function-
like, and Struve-function-like, respectively. These compo-
nents will be denoted by a superfix c=b ,s. The Struve form
arises from the cos��� terms in the Coulomb interaction. The
numbering scheme of the matrix is shown in Fig. 1�b�. We
denote the pair-correlation functions �PCFs� Hij�r�=Gij�r�
−1, or the components by hij

c �r�=gij
c �r�−1. The noninteract-

ing forms are indicated by a superscript zero. Thus we have

hij
0,b�r� = − �ninj�−1�

0

ki dk1

�2��2�
0

kj dk2

�2��2ei�k1−k2�·r

= −
2

kir
J1�kir�

2

kjr
J1�kjr� ,

hij
0,s�r� = − �ninj�−1�

0

ki dk1

�2��2�
0

kj dk2

�2��2 cos��1 − �2�ei�k1−k2�·r

= −
�

kir

�

kjr
�J0H1 − J1H0�i�J0H1 − H0J1� j . �8�

Here J0 ,J1 are Bessel functions, while H0 and H1 are Struve

H functions. Also, in �J0H1−J1H0�i the functions are evalu-
ated at the argument kir. That is,

�J0H1 − J1H0�i = J0�rki�H1�rki� − J1�rki�H0�rki� . �9�

The wave vectors ki= ��4�ni� for each component i, of den-
sity ni. We show �Fig. 4� typical noninteracting PCFs for a
doped, unpolarized case as in Fig. 1�a�, with the doping frac-
tion n� /nc=0.2. In CHNC, the exchange hole is mapped ex-
actly into a classical Coulomb fluid using the Lado
procedure.22 Figure 4 shows that the exchange hole is
strongly reduced by the presence of the cos��� term which
has been averaged into the Struve-type PCFs hs�r�. When the
Coulomb interaction is included, the cos��� term has a simi-
lar mitigating effect and exchange correlation in the DW-
2DES is considerably weaker than in the corresponding two-
valley 2DES. The CHNC calculation for the 2v-2DES for the
conditions stipulated in Fig. 4 show that the correlation en-
ergy is about one-third of the exchange energy.19 This moti-
vates our use of the 2v-2DES for the correlation energy,
while the Ex is exactly evaluated.

B. The kinetic and exchange energies

When the doping per valley is N�=2n�, the total number
of electrons per valley is Nt=Nc+N�. Also, using the i
=1,2 ,3 ,4 notation of Fig. 1�b�, we set n1=nu, n2=nd, n3
=n4=nc. Hence the spin polarization s=nu−bdnd, where the
band index bd=−1 for holes. The degree of spin polarization

=s /Nt. The composition fractions, inclusive of the valley
index v=1,2 are xvi=ni /2Nt. We note that kF= ��2�n��, ku

= ��2��n�+s��, kd= ��2� 	n�−s 	 �. The exchange energy
Ex�n� ,
� can be written as

FIG. 4. �Color online� The Bessel-type and Struve-type nonin-
teracting, parallel-spin PCFs hb�r� and hs�r� for the unpolarized
doped system. The bands are numbers as in Fig. 1�b�. The antipar-
allel noninteracting PCFs are zero. The lattice constant a0=2.47 Å.
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Ex�n�,
�/Nt = �Nt/2� � 2�rdr

r
�
ij

xvixvj�Gv,v,ij
0 �r� − 1� .

�10�

It is understood that the Struve-type component in Gv,v,ij
where v labels the valleys, is summed with the appropriate
bibj band ± factors. Only a sum over the components in one
valley is needed in evaluating the exchange. The above for-
mula can be made more explicit, by introducing the bibj band
± factors in each case. Thus the total kinetic and exchange
energy Ekx=KE+Ex, for the case �b� of Fig. 1 can be written
in terms of nF, nu, nd, and nc as in Eq. �10�, or in terms of kF,
ku, kd, kc, and A0 as

Ekx�
� =
A0

6�
� VF�ku

3 + kd
3� −

A0

�2��2 �g0 � VF/4���/2�
ku
4H11�r�

+ kd
4H22�r� + 2kc

2�ku
2H13�r� + kd

2H14�r��� . �11�

The kinetic and exchange energy, Etx�
=0�, of the unpolar-
ized system, shown in Fig. 1�a�, is obtained by setting kF
=0 in Eq. �11�. The exchange energy for the case involving
both electron and hole carriers, Fig. 1�c� is given by a small
change in Eq. �11�, where the last term changes sign and
becomes −kd

2H14�r�. If this is simplified and written using
elliptic integrals, as in Ref. 7, the change in the exchange
energy for electron and hole carriers, compared to the unpo-
larized case becomes

Ex�
� = Ex�n�,
 = 0� + �Ex�
� , �12�

�Ex�
� =
A0

�2��2 �g0/4��Eu/kc���ku
3 + kd

3 − 2kF
3�R1�1�

+ 2kcku
2R2�ku/kc� − 2kckd

2R2�kd/kc�

− 4kckF
2R2�kF/kc�� . �13�

As before, Eu= �VFkc is the unit of energy. For complete-
ness, we note that

Ex�n� = 0,
 = 0� = −
A0

�2��2 �g0/2�Eukc
2R1�1� , �14�

R1�1� = 3.776. �15�

Here the energy is per carbon atom and we have used the
notation R1�x� ,R2�x� for the elliptic integrals as given in Ref.
7. The energy difference which determines the competition
between the unpolarized and polarized phases, i.e., �Ekx�
�,
includes the kinetic-energy corrections as well as the change
in the exchange energy. It is plotted in Fig. 5. We have done
the calculations in r space using the PDFs, and in k space via
elliptic integrals, to provide independent numerical proce-
dures. The approach via elliptic integrals appears to be more
efficient than integrations over the oscillatory Struve func-
tions. Figure 5 shows that stable spin-polarized phases ap-
pear in electron-carrier systems, if kinetic and exchange en-
ergies are used in the total energy. A noteworthy feature of
Fig. 5 is the strong cancellation of the kinetic energy by the
exchange energy, leading to net energies which are about 1%

of the energy scale Eu=VFkc. Thus the stage is set for the
phase stabilities to be determined by the correlation energies
which are left out in Fig. 5.

IV. CALCULATIONS INCLUDING THE CORRELATION
ENERGY

A rigorous calculation of the correlation energy requires
the self-consistent evaluation of 8�8 matrix of pair-
distribution functions for many values of the coupling con-
stant 0���1 in the interaction g0� /r, and an integration
over the coupling constant �. Note that here we are referring
to the adiabatic connection formula, e.g., Eq. �13� of Ref. 22,
for the correlation energy. Here, when � reaches unity, the
Coulomb interaction reaches its full value, while �=0 corre-
sponds to the noninteracting case.

Although this rigorous evaluation can be envisaged within
the CHNC approach, it still remains a very arduous task.
Even when all the inherent symmetries in the problem are
taken into account, some two-dozen PDFs need to be evalu-
ated. Instead we outline a simplified scheme where we use
the results for the correlation energy of the two-valley, two-
spin �i.e., four component� jellium 2DES to reconstruct the
correlation energy of the DW-2DES for equivalent values of
the ratio of the Coulomb interaction and the kinetic energy,
as discussed below. The method we use here provides a dif-
ferent, possibly more transparent approach than that given in
a previous discussion.35 The conclusions from the two meth-
ods are in agreement.

FIG. 5. The energy difference �Ekx, i.e., KE+exchange, between
the polarized and unpolarized phases, in units of Eu=VFkc, as a
function of the spin polarization 
 and the dopent density nd.
Electron-carrier systems, Fig. 1�b� are more stable than electron-
hole systems, and show stable spin-polarized states. However, ad-
dition of the correlation energy �see Fig. 6� makes the unpolarized
state the most stable phase.
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When the electron density of the jellium 2v-2DES is
changed, the rs value changes. In contrast, when the electron
density �or, equivalently, the number of electrons per carbon�
in the DW-2DES of perfect graphene is changed, the cou-
pling constant g0 remains unchanged. Hence the correlation
energy per carbon for a doping situation involving a total of
nT electrons per carbon, at a spin-polarization 
 might be
approximated by nT�c

2v�rs ,
�, with rs=g0, where �c
2v�rs ,
� is

the corresponding 2v-2DES correlation energy. However,
this result is in terms of an effective atomic unit Ea.u., intrin-
sic to the jellium 2DES, such that the Fermi energy EF
=Ea.u. /rs

2. Since we identify the coupling constant g0 to be rs,
the effective atomic unit Ea.u.=EFrs

2=VFkc�g0�2. A full evalu-
ation of the four-component jellium 2DES from the interact-
ing PDFs has been carried out and the correlation energy is
given in parametrized form in Eq. �5� of Ref. 19. In transfer-
ring from the 2v-2DES to the DW-2DES we note that e2 /�0
which is unity in 2v-2DES becomes g0VF in the DW-
2DES.The correlation energy enhancement is

�Ec�nd,
� = Ec�nd,
� − Ec�nd,0� . �16�

The correlation energies in jellium 2DES are evaluated from
PDFs whose noninteracting forms are Bessel-type PDFs,
where as the DW-2DES contain only about 1/2 the number
of Bessel-type PDFs, while the other are Struve-type PDFs
which bring in a minor contribution. Thus an upper bound
would be to use the estimate of �Ec�nd ,
� given above,
while a lower bound would be about 1/2 the above estimate.
The �Ec calculated from the jellium four-component system
using the above scheme is shown in Fig. 6. The total energy
difference inclusive of the kinetic energy, Ex, and the esti-
mated Ec, between the polarized and unpolarized phases is
shown in the lower panel of Fig. 6. Since the kinetic-energy
enhancement of the polarized phase is compensated by the
exchange enhancement, the total energy enhancement is de-
termined by the correlation effects. Thus we see that the
inclusion of the correlation energy suppresses the spin-
polarized phase found in the exchange-only calculation.

In this work we have kept the Coulomb coupling fixed at
g0=2.7 typical of graphene, unlike in other studies6,7 where
the coupling strength g is taken as a tunable parameter, in the
spirit of Hubbard-model studies. If dielectric screening is
taken into account,36 the coupling is reduced and many-body
effects become smaller. We do not see a practical experimen-

tal scheme for increasing the value of the Coulomb coupling
strength g0 beyond 2.7 in the graphene system.37,38

Even in the one-valley 2DES, the SPP of low-order theo-
ries is pushed to g�26–27. In the 2v-2DES, direct terms
predominate over exchange interactions, and the SPP is not
found in CHNC19 or QMC20 calculations. We see that the
inclusion of correlations within a reasonable scheme sup-
presses the exchange-driven SPP in the graphene 2DES
as well. This result is in agreement with the conclusions of
Ref. 35.
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