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Coupled quantum mechanical/molecular mechanical (QM/MM) calculations were used to study the effects
of large defects and cracks on the mechanical properties of carbon nanotubes and graphene sheets. The
semi-empirical method PM3 was used to treat the QM subdomains and a Tersoff-Brenner potential was used
for the molecular mechanics; some of the QM calculations were also done using density functional theory
(DFT). Scaling of the Tersoff-Brenner potential so that the modulus and overall stress-strain behavior of the
QM and MM models matched quite closely was essential for obtaining meaningful coupled calculations of the
mechanical properties. The numerical results show that at the nanoscale, the weakening effects of holes, slits,
and cracks vary only moderately with the shape of the defect, and instead depend primarily on the cross section
of the defect perpendicular to the loading direction and the structure near the fracture initiation point. The
fracture stresses for defective graphene sheets are in surprisingly good agreement with the Griffith formula for
defects as small as 10 A, which calls into question the notion of nanoscale flaw tolerance. The energy release
rate at the point of crack extension in graphene was calculated by the J-integral method and exceeds twice the
surface energy density by 10% for the QM(DFT)/MM results, which indicates a modest lattice trapping effect.
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I. INTRODUCTION

Due to their favorable mechanical properties, carbon
nanotubes (CNTs) and exfoliated graphene sheets have at-
tracted considerable interest as nanoreinforcements for poly-
mer composites. Electronic structure calculations'™” of the
mechanical behavior of pristine CNTs predict fracture
strengths in the range of 75—135 GPa and ultimate strains of
as much as 30%. However, manufacture of mass-quantities
of perfect CNTs or graphene sheets may prove challenging;
in practice, mechanical properties will often be limited by
the presence of defects—in many cases of substantial size.
Oxidative purification treatments®~'® are commonly used in
the production of CNTs and we have suggested®!! that these
can result in pitting, which provides a plausible explanation
for the deviations between the CNT strength measurements
of Yu et al.'> and theoretical predictions. One route for the
exfoliation of graphene sheets involves thermal exfoliation
of graphite oxide.!® During this process approximately 30%
of the carbon atoms are lost as CO,; thus, the resulting sheets
are expected to be highly defected. A detailed understanding
of the consequences of such defects may be crucial to the
effective utilization of these materials.

Previous electronic structure calculations of defected
CNTs were limited to small defects because of the high com-
putational cost of QM calculations. Therefore, the studies®!4
of larger defects were restricted to MM calculations. How-
ever, the modified">!® second generation!” Tersoff-Brenner
(MTB-G2) potential employed in those calculations tends to
systematically underestimate the strength of both pristine and
defected CNTs as compared to QM calculations, and has
been shown?® to predict qualitatively different mechanisms
for the fracture of defected CNTs. Thus, a better understand-
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ing of the role of defects in CNTs necessitates electronic
structure calculations.

One way to treat a system of large molecules is to adopt
linear scaling QM methods, which reduce the order of com-
putation to O(N), where N is the total number of orbitals.
Another approach to treating large systems is to couple a QM
method to an MM method so that the important regions of
the system are treated quantum mechanically and MM inter-
actions are used elsewhere. In fracture studies, only part of
the system, such as the vicinity of defects, requires an accu-
rate treatment of bond breaking; for such systems QM meth-
ods can be used for these regions and MM methods can be
applied to the rest of the system. Although the MM potential
does not need to be able to model bond fracture accurately, it
must still predict stiffnesses and strengths that are consistent
with the QM results; in the following we will present a
simple scaling scheme to improve the compatibility of the
QM and MM mechanical properties.

Here we describe a set of coupled quantum mechanical/
molecular mechanical (QM/MM) calculations of the fracture
of CNTs with large defects and the fracture of graphene
sheets. We also consider the effect of lattice trapping'®-?! by
calculating the energy release rate of a crack in a QM/MM
model of a graphene sheet using the J-integral®> method.

The rest of the paper is organized as follows. Section II
gives an overview of the coupling method and its implemen-
tation. In Sec. III the results of fracture in the presence of
defects such as one- and two-atom vacancy defects as well as
nanosized holes and slits are presented. Section IV describes
the results for lattice trapping in graphene sheets. Conclu-
sions are given in Sec. V.
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II. METHOD

The coupled QM/MM method adopted here is a two-layer
ONIOM scheme.”®> The MM interaction potential is a
modified'’ version of a second generation Tersoff-Brenner'”
potential; in particular, the cutoff function is removed and
instead interactions are only retained for atom-atom pairs
that are separated by less than 2 A in the initial (unstrained)
configuration. The name MTB-G2 will be used to distinguish
this version of the potential from the standard second gen-
eration reactive empirical bond order (REBO) potential,
which retains the cutoff function. The use in fracture studies
of REBO potentials in which the cutoff function is retained
leads to qualitatively inaccurate behavior. Two types of QM
interactions are considered: semi-empirical (PM3) calcula-
tions obtained with the GAMESS software package** and
DFT calculations. The DFT calculations were performed us-
ing the Spanish initiative for electronic simulations with
thousands of atoms (SIESTA) package.”>?° The Perdew-
Burke-Ernzerhof (PBE) GGA functional, a double-{ plus po-
larization basis set, and Troullier-Martins?”-*® pseudopoten-
tials were used. Core radii of 1.15 and 1.25 a, were used for
carbon and hydrogen, respectively, and a nonlinear
exchange-correlation correction pseudocore radius of 1.50 ay
was used for carbon. Periodic boundary conditions were em-
ployed for the calculation of the surface energy density,
whereas cluster calculations were used for the remaining
DFT calculations. The I' point was used for Brillouin zone
sampling and diagonalization to solve the Kohn-Sham equa-
tions. We used spin-restricted QM calculations for all of the
work presented here. Spin unrestricted calculations are gen-
erally more accurate but they are more time consuming, dif-
ficult to converge, and are subject to issues of spin contami-
nation which would need to be carefully assessed before they
should be used. For our present goals of testing QM/MM
methods spin restricted calculations will suffice.

ONIOM?® is a widely-used method for coupling in
QM/MM calculations due to its simplicity of implementa-
tion. It is a general framework that combines layers of com-
putational methods of different levels of accuracy. In the
two-layer ONIOM scheme employed here, the energy is
given by

E=EMM gM_ MM, (1)
where EMM is the MM energy of the entire system, and ESM
and E%’IM are, respectively, the QM and MM energies of a
special subdomain, hereafter usually just referred to as either
the QM subdomain or simply the “fragment”, within which
accurate treatment of bond behavior is desired. The comple-
ment of this region will occasionally be referred to as the
MM subdomain.

In calculations for the fragment we employed hydrogen
link atoms to saturate the dangling bonds created by cutting
covalent bonds that straddle the interface. The link atoms
were positioned to lie 1.09 A along the vector connecting a
boundary QM atom and its nearest neighbor across the
boundary. The positions of the link atoms were not included
in the degrees of freedom of the molecule and were not part
of the geometry optimization. The use of hydrogen link at-
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oms to terminate the dangling bonds of a fragment domain
consisting of a conjugated graphitic network significantly al-
ters the bond orders of the C—C bonds near the boundary and
this can alter properties further inside the domain. To judge
the errors introduced by this complication, we repeated our
calculations with larger fragments and only report results
where the error due to domain truncation is less than 10%.

The energy is minimized by a variable-metric function-
minimization routine?® to obtain the optimized geometry. In
the computations reported here, the end carbon atoms of the
model were displaced axially with a strain increment of 0.5%
until fracture occurred. The end carbon atoms were con-
strained to a plane. The tensile strain is defined as

o=, @
l

where [ is the initial length of the specimen and Al is the
change in the length. Note that this definition, which corre-
sponds to engineering strain, is not an appropriate general
definition of strain for the large deformations obtained here;
but because we are only concerned with axial deformation, it
is adequate (see Belytschko et al.’%). At each strain incre-
ment the tube configuration was optimized.

The numerical procedure at each strain increment can be
summarized as follows:

(1) Calculate the MM energy of the full system.

(2) Calculate the QM and the MM energy of the fragment
capped with the link atoms.

(3) Calculate the energy of the system using Eq. (1).

(4) Check the convergence criterion, max | gradient| < €. If
the convergence criterion is satisfied, the configuration is
considered an equilibrium configuration, otherwise update
the atomic positions and repeat from (1).

Where possible, we made use of approximate Hessian in-
formation and starting orbitals for the QM energy evalua-
tions that were available from the prior strain steps. Once the
geometry is optimized at a certain applied strain, the tensile
stress in the tube is calculated as the sum of the axial com-
ponents of the forces on the carbon atoms at one end of the
CNT divided by the cross-sectional area,

m
2 Fo
a=1

o,= s
? Dt

(3)

where m is the number of carbon atoms at one end of the
tube, F,, is the axial force on atom «, D is the current di-
ameter of the tube, and r=3.4 A is a nominal value of the
thickness of the CNTs (taken to be the interlayer spacing in
graphite). Note that all of our calculations are for the true
stress, so the diameter is a strain dependent parameter. Wher-
ever possible, we obtain the value of the CNT diameter from
an undefected region of the fragment subdomain because the
QM and MM methods predict significantly different Pois-
son’s ratios and the goal of the QM/MM calculations is to
match the results of pure QM calculations as closely as pos-
sible. Assuming a nominal thickness to define stress is a
standard procedure for monolayer atomic sheets such as
graphene and CNTs; a more unambiguous definition is based
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on a force per linear dimension,
Belytschko.3!32

It is crucial in coupled QM/MM simulations of fracture
that the MM model matches the QM model over a large
range of strains; the upper end of this range should be near
the fracture stress. Otherwise, various types of spurious phe-
nomena occur which are simply a result of strength and stiff-
ness mismatch between the QM and MM models. For ex-
ample, if the strength of the MM model is less than that of
the QM model, fracture can occur in the MM subdomain,
even if the MM subdomain does not contain a defect and the
QM subdomain does. Another consequence of such a mis-
match occurs when a crack attempts to grow into a QM
fragment from the MM subdomain: the crack can be de-
flected back into the MM model if the QM model is stiffer
than the MM model.

These mismatches are of concern here because the stan-
dard MTB-G2 potential is significantly less stiff and weaker
than the PM3 model. For example, for a [5,5] CNT contain-
ing a Stone-Wales (SW) defect®® as reported in Mielke et
al.,% the fracture stress calculated by pure QM calculations is
115 GPa, whereas the fracture stress of a [5,5] pristine tube
obtained by MM calculations is 105 GPa. Consequently, if a
QM/MM method is used with a QM treatment around the
SW defect, the pristine part of the CNT will fail before the
defective QM fragment.

To avoid these anomalies, the MTB-G2 energy was scaled
so that the low-strain Young’s modulus for a CNT closely
matches that obtained from a QM calculation. For the arm-
chair CNTs, the scaling factor was chosen to be 1.4 and for
the zigzag CNTs the scaling factor was chosen to be 1.2.
Similarly, the scaling factor for a graphene sheet was chosen
to be 1.4 for QM(PM3)/MM calculations and 1.2 for
QM(DFT)/MM calculations.

Our main justification for the scaling is that it matches the
MM model more closely to the QM model at lower stresses.
Since the fracture properties of the tube are governed by the
region encapsulating the defect, which is treated quantum
mechanically, the calculated strength is not affected much by
the scaling of the MM potential. Another justification for the
scaling is the fact that we have found for the quantum frag-
ments used here, the results converge (i.e., the difference
between successively larger fragments decrease). Further-
more, the results of the QM/MM calculations tend to the
results of the pure QM calculations. However, we were not
able to establish this trend for the largest models we used
because pure QM calculations for these were beyond our
resources.

Griffith’s criterion* for fracture in brittle materials states
that a crack will extend when the strain energy released by
such extension exceeds the energy needed to create a newly
fractured surface. This is a thermodynamic criterion and can
be used to predict a rigorous lower bound for the fracture
stress as a function of the crack length. For the special case
of a linear elastic material, the fracture stress for a crack in a
thin finite sheet of width w is given by

2Y
o= —ycos<ﬂ>, (4)

ma w

see Arroyo and

where a is the size of the defect (half-length of the crack)
and a<<w, Y is Young’s modulus, and v is the surface energy
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density. Note that graphene is nonlinear, so Eq. (4) is only an
approximation to the Griffith stress.

The appropriate 7y to use'® in calculations of the Griffith
formula is the work per unit area needed to reversibly sepa-
rate the fracture surfaces. Thus, it includes contributions
from relaxation of the fragments. The unrelaxed surface en-
ergy density for such calculations has been used
previously,’*—3® and may provide a better estimate of the true
fracture stress. However, the relaxed surface energy provides
the proper basis from which to judge the contributions of
lattice trapping effects. Our values of 7y are obtained by di-
viding the difference between the energy of a pristine mate-
rial at its optimized geometry and the energy of the two
fragments after they are fractured along the desired surface,
separated to infinity, and subsequently optimized to yield
their equilibrium geometries, by twice the surface area
(where the factor of two is included because fracture leads to
two surfaces).

III. RESULTS AND DISCUSSION
A. Small defects

We begin by studying the effects of small defects, one- or
two-atom vacancy defects and a Stone-Wales defect,® on the
mechanical strength of small CNTs such as [5,5] armchair
and [10,0] zigzag tubes. The purpose of these computations
was to examine how well the QM/MM calculations repro-
duce the results of pure QM calculations. The QM results
were therefore considered as “benchmark” results, with the
difference between the QM/MM and the QM computation
indicating errors due to coupling. QM/MM methods are
ubiquitous in many areas of chemistry but they are much less
common for the study of fracture,2'3** and quantitative
comparisons of these methods to full QM methods are
needed to explore their effectiveness.

The QM/MM nanotubes were approximately 85.0 A in
length. The [5,5] nanotubes contained 700 atoms, the [10,0]
contained 820 atoms. In both cases, the ends of the tubes
were capped by hydrogen atoms. The two-atom vacancy de-
fect was created by removing two adjacent atoms and the
resulting 14 atom ring reconstructs to form one octagon and
two pentagons as shown in Fig. 1(a). Two-atom vacancy de-
fects can be produced in CNTs by irradiation with energetic
ions or electrons.*®*” Figure 2 shows the QM fragment in the
center of a [10,0] CNT surrounding the two-atom vacancy
defect. The QM fragment covers a circular band around the
entire circumference of the CNT, so that no QM bonds are
stressed in parallel with the MM bonds.

Figure 3 shows the stress-strain curves for a [10,0] CNT
with a two-atom vacancy calculated by the QM/MM method
with increasing fragment sizes, along with the QM results of
a CNT containing 198 atoms calculated by Mielke et al.®*8
and the scaled and unscaled MM results. In the scaled MM
calculations, the energy was scaled by the same factor as in
the QM/MM calculations. The scaled MM results compare
quite well with the QM and QM/MM results. In the QM/MM
calculations, the largest quantum fragment is a 158 atom
cylindrical band. It can be seen that for the 158 atom frag-
ment, the stress-strain curve for the QM/MM calculations

075412-3



KHARE et al.

FIG. 1. (Color online) (a) Two-atom and (b) one-atom vacancy
defects shown on a graphene sheet.

agrees well with the full QM calculations. The major dis-
crepancy is that the QM/MM model fails at somewhat
smaller strain (0.130 versus 0.142) and somewhat smaller
stress (103 GPa versus 107 GPa) than the QM model. Un-
doubtedly, an even larger fragment would compare better
with the full QM treatment, but we deemed the 158 atom
fragment adequate for our purposes.

It is noteworthy that the QM/MM model, like the full QM
model, can sustain larger strains and stresses than the MM
model, and fracture always initiates in the QM region. The
scaled and unscaled MM models failed at a strain of 0.085,
whereas for QM and QM/MM models fracture strain was
greater than 0.130. A complication that arises for QM frac-
ture studies of finite-sized CNTs is that Peierls
distortions*>*" can lead to distorted bond lengths as a func-
tion of the position along the tube axis and this can result in
multiple fracture pathways.® These are purely quantal effects
that have a very strong size dependence so they are difficult
to model precisely by QM/MM methods.
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FIG. 2. (Color online) Coupled QM/MM model: the central re-
gion constitutes the QM fragment (QM atoms, dark red dots; MM
atoms, light blue dots).
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FIG. 3. (Color online) Stress-strain curves of [10,0] CNT with a
two-atom vacancy. PM3 was used for the QM/MM and QM calcu-
lations. The scaling factor used for the MM potential is given in the
square brackets. The QM results were taken from Mielke er al.
(Ref. 6) and Troya et al. (Ref. 48).

Figure 4 shows the stress-strain curves for a [5,5] CNT
containing a one-atom vacancy. It can be seen that with the
different scaling of the MM energy for the armchair CNT, we
were able to replicate full QM results®*® quite well with the
QM/MM model. Again, the scaled MM results also match
the QM and QM/MM results quite well, although the frac-
ture strain is somewhat lower: 0.117 by molecular mechanics
versus 0.153 by quantum mechanics.

Table I lists the fracture stresses and strains calculated for
these CNTs along with the corresponding values for the pris-
tine tubes reported in Mielke et al.® In the [10,0] CNTs, the
QM/MM failure stress is about 6% below the QM fracture
stress, whereas for the [5,5] CNTSs they are 3 to 5% higher.
The unscaled MM fracture stresses are significantly lower,
especially for zigzag CNTs, where the difference is about
40%. With the scaling, the agreement improves and the dif-
ferences are about 25%.

A noteworthy difference between the QM/MM and the
scaled MM computations is that the CNTs can be stretched to
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FIG. 4. (Color online) Stress-strain curves of [5,5] CNT with a
one-atom vacancy. The QM subdomain consisted of 89 atoms. PM3
was used for the QM/MM and QM calculations. The scaling factor
used for the MM potential is given in the square brackets. The QM
results were taken from Mielke et al. (Ref. 6) and Troya et al. (Ref.
48).
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TABLE I. Fracture properties calculated using pure QM, QM/MM, and MM methods. All stresses are in GPa. All of the QM results were
taken from Mielke et al. (Ref. 6) and Troya et al. (Ref. 48). PM3 was used for all the QM/MM calculations. Scaling factors of 1.2 and 1.4
were used for [10,0] and [5,5] CNTs, respectively, for all of the QM/MM calculations and the scaled MM calculations. Note that the fracture
strain for the scaled and unscaled MM calculations are the same. Also note that we do not report the QM/MM strengths of pristine CNTs,
as they fractured at the QM/MM interface or in the MM region.

QM atoms QM QM/MM Scaled MM QM QM/MM MM
Chirality Defect in QM/MM stress stress MM stress stress strain strain strain
[10,0] Pristine 124 106 88 0.20 0.181
[10,0] Two-atom vac. sym. 158 107 103 77 64 0.142 0.130 0.085
[10,0] One-atom vac. 119 101 95 78 65 0.130 0.122 0.089
[5,5] Pristine 135 147 105 0.30 0.297
[5.5] Stone-Wales 120 125 131 123 88 0.22 0.186 0.162
[5.5] One-atom vac. 89 100 103 99 71 0.153 0.121 0.117

higher strains in the QM/MM model than in the MM model.
Consequently, the QM/MM calculations predict higher frac-
ture strain but similar values of Young’s modulus as the
scaled MM model. On comparing the results of coupled
QM/MM and MM calculations, we found that in the former
the bonds at the edge of the defect are able to sustain much
larger strains. It can be seen from Figs. 3 and 4 that there is
little difference in the initial slopes of the stress-strain
curves, i.e., in Young’s modulus, between the QM/MM and
scaled MM calculations.

We also studied the convergence of pure QM calculations
with model size for the same system as was presented in Fig.
3. Calculated failure stresses obtained with 118 and 158 atom
models both agreed with the 198 atom model to within
1 GPa. This shows that the ONIOM based QM/MM algo-
rithm with hydrogen link atoms tend to the long cylinder
solution more slowly than pure QM calculations for the spe-
cial case where the QM subdomain consists of a cylindrical
section of a nanotube. We have only noticed this effect for
calculations where the QM region consists of cylindrical
subdomains. Additionally, pure QM calculations are not af-
fordable for the larger tubes that we consider next, so
QM/MM calculations provide the only practical scheme for
including quantum effects in fracture studies in models of
these sizes.

B. Slits and hexagonal and circular hole defects

We next consider the effect of larger defects on the
strength of CNTs. Both slit-like and hole defects were stud-
ied. We chose slits because crack-like defects are not readily
amenable to QM treatments. In MM calculations, cracks are
customarily modeled by artificially removing a single row of
bonds. This is not feasible quantum mechanically because
unless the atoms adjacent to the crack are separated by a
significant distance, the bonds persist, i.e., a loss of cohesion
between atoms only occurs at a significant separation, which
is much greater than the lattice constant.

This observation also has significant implications for ac-
tual cracks at the nanoscale, as it suggests that crack-like
defects cannot exist in an unstressed covalently-bonded ma-
terial unless at least one row of atoms is absent or the crack

surfaces become chemically modified. Thus, the notion of
atomistically sharp cracks and MM models with cracks rep-
resented by simply omitting bonds must be considered very
carefully.

The hole defects were formed by removing hexagonal
units of atoms as presented previously®!# (see Fig. 5). We
denote the size of the hole by a size index: a zero index hole
is created by removing one hexagonal unit, a hole of index
one is created by removing a ring of six hexagonal units
surrounding this hexagon, a hole of index n by removing the
nth ring of hexagonal units.>'* In a zigzag tube, circumfer-
ential slit defects are created by removing four rows of car-
bon atoms as shown in Fig. 5(c), whereas in an armchair
CNT, slit defects are created by removing three rows of car-
bon atoms as shown in Figs. 5(d) and 5(e). For both zigzag
and armchair CNT, the size index for a slit is defined so that
a slit of index n is of the same length as the diameter of a
hole of index n. Note that the holes are created in the same
way for both the zigzag and armchair tubes, i.e., by remov-
ing hexagonal units of atoms, whereas construction of the slit
defects is different. Also note that a zero index hole is iden-
tical to a zero index slit. Figure 5 shows holes and slits of
indices zero and one in a zigzag CNT and slits of indices one
and two in an armchair CNT. In all cases, the dangling bonds
at the hole/slit edges were terminated with hydrogen atoms
so as to create defects with plausible bonding structures as
shown in Fig. 5.

We considered [50,0] and [29,29] CNTs containing
~4000 atoms which were 94.5 and 83.6 A long, respec-
tively. Using a quantum fragment which covers the entire
circumference for such large CNTs is computationally too
expensive, so patch-shaped quantum fragments were used
instead, an example of which is shown in Fig. 6. The QM
patches used for small slits are shown in Fig. 5.

Using the QM/MM method, the fracture stresses of [50,0]
CNTs with holes of size index zero to four and slits of size
index zero to eight were calculated (see Fig. 7). These results
show that the fracture strengths for holes and slits with the
same size indices, i.e., where the length of the slit is equal to
the diameter of the hole, differ by less than 5%. Similar
agreement between fracture stresses of holes and slits was
obtained by molecular mechanics.!* This is in stark contrast
to continuum mechanics at the macroscale, where the weak-
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FIG. 5. (Color online) Hole and circumferential slit defects in
CNTs (carbon, light blue dot; hydrogen, dark pink dot). (a) A slit or
hole of index zero, (b) hole of index one, and (c) slit of index one in
a zigzag CNT; (d) a slit of index one (e) and two in an armchair
CNT. Local strains are calculated for the bonds in black, shown by
red arrows in (b) and (c).

ening effect of holes is much less than the weakening effects
of cracks (i.e., slits). To ensure that the small differences in
fracture stresses of the holes and slits of the same defect
indices are not due to differences in the sizes of the quantum
fragments, the fracture stresses of slits of index one and two
for a [50,0] CNT were calculated using a quantum fragment
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FIG. 6. (Color online) A patch quantum subdomain for a [29,29]
CNT containing a two-atom vacancy defect(carbon, light blue dot;
hydrogen, dark pink dot).

of the same size as for the corresponding holes. The com-
puted strength, as can be seen from Fig. 7 and also tabulated
in Table II, does not change significantly with the QM sub-
domain size. Note that the MM results have been scaled by
the same scaling factor used for the QM/MM calculations. It
is observed that even though the fracture stresses obtained by
the QM/MM method are higher than those calculated by mo-
lecular mechanics, the trend of the fracture stress versus de-
fect size remains the same.

The results for the fracture of defected [29,29] CNTs are
shown in Fig. 8. The dependence on defect-size index and
the relationship between the scaled MM results and the
QM/MM results is similar to what was observed for [50,0]
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—e— QM/MM[1.2] Slit
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FIG. 7. (Color online) Dependence of the fracture stress of a
[50,0] CNT on the defect size for holes and slits. PM3 was used for
all the QM/MM calculations. The scaling factor used for the MM
potential is given in the square brackets. The MM[1.2] Hole and
MM[1.2] Slit results are so close as to be nearly indistinguishable.
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TABLE II. Variation of fracture stress and strain of the QM/MM
model with QM fragment size for a [50,0] CNT with slits of indices
one and two. PM3 was used for all the QM/MM calculations. The
MM potential was scaled by a factor of 1.2.

Number of atoms Fracture Fracture
Slit index in fragment stress (GPa) strain
1 68 68.0 0.077
1 104 68.6 0.077
2 84 59.5 0.072
2 148 60.0 0.072

CNTs. For armchair tubes, spin-restricted QM calculations
predict that a surface perpendicular to the tube axis has the
lowest surface energy density (5.39 and 5.44 J/m? for PM3
and DFT, respectively) whereas the MM potential predicts a
higher surface energy density than was observed for zigzag
CNTs (5.09 J/m? versus 4.90 J/m?). Thus, the fracture
within the QM subdomain remains perpendicular to the tube
axis but thereafter the fracture surface becomes jagged. Al-
though zigzag tubes have a higher value of y at the QM level
than armchair tubes, the latter possess higher fracture
strengths. PM3 calculations for y are roughly 40% higher for
armchair CNTs if fragment relaxation is neglected whereas
in zigzag tubes neglecting fragment relaxation produces 7y
values that are only a few percent higher. In the relaxed
armchair CNT fragments, the C—C bonds along the newly
created surface have bond lengths of ~1.2 A and are remi-
niscent of the triple bonds observed in benzyne. These results
suggest that fracture for armchair CNTs will display a sig-
nificant lattice trapping effect. The correlation between large
surface relaxation and large lattice trapping effects has al-
ready been observed in SiC fracture by Perez and
Gumbsch.!

In order to develop an understanding of the differences
between the QM/MM and MM predictions of fracture, we
studied the elongation of the bonds which break first and
initiate the fracture. For the hole and slit of index one in a

—&— QM/MM[1.4] Hole

1204
—e— QM/MM[1.4] Slit
1004 —8&— MM[1.4] Hole
S —o— MM[1.4] Slit
[G) —»— MM[1.0] Slit
< 804
[2]
3
S 604
[}
g
3 404
|8}
©
w204
0 T T T T T T

0 4 8 12 16 20 24 28
Hole radius/half slit length (A)

FIG. 8. (Color online) Dependence of the fracture stress of a
[29,29] CNT on the defect size for holes and slits. PM3 was used
for all the QM/MM calculations. The scaling factor used for the
MM potential is given in the square brackets. The MM[1.4] Hole
and MM[1.4] Slit results are so close as to be nearly
indistinguishable.
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0.8
—=— Hole using QM/MM[1.2]

—o— Slit using QM/MM[1.2]
0 6_—0— Hole using MM[1.2]
* —o— Slit using MM[1.2]

0.4+

Bond strain

0.2+

0.0 T T T
0.00 0.02 0.04 0.06
Applied strain

FIG. 9. (Color online) Strain in the bond at the fracture initiation
site calculated for a slit and hole of index one in a [50,0] CNT using
MM and QM/MM models. PM3 was used for the QM/MM calcu-
lations. The scaling factor used for the MM potential is given in the
square brackets.

[50,0] CNT, these bonds are labelled AB in Fig. 5. The strain
in these bonds for QM/MM and MM calculations are plotted
versus applied axial strain in Fig. 9. It can be seen that the
strain in the bond that fails is much higher than the applied
strain due to the strain concentration at the defect tip. The
bond strains obtained by the MM and the QM/MM calcula-
tions vary almost identically until the applied strain reaches
4.5%, at which point the bond AB in the MM model breaks.
In the next strain increment, catastrophic fracture breaks the
tube into two pieces. On the other hand, in the coupled
model, where the critical bond is treated quantum mechani-
cally, bond AB stretches to a larger strain without breaking.
This is a major difference between the behavior of the
MTB-G2 potential and the QM calculations: quantum me-
chanically bonds around a defect can stretch much more
without breaking, thus resulting in higher fracture strains and
somewhat higher fracture stresses. It is of interest that the
behavior of the bond that breaks first is similar in slits and
holes; this is true for both the molecular mechanics and the
coupled model.

The holes in the preceding studies are hexagonal rather
than circular. We also generated some holes with the same
opening size normal to the direction of loading but with a
more circular shape. Figure 10 shows this kind of hole defect
of size index 10 in a graphene sheet. Fracture stresses were
calculated for such circular holes with indices six to eight
using MTB-G2 in a [50,0] CNT (defects with size-index <5
are already as circular as possible). The results are given in
Table III. Even though the amount of material removed in
the hexagonal opening is less than in the circular opening,
the strength of CNTs with circular hole defects is about 40%
larger. Thus, it is apparent that the corner, labelled C in Fig.
10(a), results in a significant decrease in strength. If, as seen
from the results in Table III, two extra carbon atoms are
added to the corners of the hexagonal holes to blunt the
fracture initiation site, the fracture strength increases to
nearly that observed in the rounded holes. Thus, the shape of
the defect at the fracture initiation site and the cross section
of the defect perpendicular to the loading direction are the
key features determining the fracture strength.
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FIG. 10. (Color online) (a) A hexagonal hole and (b) a circular
hole of size index 10 in a graphene sheet. C indicates a corner of the
hexagonal hole.

Next we compared the fracture stresses calculated using
the coupled method with the Griffith formula stress o} [Eq.
(4)] for slits in a finite graphene sheet. We considered
graphene sheets, which have similar bonding as CNTs, be-
cause long slits can be modeled more easily in the sheets. To
avoid any effects due to the finite-size of the graphene
sheets, Mattoni et al.>” suggested that the length and width of

TABLE III. Fracture stresses calculated using molecular me-
chanics for slits, hexagonal holes, and circular holes for a [50,0]
CNT. The blunted hexagonal holes were created by adding two
extra carbon atoms to the corners of the hexagonal holes. All
stresses are in GPa.

Size Hexagonal Circular Blunted
index Slit hole hole hexagonal hole
6 28.3 28.7 40.5 37.6
7 27.5 27.8 38.0 36.7
8 26.2 26.3 36.7 34.7
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FIG. 11. (Color online) A coupled QM/MM/CM model.

the sheet should be more than five times the crack length. To
simulate such big sheets we coupled our atomistic model
with a continuum mechanical (CM) model using an overlap-
ping domain-decomposition scheme, known as the bridging
domain method.’>% In this method, a linear-elastic finite-
element model is used for the continuum representation. The
constraints on the displacements in the continuum-atomistic
overlapping domain are imposed by the Lagrange-multiplier
method. Quantum mechanics was applied on a small region
surrounding the slit and the coupled continuum-atomistic
model was applied elsewhere as shown in Fig. 11. The di-
mensions of the full sheet were 393.5 A X 411.8 A, where
the atomistic region was 115.5 A X 82.3 A, and located in
the center of the sheet. A rectangular patch containing the slit
was chosen as the QM fragment, as shown in Fig. 5 for small
slits.

The results computed by the QM/MM/CM method de-
crease roughly well with the inverse of the square root of the
crack length. Furthermore, they agree quite well with the
predictions of the Griffith formula, Eq. (4). Thus, it can be
inferred that continuum fracture mechanics agrees quite well
with electronic structure calculations for defects as small as
~10 A. Mattoni er al.’’ obtained an even better agreement
between the Griffith formula and molecular mechanics cal-
culations on SiC with a Tersoff model.

Although the Griffith stress is a rigorous lower bound on
the fracture stress, the approximate stress estimate of the
Griffith formula [Eq. (4)] need not be, and as seen in Fig. 12
it predicts results somewhat above the numerical ones for
slits shorter than about 20 A. However, the shape of such
small slits, as can be seen from Fig. 5(a), bears little relation-
ship to what is commonly called a crack, so the inadequacy
of the Griffith formula for small slits is not surprising.

These results are somewhat in disagreement with the ar-
guments of Gao et al.,>* who propose that materials are de-
fect tolerant at the nanoscale and that there is little difference
between the theoretical strength and the strength of perfect
crystals in the presence of cracks less than 30 nm in length.
However, here we observe that the fracture stresses decrease
monotonically and sharply from the pristine strength of
~115 GPa as the defect size increases. The computed
strengths displayed in Fig. 12 are within 10% of the Griffith
formula results for slits as short as 20 A. This supports the
arguments in Ballarini et al.>
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FIG. 12. (Color online) The fracture stress of a graphene sheet,
containing slits, and strained in a direction perpendicular to the
zigzag edge, calculated using the QM/MM/CM method, and com-
pared to results of the Griffith formula. PM3 was used for the QM/
MM/CM calculations. The scaling factor used for the MM potential
is given in the square brackets.

IV. LATTICE TRAPPING FOR GRAPHENE SHEETS

An interesting question concerning fracture at the nanos-
cale is whether it differs markedly from fracture at the mac-
roscale. The major assumptions in the derivation of the Grif-
fith formula that do not apply to graphitic materials are:

(1) The linearity of the stress-strain law.

(2) Constant energy release, i.e., the neglect of lattice
trapping.

The stress-strain law for graphitic materials is somewhat
nonlinear, as is apparent from Figs. 3 and 4. Here we exam-
ine the extent to which lattice trapping plays a role in the
fracture of graphene.

Omeltchenko et al.>® used molecular dynamics to study
crack-front propagation in graphene and calculated fracture
toughness in terms of a stress intensity factor (note, however,
that retention of the REBO cutoff function makes the quan-
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titative aspects of these results questionable). We will calcu-
late the energy release rate, J, and compare it to twice the
surface energy density. The difference is indicative of the
magnitude of lattice trapping: in the absence of lattice trap-
ping, the energy release rate at the point of fracture should
equal twice the surface energy density.

To simulate a crack growth process that matches notions
of a crack as closely as possible, we apply a crack-opening
displacement to the boundary of a pristine specimen. A QM
fragment is placed at the center, surrounded by an MM
model as shown in Fig. 13. We use a displacement field®
given by

K 6 0
uxz—l Lcos—{(x—l)+25m2—} (5)
ou Nom 2 2
and
K (7 6
uy=—’ Lsin— (k+1)=2cos> = |, (6)
2u V2w 2 2

where u, and u, are the displacements in the x and y direc-
tions, respectively, u is the shear modulus of the material
[which can be expressed in terms of Young’s modulus, Y,
and Poisson’s ratio, v, as u=Y/2(1+v)], @ and r are the
cylindrical coordinates measured from the crack tip and «
=(3-v)/(1+v) for plane stress. The appropriate continuum
model for a monolayer graphene sheet is a state of plane
stress.

The parameter K;, which corresponds to the mode I stress
intensity factor, is then incremented until a crack develops
along the segment x <0, see Fig. 13. An interesting feature
of this loading is that because of its antisymmetry the bonds
are broken sequentially in order of increasing x. Thus, the
crack grows from left to right, and for sufficiently large K; all
bonds for x<<0 break.

FIG. 13. (Color online) A
graphene sheet containing a crack.
The quantum fragment is shown
in the inset. The bond A-B forms

A |
E%E(; X X .‘.‘..:5 ,.
I

L
o

o
L&:x‘v%ﬁ&w .

the crack tip. Note that r; is large
enough to enclose the quantum
fragment.
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FIG. 14. Closed contour around a crack tip.

We calculated the energy release rate by a discrete form of
the energy release®’ integral (a domain form of the Rice J
integral??);

2
du; | dq
J= Wé,;— P;—— (— |dS, 7
fs 2|:{ 1j ”ﬁXl}&XJ ( )

0 i

where W is the strain energy density, P is the first Piola-
Kirchhoff stress tensor, u is the displacement field, X are the
material coordinates, S, represents the undeformed area of
the domain, & is Kronecker delta, and

0:r=r,

g=\1:r=ry, (8)

(r=ry)/(ry—r;) : otherwise,

where r; and r, are as shown in Fig. 14. The discrete form of

Eq. (7) (the form for small displacements reported
previously>®%) is given by

2
du(X,) aq<xa>}
J= wes,; — P{—— ——— | S§, 9

“z()%{{ ]] voax, } an ’ ©)

where S§ is the initial undeformed area occupied by the atom
a, X, is the initial position of atom «, W is the local strain
energy density at any atom « which is calculated by the
expression

2
€;j
W“=f > Pldes, (10)
0 ij

and the stress at the atom « (P?) is calculated by the virial
stress definition®

1
P'=— > r*B QP 11
) o

where r®? is a vector joining atoms « and S, £ is the force
applied on atom « by atom B, and ,=S% is the volume
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TABLE IV. Critical energy release rate compared to twice the
surface energy density for graphene strained in a direction perpen-
dicular to the zigzag edge. All the values are in J/m?. The scaling
factor used for the MM potential is given in the square brackets.

Method Jic 2y Jic!2y
QM(DFT)/MM[1.2] 14.5 13.2 1.1
QM(PM3)/MM[1.4] 15.8 13.4 1.2

MM[1.2] 13.0 11.8 1.1
MM[1.4] 15.1 13.7 1.1
MM 10.8 9.8 1.1

occupied by atom «a, where S¢ is the area occupied by the
atom « in the current configuration. S¢ is obtained by divid-
ing the current area of the domain by the number of atoms in
the domain. The virial stress definition for angle bending has
been derived in Zhang et al.’> The strain €;; in Eq. (10) and
du;/ X, in Eq. (9) were obtained by a moving least square fit
to the displacement field.”>®! Since it is difficult to calculate
the bond forces in the QM fragment, we used a domain that
lies entirely in the MM region, as shown in Fig. 13, to cal-
culate the J-integral.

The results are summarized in Table IV. It can be seen
that the difference between the J-integral and twice the sur-
face energy density is only modest for QM/MM calculations
using DFT, suggesting a moderate amount of lattice trapping.
For the QM(DFT)/MM model J;/27y differs from unity by
10%, for the QM(PM3)/MM model and the MM model, this
value is 18% and 10%, respectively. These differences be-
tween the energy release rates and 2y are marginally signifi-
cant, as the resulting fracture stresses only change by \J/2.
Bernstein and Hess?! have previously reported J/2y values
between 1.19 and 1.35 for silicon (which has similar chemi-
cal bonding to that of carbon) when the interactions are cal-
culated via tight binding and much larger values for empiri-
cal potentials.

V. CONCLUDING REMARKS

We have studied the impact of large defects on the
strength of carbon nanotubes using a coupled QM/MM
method. Both slit-like defects and holes were considered. We
found that the strengths of CNTs did not depend strongly on
the shape of the defects, i.e., the strengths of CNTs with
slit-like and hexagonal hole defects of the same size index
are comparable while those with rounder holes were about
40% stronger. This contrasts markedly with the effects of
holes and cracks at the macroscale, where the cracks have far
more deleterious effects on strength than holes.

Comparison of the fracture strengths with the Griffith for-
mula for slits in a finite graphene sheet shows reasonable
agreement (within 10% for the longest cracks we calculated).
This is somewhat surprising since the stress-strain law is
quite nonlinear and the Griffith formula assumes linear ma-
terial response. The results indicate that continuum fracture
mechanics is applicable to crack-like defects as small as
10 A. Furthermore, they do not indicate any flaw tolerance to
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nanoscale (5-20 nm) defects: for any defect, the strength is
below the theoretical strength, as would be expected.

Crack-like defects, which we called slits, were con-
structed by removing four rows of carbon atoms in the zig-
zag CNTs and by removing three rows of carbon atoms in
the armchair CNTs. The resulting dangling bonds were
capped with hydrogen atoms. This is to be contrasted with
crack models based on omitting bonds between adjacent at-
oms in MM calculations, which are pervasive in the litera-
ture. Such defects cannot exist in electronic structure models
because interactions between nearby atom pairs cannot sim-
ply be neglected at moderate distances. Thus, the ability of
such schemes to accurately model crack behavior is ques-
tionable. Crack-like defects can be formed by displacing a
lattice according to the asymptotic near-field of elastic frac-
ture mechanics, as we reported in Sec. IV. However, such
cracks will not exist in a solid in a stress-free state.

To ascertain the magnitude of lattice trapping in graphene,
we computed the energy release rate using a discrete
J-integral and compared it to twice the surface energy den-
sity, 2. These results indicate a modest amount of lattice
trapping; the energy release rate calculated by DFT for a
graphene sheet at fracture exceeds 2y by 10%.

The coupled QM/MM calculations were performed with
the ONIOM methodology. We checked the accuracy of the
method by performing a series of calculations for small de-
fects with QM fragments of increasing size. The resulting
stress-strain curves agreed closely over most of the range
even for relatively small QM fragments. The fracture stresses
and strains also appear to converge, but are more sensitive to
the QM fragment size and even for the largest two fragments
studied, the fracture stresses and strains differed from the
pure QM results by 4% and 8%, respectively, for a [10,0]
CNT with a two-atom vacancy defect. Thus, the absolute
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accuracy of the coupled QM/MM calculations for the failure
stress is probably only a few percent and the results are more
useful for comparing defects of various sizes than in obtain-
ing quantitative values of failure stresses.

We introduced a simple scaling scheme to improve the
compatibility of the MM and QM models. If the MM inter-
action potential is used unscaled, mismatches between the
stiffness and strength of the MM and QM subdomains result
in highly spurious behavior. Comparisons of the QM/MM
calculations with MM calculations using the scaled potential
show good agreement for the failure stresses and stress-strain
curves. In most cases, the differences were less than 15%,
and the qualitative pattern of dependence on defect size
agreed well. It should be noted that this good agreement is
only achieved for the scaled MM potential. The details of the
fracture processes predicted by the QM/MM method and the
MM method differ significantly. For example, QM/MM cal-
culations show significantly more elongation of the bond at
the crack tip.

The results provide further credence to the hypothesis®
that large defects such as holes are the reason behind the low
CNT fracture strengths observed in some experiments.'? Al-
though the QM/MM models predict failure stresses that are
about 40% higher than unscaled MM results modeled
previously,®!* they are still in the range observed in the Yu et
al. experiments.'?

ACKNOWLEDGMENTS

We thank Diego Troya for helpful conversations. We
gratefully acknowledge grant support from the NASA Uni-
versity Research, Engineering and Technology Institute on
Bio Inspired Materials (BIMat) under award No. NCC-1-
02037, from the Army Research Office under Grant No.
WOI11NF-05-1-0049, and from the National Science Foun-
dation.

*Electronic address: schatz@chem.northwestern.edu

Electronic address: tedbelytschko@northwestern.edu

I'T. Ozaki, Y. Iwasa, and T. Mitani, Phys. Rev. Lett. 84, 1712
(2000).

2T. Dumitrica, T. Belytschko, and B. I. Yakobson, J. Chem. Phys.
118, 9485 (2003).

3D. Troya, S. L. Mielke, and G. C. Schatz, Chem. Phys. Lett. 382,
133 (2003).

4S. Ogata and Y. Shibutani, Phys. Rev. B 68, 165409 (2003).

3G. Dereli and C. Ozdogan, Phys. Rev. B 67, 035416 (2003).

6S. L. Mielke, D. Troya, S. Zhang, J.-L. Li, S. Xiao, R. Car, R. S.
Ruoff, G. C. Schatz, and T. Belytschko, Chem. Phys. Lett. 390,
413 (2004).

7T. Dumitrica, M. Hua, and B. L. Yakobson, Proc. Natl. Acad. Sci.
U.S.A. 103, 6105 (2006).

8A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J.
Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T.
Colbert et al., Appl. Phys. A: Mater. Sci. Process. 67, 29 (1998).

°R. C. Haddon, J. Sippel, A. G. Rinzler, and F. Papadimitrakopou-
los, MRS Bull. 29, 252 (2004).

10Y-Q. Xu, H. Peng, R. H. Hauge, and R. E. Smalley, Nano Lett.

5, 163 (2005).

1S L. Mielke, T. Belytschko, and G. C. Schatz, Annu. Rev. Phys.
Chem. 58, 185 (2007).

2M.-F. Yu, O. Lourie, M. I. Dyer, K. Moloni, T. F. Kelly, and R. S.
Ruoff, Science 287, 637 (2000).

3H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-
Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A.
Saville, and 1. A. Aksay, J. Phys. Chem. A 110, 8535 (2006).

14S. Zhang, S. L. Mielke, R. Khare, D. Troya, R. S. Ruoff, G. C.
Schatz, and T. Belytschko, Phys. Rev. B 71, 115403 (2005).

150. A. Shenderova, D. W. Brenner, A. Omeltchenko, X. Su, and L.
H. Yang, Phys. Rev. B 61, 3877 (2000).

lo, Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, Phys.
Rev. B 65, 235430 (2002).

7D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B.
Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).

I8R. Thomson, C. Hsieh, and V. Rana, J. Appl. Phys. 42, 3154
(1971).

19]. R. Rice, J. Mech. Phys. Solids 26, 61 (1978).

20W. A. Curtin, J. Mater. Res. 5, 1549 (1990).

2IN. Bernstein and D. W. Hess, Phys. Rev. Lett. 91, 025501 (2003).

075412-11



KHARE et al.

22]. R. Rice, J. Appl. Mech. 35, 379 (1968).

23M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber,
and K. Morokuma, J. Phys. Chem. 100, 19357 (1996).

%M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen,
S. J. Su et al., J. Comput. Chem. 14, 1347 (1993).

25D. Sanchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. J.
Quantum Chem. 65, 453 (1997).

26]. M. Soler, E. Artacho, J. D. Gale, A. Garcfa, J. Junquera, P.
Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14,
2745 (2002).

27N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

2N. Troullier and J. L. Martins, Phys. Rev. B 43, 8861 (1991).

297, J. Koval, Appl. Stat.—J. Roy. St. C 46, 515 (1997).

30T, Belystchko, W. K. Liu, and B. Moran, in Nonlinear finite ele-
ments for continua and structures (John Wiley & Sons, New
York, 2001).

3I'M. Arroyo and T. Belytschko, J. Mech. Phys. Solids 50, 1941
(2002).

32M. Arroyo and T. Belytschko, Int. J. Numer. Methods Eng. 59,
419 (2004).

3 A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

3*A. A. Griffith, Philos. Trans. R. Soc. London, Ser. A 211, 163
(1920).

35T. L. Anderson, Fracture Mechanics: Fundamentals and Applica-
tions (CRC Press, Boca Raton, 1991).

3D, Vogtenhuber and R. Podloucky, Phys. Rev. B 55, 10805
(1997).

3TA. Mattoni, L. Colombo, and F. Cleri, Phys. Rev. Lett. 95,
115501 (2005).

3 M. Ippolito, A. Mattoni, L. Colombo, and N. Pugno, Phys. Rev. B
73, 104111 (2006).

3R, E. Rudd and J. Q. Broughton, Phys. Status Solidi B 217, 251
(2000).

40F F. Abraham, J. Q. Broughton, N. Bernstein, and E. Kaxiras,
Comput. Phys. 12, 538 (1998).

413, A. Moriarty, J. F. Belak, R. E. Rudd, P. Soderlind, F. H. Streitz,

PHYSICAL REVIEW B 75, 075412 (2007)

and L. H. Yang, J. Phys.: Condens. Matter 14, 2825 (2002).

42 A. Mallik, D. E. Taylor, K. Runge, J. W. Dufty, and H. P. Cheng,
J. Comput.-Aided Mater. Des. 13, 45 (2006).

438, Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and
R. K. Kalia, Comput. Phys. Commun. 138, 143 (2001).

4R, Belkada, T. Igarashi, and S. Ogata, Comput. Mater. Sci. 30,
195 (2004).

4C. L. Rountree, R. K. Kalia, E. Lidorikis, A. Nakano, L. Van
Brutzel, and P. Vashishta, Annu. Rev. Mater. Sci. 32, 377
(2002).

4P M. Ajayan, V. Ravikumar, and J.-C. Charlier, Phys. Rev. Lett.
81, 1437 (1998).

47 A. V. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen, and J.
Keinonen, Phys. Rev. B 63, 245405 (2001).

“D. Troya, S. L. Mielke, and G. C. Schatz (unpublished).

49H. F. Bettinger, Org. Lett. 6, 731 (2004).

507, Y. Zhou, M. Steigerwald, M. Hybertsen, L. Brus, and R. A.
Friesner, J. Am. Chem. Soc. 126, 3597 (2004).

SIR. Pérez and P. Gumbsch, Phys. Rev. Lett. 84, 5347 (2000).

328. Zhang, R. Khare, and T. Belytschko, Int. J. Numer. Methods
Eng. (to be published).

33S. P. Xiao and T. Belytschko, Comput. Methods Appl. Mech. Eng.
193, 1645 (2004).

3*H. Gao, B.-H. Ji, L. L. Jager, E. Arzt, and P. Fratzl, Proc. Natl.
Acad. Sci. U.S.A. 100, 5597 (2003).

R. Ballarini, R. Kayacan, F. J. Ulm, T. Belytschko, and A. H.
Heuer, Int. J. Fract. 135, 187 (2005).

56 A. Omeltchenko, J. Yu, R. K. Kalia, and P. Vashishta, Phys. Rev.
Lett. 78, 2148 (1997).

57B. Moran and C. F. Shih, Eng. Fract. Mech. 27, 615 (1987).

38 K. Nakatani, A. Nakatani, Y. Sugiyama, and H. Kitagawa, AIAA
J. 38, 695 (2000).

Y. Jin and F. G. Yuan, J. Nanosci. Nanotechnol. 5, 2099 (2005).

%A, G. Mclellan, Am. Phys. 42, 239 (1974).

SIT. Belytschko, Y. Y. Lu, and L. Gu, Int. J. Numer. Methods Eng.
37, 229 (1994).

075412-12



