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The threshold of triply resonant optical parametric oscillation in a semiconductor microcavity in the strong
coupling regime is investigated. Because of the third-order nature of the excitonic nonlinearity, a variety of
different behaviors is observed thanks to the interplay of parametric oscillation and optical bistability effects.
The behavior of the signal amplitude and of the quantum fluctuations in approaching the threshold has been
characterized as a function of the pump, signal, and idler frequencies.

DOI: 10.1103/PhysRevB.75.075332 PACS number�s�: 71.36.�c, 42.65.Yj

I. INTRODUCTION

Triply resonant optical parametric oscillation �OPO�
�Refs. 1 and 2� has been recently observed3–5 in semiconduc-
tor microcavities in the strong coupling regime,6,7 and has
attracted a good deal of attention from the point of view of
both fundamental physics and possible technological appli-
cations. The peculiar dispersion relation of polaritons in the
strong coupling regime allows to simultaneously satisfy the
resonance condition for the pump, signal, and the idler
modes. Together with the enormous value of the excitonic
nonlinearities, the possibility of easy phase matching results
in a low threshold intensity, making these systems very
promising candidates for low-power OPO applications.

A complete theoretical description of the OPO dynamics
of such systems is not only very important in view of the
optimization of the device operation, but also deserves a cer-
tain interest from the point of view of nonlinear dynamics as
many interesting phenomena can occur due to the interplay
of optical bistability and parametric oscillation,8,9 and to the
nontrivial spatial field dynamics in the transverse plane.10,11

As shown by several theoretical papers that have appeared
on the subject, a rather complex phenomenology is found
already at the level of the three-mode approximation, where
the classical nonlinear optical wave equation is projected
onto the three pump, signal, and idler modes.9,12–14 Available
experimental data appear to confirm this point: In particular,
both continuous5,15 and discontinuous23 behaviors have been
experimentally shown for the signal intensity in the neigh-
borhood of the threshold point. Although some analogies
have been drawn with what is known about ��2� OPO dynam-
ics in standard passive media,1,2,16–18 no complete investiga-
tion has appeared yet for the case of semiconductor micro-
cavities in the strong coupling regime, neither from the
experimental nor from the theoretical points of view.

The optical nonlinearity of the microcavity system under
investigation originates from collisional exciton-exciton in-
teractions and is therefore of the ��3� type. This means that it
not only provides the parametric interaction necessary for the
parametric oscillation, but is also responsible for significant
mean-field frequency shifts of the modes. This makes the
nonlinear dynamics of the mode amplitudes much richer than
in ��2� OPOs.18 Pioneering theoretical work in this direction
has recently appeared in Ref. 9.

The purpose of the present paper is to provide a system-
atic and quantitative study of the OPO threshold in semicon-
ductor microcavities in the strong coupling regime. Depend-
ing on the pump laser frequency, and the signal, pump, and
idler mode frequencies, several regimes are to be distin-
guished, where the system behavior is radically different.

The paper is organized as follows: Our model of the mi-
crocavity is introduced in Sec. II. Optical limiting and optical
bistability in the pump only solution are discussed in Sec.
III A. General concepts about the stability of the solution
with respect to pump-only and to parametric instabilities are
given in Sec. III B. The following Secs. III C–III G are de-
voted to characterizing the parametric threshold as a function
of the incident pump angle, the internal and the incident
intensities, and to find the optimal choice to minimize the
threshold intensity. Quantitative estimations are provided in
Sec. III H, where a comparison is made with other realiza-
tions of OPOs based on passive ��2� and ��3� materials. The
kind of bifurcation at the onset of the OPO emission is in-
vestigated in Sec. IV. Depending on whether the pump-only
solution is in the optical limiter or in the optical bistability
regimes, parametric emission is shown to set in either in a
continuous or in a discontinuous way. The close relationship
between the nature of the instability point and the behavior
of the quantum fluctuations as the threshold is approached is
pointed out in Sec. IV D. Conclusions are finally drawn in
Sec. V.

II. POLARITON MODEL

A sketch of the physical system under investigation is
shown in Fig. 1: A planar DBR �distributed Bragg reflector�
semiconductor microcavity containing a few quantum wells
strongly coupled to the cavity mode. The elementary excita-
tions of this system consist of exciton polaritons, i.e., coher-
ent superpositions of cavity photons and excitons. Polaritons
combine the very strong ��3� optical nonlinearity originating
from exciton-exciton collisional interactions to the peculiar
dispersion relation as a function of the in-plane wave vector
k that is shown in Fig. 1: These facts make them extremely
well suited for triply resonant optical parametric oscillator
applications, as it has indeed been experimentally demon-
strated in recent years.3–5
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A mean-field description of the cavity-polariton field dy-
namics can be developed in terms of a nonlinear wave equa-
tion with a third-order nonlinearity.8,13 Under the assumption
that the dynamics takes place in the lower polariton branch
and the population of the upper polariton branch remains
negligible, the theoretical description can be simplified by
restricting it to the lower polariton only. For the sake of
simplicity, we shall focus our attention on the case of a cir-
cularly polarized pump beam. As the circular polarization of
the polariton field is preserved by the nonlinear interactions
and the longitudinal-transverse splitting19,20 is much smaller
than both the linewidth � and the nonlinear interaction en-
ergy, the circular polarization is almost completely trans-
ferred to the signal and idler beams.

Under these assumptions, the polariton dynamics can be
written in terms of a nonlinear wave equation for a single-
component k-space polariton field �LP�k�:

i
d

dt
�LP�k� = ���k� − i

��k�
2

��LP�k� + Fp�k�e−i�pt

+ �
q1,q2

gk,q1,q2
�LP

* �q1 + q2 − k��LP�q1��LP�q2� .

�1�

The field �LP�k� is here normalized in such a way that its
square modulus ��LP�k��2 equals the number of polaritons
with momentum k per unit area. ��k� is the dispersion rela-
tion of the lower polariton and ��k� is the momentum-
dependent loss rate. Throughout the present paper, the excit-
ing laser field is taken as a monochromatic and continuous
wave coherent field at �p with a plane-wave spatial profile at
kp and a circular polarization. The driving amplitude Fp�k�

can be related to the incident power density Iinc by using the
input-output formalism:21–23

Fp�k� = �k,kp
C�kp���radIinc

Ntr��p
. �2�

�rad is here the radiative decay rate of the cavity-photon due
to the finite mirror transmittivity; the parameter Ntr specifies
whether the cavity is a single-sided cavity with a perfectly
reflecting back mirror �Ntr=1�, or a symmetric cavity with
equal transmission through both the front and back mirrors
�Ntr=2�.

The third-order nonlinear interaction term takes into ac-
count exciton-exciton collisional interactions. As the wave
vectors involved in the present discussion are much smaller
than the inverse excitonic radius, the exciton-exciton cou-
pling constant in a single quantum well can be approximated
by a momentum-independent ḡ. If NQW quantum wells are
present in the cavity, identically coupled to the cavity mode,
the bright excitonic excitation is delocalized over all of them
and the effective excitonic coupling constant is g= ḡ /NQW. In
the polaritonic basis, a nontrivial momentum dependence ap-
pears via the Hopfield coefficients X�k� and C�k� quantifying
the excitonic and cavity-photonic components of the lower
polariton:

gk,q1,q2
= gX*�k�X*�q1 + q2 − k�X�q1�X�q2� . �3�

Although no conclusive experimental nor theoretical analysis
has been reported yet, the theoretical prediction �ḡ�1.5
	10−5 eV 
m2 based on the Born approximation24 appears
to be in reasonable agreement with available experimental
data.6,7

In order to focus our discussion of the basic OPO dynam-
ics, we shall not consider here the effect of the disorder: In
recent high quality III-V samples the effect of the disorder
can in fact be weak enough for it to be neglected on the scale
of the polaritonic linewidth. In this case, it is legitimate to
approximate the mode eigenfunctions as plane waves. On the
other hand, the disorder is much stronger in II-VI samples,
where it has been shown to have dramatic consequences on
polariton BEC.25 These effects are highly nontrivial already
at equilibrium26 and are expected to become even more com-
plex because of the interplay with the nonlinear dynamics:
The complete analysis of them goes far beyond the scope of
the present paper and is left to future work.

To conclude the section, it is interesting to note that the
applicability range of the wave equation �1� is not limited to
semiconductor planar OPOs, but can be extended to describe
other setups, e.g., planar cavities containing a slab of passive
��3� material. In this case, no excitonic resonance exists, and
the polariton reduces to a bare cavity photon. As both the
coupling to external radiation and the optical nonlinearity act
on the same photonic degree of freedom, one has simply to
set X=C=1 and calculate the nonlinear coupling constant
using the nonlinear susceptibility of the medium under con-
sideration:

FIG. 1. �Color online� Upper panel: Sketch of the microcavity
system and of the parametric process under consideration. Lower
panel: Lower polariton �LP� and upper polariton �UP� dispersion at
linear regime. The cavity photon dispersion is �C�k�
=�C

0 �1+k2 /kz
2 with ��C

0 =1.4 eV and kz=20 
m−1. The exciton
dispersion is flat and resonant with the k=0 cavity mode �X=�C

0 .
The exciton-photon Rabi coupling is ��R=2.5 meV. The dots in-
dicate the signal, pump, and idler modes; the arrows show the triply
resonant parametric process under investigation.
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�g = C��3� ���p�2

�lin
2 d

. �4�

The numerical factor C of order one takes into account the
details of the geometry under investigation. Typical values of
��3� of materials specifically designed for nonlinear optical
applications range up to something of the order of
10−9 esu.27 For a � /2 cavity, these values correspond to a
nonlinear coupling constant of the order of �g�5
	10−9 eV 
m2, orders of magnitude lower than the value
�ḡ�1.5	10−5 eV 
m2 previously mentioned for semicon-
ductor microcavities in the strong coupling regime. This ex-
plains the present interest of semiconductor microcavities for
low-power nonlinear optical applications, as well as for fun-
damental studies of the interplay of nonlinear dynamics and
quantum fluctuations.28,29

III. PARAMETRIC THRESHOLD

A. Pump only solution

Among the different k modes, only the one at k=kp con-
tains a source term in its equation of motion �1�. An exact
solution of the full set of equations of motion �1� can there-
fore be found in the form

�LP�x,t� = Pei�kpx−�pt�, �5�

with the amplitude P fixed by the condition

��p − �p −
i

2
�p + g�X�kp��4�P�2�P + Fp = 0. �6�

Here �p=��kp� is the frequency of the pump mode at linear
regime and �p=��kp� the corresponding linewidth; the effect
of the third-order nonlinearity is to renormalize the pump
mode frequency by a mean-field shift proportional to the
mode excitonic population nxp= �X�kp��2 � P�2. This effect, ab-
sent in ��2� cavities, is responsible for the qualitatively dif-
ferent behaviors30 that can be observed depending on the
sign of the detuning of the pump frequency �p with respect
to the polariton energy ��kp�.

Figure 2 shows the excitonic density in the pump mode
nxp as a function of the driving intensity Ip= �Fp�2 which is
proportional �but not identical� to the incident laser intensity
Iinc 	see Eq. �2�
. When the pump frequency is below or close
to resonance �p−��kp�
�3��kp� /2, we are in the so-called
optical limiter regime, in which the population nxp of the kp
mode monotonically increases as a function of the driving
intensity Ip �left panel�.

For blue-detuned pump frequencies �p−��kp�
��3��kp� /2, a positive feedback of the nonlinearity occurs

and hysteretic behavior can be instead observed, as shown in
the right panel of Fig. 2 and experimentally demonstrated in
Ref. 31. For increasing laser intensity, the pump mode popu-
lation follows the lower branch until its endpoint is reached,
and then it jumps to the upper branch as indicated by the
arrow. If the driving intensity is later ramped down, the sys-
tem keeps following the upper branch until its end point, and
only here the pump mode population jumps back to the
lower branch. Hysteretic behavior is apparent, as the upward
and downward jump points do not coincide.

B. Dynamical stability of the pump-only state

As usual in nonlinear dynamical systems, finding a solu-
tion is not sufficient, as one has to verify its dynamical sta-
bility. Optical parametric oscillation, as well as the instability
of the central branch of the hysteresis loop are in fact due to
the solution �6� becoming dynamically unstable.

As the planar cavity supports a continuum of independent
modes with different in-plane wave vectors, dynamical sta-
bility of the pump only solution �6� has to be checked with
respect to perturbations with any wave vector ks:

�LP�x,t� = Pe−i�pt+ikpx + u�ks�e−i	�p+��ks�
t+iksx

+ v*�ks�e−i	�p−�*�ks�
t+i�2kp−ks�x. �7�

Substituting this expression in Eq. �1� and keeping only lin-
ear terms in the fluctuations u and v, one gets to the follow-
ing eigenvalue problem32

L�ks�w�ks� = ��ks�w�ks� , �8�

where the two-component vector w�ks�= 	u�ks� ,v�ks�
T and
the 2	2 matrix L�ks� is

L�ks� =��s − �p + 2g�Xs�2�Xp�2�P�2 − i
�s

2
gXs

*XiXp
2P2

− gXsXi
*Xp

*2P*2 − �i + �p − 2g�Xi�2�Xp�2�P�2 − i
�i

2
� . �9�

FIG. 2. �Color online� Polariton density in the pump mode as a
function of the driving intensity Ip= �Fp�2 for a pump wave vector of
kp=1.19 
m−1, which corresponds to �p=1.39845 eV. The left
graph is in the optical limiter regime ��p=�p�, whereas the right one
is in the bistability regime ��p=�p+1.5�p�. The arrows show the
jump in polariton density for an upward �right arrow� and down-
ward �left arrow� ramp of the laser intensity. The dotted part of the
curve is dynamically unstable. Same cavity parameters as in Fig. 1.
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The matrix L�ks� couples the fluctuations in the ks and ki=2kp−ks modes, called in the following the signal and the idler
modes. Short-hand notations have been here introduced to simplify the expressions: Xs,i=X�ks,i� are the excitonic Hopfield
coefficients of the signal/idler modes, �s,i=��ks,i� are the signal and idler mode frequencies, and �s,i=��ks,i� are the corre-
sponding loss rates. Dynamical stability is ensured if the imaginary parts of all eigenvalues of L�ks� are negative
Im	�±�ks�

0 for all wave vectors ks. These can be written as

Im
�±�ks�� = −
�s + �i

4
± Im�����si − �p� + g��Xs�2 + �Xi�2�nxp − i

�s − �i

4
�2

− g2�Xs�2�Xi�2nxp
2 � . �10�

Note that the pump mode frequency �p does not directly
appear in the expression �10� of the eigenvalues, but it is
only indirectly involved via the pump-only solution �6�,
which fixes nxp. The frequencies of the signal and idler
modes are involved in Eq. �10� only via their average value
�si= 	�s+�i
 /2.

Two kinds of physically distinct instabilities can arise. A
single mode instability arises when the equation of motion
for the pump mode alone—neglecting all interactions with
other modes—is dynamically unstable. This instability is
found when L�ks� has an eigenvalue with a positive imagi-
nary part for ks=kp. As in this case ki=ks=kp, this instabil-
ity involves the kp mode only, and for this reason it is called
single-mode. It is easy to verify8 that the pump-only solution
�6� is single-mode unstable in the central branch of the bi-
stability curve 	marked with a dotted line in Fig. 2�b�
. At the
turning points of the bistability curve a stable and an un-
stable solution meet, so that the bifurcation is of the saddle
node type.33

Our interest is however more focussed on instabilities of
the second kind, i.e., for ks�kp: This parametric instability
signals the onset of parametric oscillation with a finite inten-
sity appearing in a pair of distinct signal/idler modes at ks,i.
From the point of view of bifurcation theory, the parametric
instability profoundly differs from the single-mode one. As
we shall see in the following, the pump-only solution still
exists beyond the threshold point, but it is no longer stable
for an eigenvalue of the linear stability matrix L�k� has
crossed the real axis: The bifurcation is then of the Hopf
type33 and is accompanied by a spontaneous breaking of a
signal/idler U�1� phase rotation symmetry.34

C. Available range of signal/idler frequencies

In the present paper, we shall not address the problem of
the determination of the wave vectors ks,i which are actually
selected by the parametric process above threshold. This is a
very complicate problem and is postponed to a forthcoming
publication.11 Here we shall limit ourself to a study of the
lower threshold for parametric emission: The parametric os-
cillation dynamics will be initiated as soon as the incident
intensity exceeds the threshold value for some pair of signal/
idler modes.

For each value of pump wave vector kp, it is important to
characterize the range of �si that can be obtained when the
signal/idler wave vectors ks,i are spanned through all differ-

ent polariton states: The search for the minimum value of the
threshold has in fact to be restricted to the region of �si
values which are actually available.

This point is addressed in Fig. 3. In the left panel, the
behavior of the detuning ��si−�p� as a function of ks is shown
for three different values of kp and the yellow region in the
right panel summarizes the accessible detunings as a func-
tion of kp. For small kp, the �si vs ks curve has a single
minimum at ks=kp where �si=�p, and then tends to a finite
limit for large ks 	��k� has a finite limit for large k
. For
larger values of kp, negative values �si−�p
0 can be
reached. The minimum is in fact split in two separate
minima,9 symmetrically located around the pump angle as
required by the symmetry of �si under exchange of the signal
and idler modes. The upper limit of the available band mono-
tonically decreases as a function of kp, due to the correspond-
ing increase of �p. In particular, it tends to 0 for large values
of kp.

D. Pump intensity nxp at the parametric threshold

As it often happens in nonlinear optical systems, it is
useful to study the parametric threshold first in terms of the
internal light intensity in the cavity, in our case the excitonic
pump mode population nxp. Connection to the incident inten-
sity Iinc will be then made in the next subsection. As we are

FIG. 3. �Color online� Left panel: Plot of �si as a function of ks

for fixed values of kp=0 �full line�, kp=1.19 
m−1 �dashed line�,
and kp=1.4 
m−1 �dotted line�. The vertical lines show the value of
the pump wave vector. Right panel: Band of available �si values as
a function of kp. The horizontal line shows the optimal detuning
�si,p

opt �see Sec. III F below�; the vertical lines indicate the kp values
corresponding to the curves in the left panel. Cavity parameters as
in Fig. 1; equal damping rates �s,p,i=� with ��=0.25 meV.
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still left with several parameters, namely �i /�s, Xs
2, and Xi

2,
we are forced to restrict the discussion to some illustrative
examples. The qualitative features are however quite robust
with respect to their variations. Let us begin from the �s
=�i=�si case: As the argument of the square root in Eq. �10�
is purely real, the calculations are in this case the simplest.

The pump mode population nxp at the parametric thresh-
old is plotted in Fig. 4 as a function of �p−�si for two pos-
sible choices of the Hopfield coefficients. No qualitative dif-
ferences are visible, but only quantitative ones. The main
feature of these curves is the fact that parametric oscillation
can only take place for sufficiently large values of �p−�si.
The hatched regions indeed indicate where parametric oscil-
lation can never take place, no matter how large the popula-
tion of the pump mode is. Remarkably, the minimum value
of the threshold population is reached just before the end
point of the curves.

Simple physical arguments can be put forward to explain
these features. In a ��3� parametric oscillator, the nonlinearity
not only provides the parametric coupling between the signal
and idler modes via the off-diagonal terms in the matrix �9�,
but is at the same time responsible for a mean-field blueshift
of the signal and idler mode frequencies by 2g �Xs,i�2nxp.
Once this shift is taken into account, the resonance condition
for the parametric process is renormalized to

�p = �si + g��Xs�2 + �Xi�2�nxp. �11�

From Eq. �10�, it is easy to see that the minimum value of the
threshold

nxp
min =

�si

2g�Xs��Xi�
�12�

is indeed attained when this condition is satisfied. Combining
Eqs. �11� and �12� gives the optimal detuning

�p − �si = �si

�Xs�2 + �Xi�2

2�XsXi�
, �13�

which corresponds to the position of the minimum of the
curves plotted in Fig. 4.

On the other hand, for large and positive values of the
detuning �p−�si��si, the threshold grows in a linear way as
a function of �p−�si

nxp =
�p − �si

g��Xs�2 + �Xi�2 + �XsXi��
. �14�

Finally, for �p−�si
0 the well-known inequality ��Xs�2
+ �Xi�2�2� �Xs�2 �Xi�2 implies that Eq. �10� can never be zero
for any value of nxp, so that parametric oscillation can never
take place in this case. The mean field shifts in fact push the
signal/idler modes out of resonance before the parametric
coupling can overcome the damping rate �si.

E. Laser intensity at threshold

In the preceding section we have determined the value of
the pump mode population nxp at the threshold for parametric
oscillation. The value of the corresponding laser intensity is
then obtained by using Eq. �6�. Care has to be paid to the fact
that single-mode instabilities may make some branches of
the bistability loop dynamically unstable and therefore not
reachable in an actual experiment. Again, this feature is
typical9 of a ��3� OPO and is absent in ��2� ones, where the
relation between the incident intensity and the pump mode
population in the pump-only state is a linear one and no
instability other than the parametric one is possible.18

Let us start from the �p=�s=�i=� case. The predictions
for the value of the laser intensity at the parametric threshold
are summarized in Fig. 5, where the contour plot of the
threshold laser intensity is shown as a function of the detun-
ing �si−�p between the signal/idler mode frequencies and the
pump mode frequency, and the detuning �p−�p of the pump
laser from the pump mode frequency. Throughout all the
present discussion, the laser intensity is assumed to be
slowly but monotonically increased from zero until the para-
metric threshold is reached. The lower right corner of this
figure corresponds to the hatched region in Fig. 4 where
parametric oscillation cannot take place because �p is not
sufficiently larger than �si.

The heavy horizontal line at �p−�p=�3� /2 separates the
regions where the pump-only solution �6� respectively shows
optical limiting �below the line� and optical bistability
�above the line�. In the optical limiter case shown in Fig.
6�A�, the pump mode population nxp is a always a single
valued function of the pump laser intensity Ip. For a certain
window in pump intensity, the �initially red-detuned� signal/
idler frequency �si is brought into resonance with the pump
energy �p by the mean-field shift, and the pump-only state
becomes unstable with respect to parametric oscillation
�dashed line�. Note that differently from the case of ��2�

OPOs,18 parametric oscillation with ��3� media has an upper
threshold as well: For too large pump laser intensities, the
blueshift of the signal/idler frequencies brings them off reso-
nance and parametric oscillation can no longer take place.

FIG. 4. �Color online� Threshold excitonic density in the pump
mode as a function of the pump laser detuning from the average
signal/idler natural frequencies. The full curve refers to a semicon-
ductor microcavity for which the Hopfield coefficients are Xs

=X�0� and Xi=X�2kmagic�. The dashed red curve refers to the case of
a cavity containing a passive nonlinear material for which Xj =1.
The curves do not continue through the hatched region at the left-
hand side where parametric oscillation can never take place. The
dotted lines represent the approximation �14�. Cavity parameters as
in Fig. 3.
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In the optical bistability case, the interplay between the
pump-only hysteresis with the parametric oscillation leads to
a variety of different behaviors 	regions �B�–�E�
. In order to
fully understand these issues, it is useful to identify the rela-
tive position of the pump-only and the parametric instability
regions on the nxp versus Ip curves which are plotted in Fig.
6. The different regions indicated in Fig. 5 correspond in fact
to different arrangements of the two instability regions.

The simplest scenario is shown in Fig. 6�B�, where the
signal/idler frequency �si is very red-detuned from the pump
mode frequency �p. The pump mode population needed to
bring the signal/idler modes on resonance is then much
higher than the one needed to go through the pump-only
hysteresis loop. In this case, parametric oscillation occurs
well above the bistability region so that pump-only bistabil-
ity and parametric oscillation are effectively decoupled. The
behavior of parametric oscillation is completely analogous to
the optical limiter case.

For the parameters of Fig. 6�C�, the pump only instability
still sets in before the parametric instability is reached, but
the state of the upper branch where the system is expected to
go, is parametrically unstable and OPO can start. This means
that the laser intensity threshold for parametric oscillation
coincides with the turning point of the hysteresis loop and in
particular no longer depends on the signal/idler frequency �si.
For this reason, the contour lines shown in region �C� of Fig.
5 are straight horizontal lines.

Figure 6�D� shows a situation where the parametric oscil-
lation cannot be reached by an upward ramp of the laser
intensity. For increasing pump laser intensity, the system
jumps to the upper branch of the hysteresis loop which is
now parametrically stable in the region of interest, so that
parametric oscillation does not start. Physically, the jump
shown by the pump mode population at the switch-on point
of the hysteresis loop is in fact large enough to make the
signal/idler detuning to jump directly from one side to the
other of the resonance. Depending on the exact position of
the parametric unstable region along the hysteresis curve,
parametric oscillation can possibly be obtained by ramping
the laser intensity down along the upper branch. Finally, Fig.
6�E� describes the case when parametric instability sets in
before the bistability saddle node bifurcation is reached.

In Sec. IV we shall see that the parametric instabilities
shown in Figs. 6�A�–6�C� lead to a stable OPO state. On the
other hand, the situation is more complex for the case of Fig.
6�E�, where it may happen that no stable parametrically os-
cillating state is available and the system eventually ends up
in the upper branch of the pump-only hysteresis loop.

F. Quest for the lowest threshold

In order to minimize the parametric threshold intensity, a
careful choice of the detunings has to be performed: In this
section, we will show that the mean-field shifts of the fre-
quency modes make this optimization problem somehow
more complex than a trivial question of “magic angle.”

The optimal value of the detuning between pump fre-
quency �p and signal/idler frequency �si is given by Eq. �13�.
In order to minimize the value of the incident pump intensity
at threshold, one has to simultaneously impose a resonance
condition between the pump laser frequency and the renor-
malized pump mode frequency:

�p = �p + g�Xp�2nxp. �15�

The optimal pump and signal/idler mode detunings are then
immediately obtained by combining this result with Eqs. �12�
and �13�:

FIG. 5. �Color online� Contour plot of the threshold laser inten-
sity as a function of the detunings. The decay rates for the pump,
signal, and idler modes are taken equal to �s,p,i=� and the Hopfield
coefficients Xs=X�0�, Xp=X�kmagic�, and Xi=X�2kmagic�. The lowest
contour line in the plot is at 1.05Iinc

min, where the minimum of the
threshold intensity Iinc

min is attained at the point indicated by a star �
and is defined in Eq. �18� below. The difference between the con-
tours is 0.3Iinc

min. The letters �A�–�E� indicate the regions of qualita-
tively different behaviors; the corresponding pump-only character-
istic curves are shown in Fig. 6. The shaded area indicates the
values of �si−�p that are available for the value of the pump angle
kp=1.4 
m−1, corresponding to the curve in Fig. 3.

FIG. 6. �Color online� Pump-only characteristic curves for dif-
ferent values of the detunings. Instabilities with respect to a para-
metric oscillation process at a given �si are indicated as dashed
lines, pump-only instabilities are indicated as dotted lines. Arbitrary
units for Ip are the same in all panels. The labels of the plots cor-
respond to the different regions in Fig. 5: �A� Parametric oscillation
in the optical limiter regime ��si−�p=−1.5�; �p−�p=0�; �B� bista-
bility regime: Parametric oscillation threshold above the pump-only
bistability region ��si−�p=−2�; �p−�p=0.9��; the inset shows the
bistability region in more detail; �C� bistability regime: Parametric
oscillation threshold at the pump-only bistability region ��si−�p=
−0.6�; �p−�p=1.5��; �D� bistability regime: Parametric oscillation
threshold not reachable with upward ramp in laser intensity ��si

−�p=−0.2�; �p−�p=1.5��; �E� bistability regime: Parametric oscil-
lation threshold before pump-only instability point ��si−�p=0.4�;
�p−�p=1.5��.
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�p
opt = �p − �p =

�

2

�Xp�2

�XsXi�
, �16�

�si,p
opt = �si − �p = −

�

2

�Xs�2 + �Xi�2 − �Xp�2

�XsXi�
. �17�

The corresponding value of the threshold intensity is ob-
tained by simply substituting into Eq. �6� and then using Eq.
�2�. For equal radiative and polaritonic decay rates �rad=�,
one obtains

Iinc
min =

NtrNQW

8Cp
2Xp

2XsXi

�2�2�p

ḡ
. �18�

In Fig. 5, the location of the minimum is indicated by a
star: In the present �s,p,i=� case, this point lies in the region
�A� where the behavior of the system is the simplest. The
pump-only solution being of the optical limiter type, no hys-
teresis effects take place nor any interplay between paramet-
ric emission and bistability. Remarkably, both �si,p

opt and �p
opt

and have a weak dependence on the Hopfield coefficients:
For Xs,p,i=1, they are equal to �si,p

opt =−� /2, �p
opt=� /2, while

they are approximately �si,p
opt =−0.53�, �p

opt=0.52�, for the
typical values for a semiconductor microcavity used in Fig.
5. This result is a refinement of the concept of “magic angle”
at which perfect resonance �si,p=0 is satisfied: As already
noted in Ref. 9, small but finite detunings �si,p and �p are
useful in a cw experiment to compensate the blueshift of the
signal/idler modes for increasing pump mode population.

The value �17� of the optimal detuning can be translated
in the wave vector space using the results of Sec. III C: The
optimal detuning is indicated in Fig. 3�b� by the horizontal
line. It is easy to see that this value can actually be achieved
as soon as kp�1.34 
m−1, which corresponds for the cavity
parameters of Fig. 1 to a pump angle larger than 10°. This
minimum pump angle depends on the damping rate �: For a
smaller �, the curves of Fig. 3 are stretched in the y direction
so that the optimal detuning can already be obtained at
smaller pump angles.

The shaded area in Fig. 5 indicates the values of detuning
�si,p that are available for a pump wave vector equal to kp
=1.4 
m−1. As the pump frequency �p can be chosen at will,
no bound exists in the vertical direction and this area is
bound only in the horizontal direction. For given values of
�p and kp, the parametric oscillation dynamics is initiated
when the incident pump intensity starts exceeding the mini-
mum value of the threshold on the horizontal segment con-
tained in the shaded area in Fig. 5.

A crucial role in the OPO operation is played by the
damping rate. From Eq. �18�, one sees that the laser intensity
at the optimal point is proportional to the square of the
damping. Furthermore, the value of the damping affects the
extent of the shaded area of available frequencies: For fixed
pump angle, the border of this area moves to the right upon
increasing the damping rate and eventually no longer over-
laps with the �A� and �C� regions which are most favorable
for OPO operation �see Sec. IV�.

G. New features of the general �sÅ�iÅ�p case

In current experimental configurations, e.g., for a pump in
the vicinity of the “magic angle,” the idler linewidth is often
much larger than the signal and pump ones, i.e., �i��p
��s. Although the general formalism introduced in the pre-
vious sections keeps holding its validity, some of the physi-
cal conclusions of Sec. III F have to be modified. Because of
the increased damping rate of the idler modes, the pump
mode population nxp required by Eq. �10� for the onset of the
parametric oscillation corresponds to a blueshift of the pump
mode g �Xp�2nxp much larger than �p. With the frequency
choice suggested by a naive application of the condition
�15�, the intensity value �18� would correspond to the end
point of the upper branch of the bistability curve. Unfortu-
nately, this point cannot be reached by the simple upward
ramp of the pump laser intensity considered in the present
paper, so that a more complete analysis is required which
fully takes into account hysteresis effects.

The results are shown in Fig. 7 for �p=�s=�i /5. Because
of the high value of the pump mode blueshift at the onset of
parametric oscillation, the �D� and �E� regions are shifted to
large values of �p �not shown�, direct contact between the
regions �A� and �C� is lost, and the gap is filled by the �B�
region. The optimal choice of the detunings lies on the bor-
der between the regions �B� and �C�: Parametric oscillation
starts on the upper branch of the pump-only hysteresis curve
exactly at the landing point of the jump from the lower
branch. As one can see on Fig. 7, the optimal values of the
�p,si

opt and �p
opt detunings �measured in units of �p� are here

larger than in the previous �p,s,i=� case. On the other hand,
the threshold intensity is increased above the naive predic-
tion �18� by a moderate factor of the order of 2.

FIG. 7. The same as Fig. 5 for unequal damping rates �p=�s

=�i /5. The lowest contour line in the plot is at 1.05Iinc
min, where the

minimum of the threshold intensity Iinc
min is attained at the point

indicated by a star �. The difference between the contours is 0.1Iinc
min.
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H. Quantitative discussion

In many technological applications of optical parametric
oscillators, a value as low as possible for the threshold inten-
sity can be a key advantage. In this respect, semiconductor
microcavities in the strong coupling regime are very prom-
ising systems thanks to the extremely high value of the non-
linear coupling constant g, much higher than the one of
OPOs based on passive ��3� media 	see discussion below Eq.
�4�
.

Using typical values ��=0.1–0.5 meV for the damping
rates and NQW=3 for the number of quantum wells inside the
cavity, Eq. �18� yields a value in the 0.13–3.2 kW/cm2 range
for the incident laser intensity at the parametric threshold, a
value which is in rough agreement with experimental data of
Refs. 3–5. Given the scaling relation �12�, the threshold in-
tensity of passive ��3� OPOs with a comparable quality factor
is orders of magnitude higher. Unless planar cavities of much
higher quality factor are developed to compensate for the
much weaker nonlinearity of passive materials, semiconduc-
tor microcavities in the strong coupling regime appear to be
most favorable systems in view of low-power OPO applica-
tions.

In order for this comparison to be fair and complete, it is
important to extend it to the case of OPOs based on passive
��2� materials.16–18 In this case, no mean-field shift of the
mode frequencies occurs and the minimum value of the para-
metric threshold is attained under the resonance condition
�p=�si and is equal to

�P�min = �/�2g2� , �19�

where the second-order nonlinear coupling constant for a
planar cavity of thickness d and filled of a medium of linear
dielectric constant �lin is

�g2 = C��2�����p�3

�lin
2 d

. �20�

At optimal pump detuning, the driving amplitude equals
�Fp � =� � P � /2, irrespective of the type of nonlinearity. Com-
bining this result with Eqs. �2�, �4�, �12�, �19�, and �20�, one
finds the ratio between the threshold laser intensities of ��2�

and ��3� OPOs:

Imin
�3�

Imin
�2� =

2�p

�

	��2�
2

��3� . �21�

Using a typical value ��3�=10−9 esu for a large Kerr nonlin-
earity, the value ��2�=4	10−8 esu of the widely used
KTiOPO4 crystal,27 and � /�p=2	10−4 as in a typical � /2
semiconductor microcavity, the ratio �21� turns out to be
around 0.016.

This argument concludes the verification of the wide-
spread expectation that for comparable values of the quality
factor, the threshold intensity for parametric oscillation is
orders of magnitude lower in semiconductor microcavities in
the strong coupling regime than in OPOs based on passive
��2,3� materials.

IV. BIFURCATION TYPE AND NONLINEAR SOLUTION
ABOVE THRESHOLD

In the previous section, our attention has been focused on
the behavior of the system below the parametric threshold
and we have characterized the value of the threshold inten-
sity as a function of the detunings. To complete the study, it
is then necessary to investigate the nature of the threshold
point and characterize whether the onset of parametric oscil-
lation takes place in a continuous or discontinuous way. Both
kind of behaviors have been indeed observed in the
experiments.5,15,23 Correspondingly, the theoretical analysis
in the present section will show that a variety of different
hysteresis effects can take place depending on the kind of
bifurcation that occurs at the threshold. Again, our discussion
here will be based on the assumption that ks,i are given quan-
tities. A complete discussion of the selection problem is post-
poned to a forthcoming publication.11

To make the analysis the simplest, a three-mode ansatz of
the form

�LP�k,t� = S�k,ks
e−i�st + P�k,kp

e−i�pt + I�k,ki
e−i�it �22�

can be used,9,12 the signal/idler frequencies and wave vectors
being related by �i=2�p−�s and ki=2kp−ks. By projecting
the wave equation �1� onto the three signal, pump, and idler
modes, the following equations of motion are found:

i
d

dt
P̃ = 	�p − i�/2 − �p
P̃ + gXp

2	��P̃�2 + 2�S̃�2

+ 2�Ĩ�2�P̃ + 2P̃*S̃Ĩ
 + F̃p, �23�

i
d

dt
S̃ = 	�s − i�/2 − �s
S̃ + gXs

2	�2�P̃�2 + �S̃�2 + 2�Ĩ�2�S̃ + P̃2Ĩ*
 ,

�24�

i
d

dt
Ĩ = 	�i − i�/2 − 2�p + �s
Ĩ + gXi

2	�2�P̃�2 + 2�S̃�2

+ �Ĩ�2�Ĩ + P̃2S̃*
 , �25�

where the following shorthand notations have been intro-

duced �p,s,i=��kp,s,i� and Xp,s,i=X�kp,s,i�. Scaled quantities S̃

=XsS, P̃=XpP, Ĩ=XiI, and F̃p=XpFp have also been defined.
Imposing the stationarity of the solution and the condition
that �s is purely real gives a set of seven real equations
�three complex ones, plus one real equation� which has to be
solved for a total of eight real quantities: The three ampli-

tudes S̃ , P̃ , Ĩ and the �complex� parametric oscillation fre-
quency �s. The extra degree of freedom which is left unde-
termined corresponds to the U�1� signal/idler phase
symmetry which is spontaneously broken above the
threshold.34

Figure 8 shows the behavior of the pump nxp= �P̃�2 and

signal nxs= �S̃�2 mode occupations as a function of the inci-
dent pump intensity Ip for different choices of pump laser
�p−�p and signal/idler detuning �si−�p. These plots exem-
plify the system behavior in the most significant among the
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regimes studied in Fig. 6. Full lines indicate stable regions;
dashed lines are the unstable ones.40 Correspondingly, a nu-
merical integration of the time-dependent equation of motion
�23�–�25� has been performed for a laser intensity which is
continuously swept up and down through the parametric
threshold. The resulting time dependence of nxp and nxs is
shown in Fig. 9 for the most significant cases.

A. Region (A): Optical limiter

In the optical limiter case of Fig. 8�A�, both the pump and
the signal mode occupations are continuous functions of the
pump intensity. The transition is analogous to a second-order
phase transition: The signal intensity is zero below and at the
threshold and increases smoothly as a function of the pump
power. In the language of nonlinear dynamics, this corre-
sponds to a so-called supercritical Hopf bifurcation.33 The
corresponding time evolution is shown in the plots in the left
column of Fig. 9: Both nxp and nxs have a smooth evolution
in time which is immediately understood by following the
curves of Fig. 8�A�. The kinks correspond to the points
where parametric emission switches on and off.

It is interesting to compare this behavior with the one of
the ��2� OPO in the �0�1
1 regime discussed in Ref. 18. As
one can see in Figs. 5 and 7, the optical limiter regime cor-
responds to �si−�p
0 and �p
�p. In both cases, the Hopf
bifurcation is supercritical, and the populations are continu-
ous functions of the pump intensity across the threshold. The
behavior well above the threshold is however completely
different. In the ��3� case there is an upper threshold as well,
so that parametric oscillation disappears for too large a pump
intensity �not shown in the time-dependent plots�. In the ��2�

case, the parametric oscillation takes place instead for all
values of the laser intensity above the threshold. As shown in
Ref. 18, for very high values of the incident intensity it be-
comes however unstable towards self-pulsing and chaotic be-
havior.

The behavior of the system for the parameters of Fig.
6�B� is completely analogous to the optical limiter case: The
pump only bistability and the parametric oscillation indeed
take place in an independent way. In the OPO region, the
behavior of the pump and signal populations as a function of
the incident intensity is therefore closely analogous to the
one shown in Fig. 8�A�.

B. Region (C): Optical bistability

The physics turns out to be much richer whenever para-
metric oscillation and pump-only bistability take place in the
same range of intensities. In the case shown in Fig. 6�C�, the
pump-only solution loses stability at the pump-only saddle
node bifurcation. As the upper branch of the pump-only hys-
teresis loop is parametrically unstable, the parametric oscil-
lation sets in. As shown in Fig. 8�C�, the solution connecting
the lower and upper threshold for OPO can be a complicate
�multivalued� function:9 Typically, there are two stable
branches �indicated with � and ��, which cannot always be
reached in a continuous way by means of a simple upward
ramp of the pump intensity. To determine which branch is
actually selected, the dynamics of the system has to be con-

FIG. 8. �Color online� Pump and signal intensity as a function of
the pump power in the different regimes. Heavy full �thin dashed�
lines refer to the �un�stable solutions. �s,p,i=� are taken here, but
the results are qualitatively robust to a change of the �’s. Arbitrary
units for Ip are the same in all panels. �A� Optical limiter regime �
�p−�p=0; �si−�p=−1.5��; �C� optical bistability regime where
parametric and pump only threshold coincide ��p−�p=1.5�; �si

−�p=−0.5��; �E1� Optical bistability regime where the parametric
threshold precedes the pump only instability. The parametrically
oscillating solution has a very small stable part ��p−�p=1.5�; �si

−�p=0.4��; �E2� Same as �E1�, with a different set of parameters
such that parametric oscillation is possible here for a wide range of
pump intensities. ��p−�p=3�; �si−�p=2�.� The inset shows a mag-
nification of the pump population in the OPO regime.

FIG. 9. Time evolution of the pump laser intensity �upper pan-
els�, pump intensity �central panels�, and signal intensity �lower
panels� for the same detuning parameters as in the panels �A�, �C�,
and �E2� of Fig. 8.
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sidered �central column of Fig. 9�. We have numerically
found that the system jumps to the � branch as soon as the
pump intensity exceeds the pump-only turning point. This �
branch is then followed during both the upward and the fol-
lowing downward ramps until the saddle-node instability at
the end of the branch is reached. At this point the system has
to jump to another solution: Our numerical simulations have
shown that the � branch is dynamically selected, where para-
metric oscillation still takes place with an even higher am-
plitude. Finally, when the saddle-node instability at the end
of � branch is reached, the system has no choice but to jump
back to the lower branch of the pump-only solution where
parametric emission is no longer present.

It is important to stress that this analysis is based on a
three-mode approximation: Although this is certainly a valid
description of a three-mode cavity, it may be not representa-
tive of all that can happen in a many-mode system such as a
planar microcavity, where the � branch is often Eckhaus-
unstable against changes in the signal wave vector. On the
other hand, the � branch turns out to be generally much more
stable. A more complete discussion of these issues will be
presented in a forthcoming publication.11

C. Regions (E1) and (E2): Optical bistability

In the �E� region, the parametric instability occurs before
the pump-only one, and the corresponding Hopf bifurcation
is generally of the subcritical type.33 Two subcases are to be
distinguished.

For �si��p 	Fig. 8 �E1�
, although the instability is of the
parametric kind, no stable parametrically oscillating solution
exists for any pump intensity above the threshold. The para-
metric threshold is in fact very close to the pump-only
threshold, and only a very small part of the OPO solution is
stable �circle in Fig. 8�. As this stable region corresponds to
intensity values in between the upper and lower turning
points of the pump-only bistability loop, parametric oscilla-
tion can not be reached by any continuous intensity ramp, no
matter its direction.

For �si��p 	Fig. 8�E2�
, the parametric threshold is in-
stead sufficiently lower than the pump-only one for a stable
OPO state to exist and to be reachable by means of an up-
ward intensity ramp: A stable parametrically oscillating so-
lution exists in fact for laser intensities extending from well
below to well above the parametric instability threshold.
However, as the bifurcation at the lower threshold is of the
subcritical Hopf type, parametric oscillation sets in a discon-
tinuous way for an upward ramp in laser intensity. A time-
dependent calculation is then needed to ensure that the sys-
tem actually jumps from the lower branch of the pump-only
hysteresis loop to the parametrically emitting solution rather
than to the upper branch of the pump-only bistability loop.
The results are shown in the right column of Fig. 9: The
switch on of the OPO emission during the upward ramp is
discontinuous, as well as the switch off during the downward
ramp. This latter corresponds to a saddle-node instability at a
pump intensity slightly lower than the one of the subcritical
Hopf instability. Another kind of hysteresis loop is therefore
present: Parametric emission gives in fact a positive feed-

back to the pump mode population and two solutions �a
pump-only one and a parametrically emitting one� are pos-
sible in a range of pump intensity values. The main differ-
ence with respect to the standard pump-only hysteresis loop
is that the higher turning point is here at a Hopf bifurcation
rather than at a saddle-node one.

Remarkably, this phenomenology can be related to an
analogous one shown by a ��2� OPO in the �0�1�1 regime
of Ref. 18. Indeed, �p��p and �si��p in our �E2� region.
The qualitative shape of the parametrically-induced hyster-
esis loop is indeed similar, with the main difference of the
hysteresis loop having a here a finite size also in the nxp
versus Ip plot and not only in the P versus Ip one. A quali-
tative analogy with the ��2� OPO can be found in the �C� case
as well: In addition to the topological similarity, the pump
mode population is a very flat function of Ip along the �
branch, and the phase of the pump mode amplitude P in the
� branch differs from the one in the lower branch of the
bistability loop in a way very similar to the phase hysteresis
shown in the �0�1
1 case of Ref. 18.

D. Considerations on quantum fluctuations

All the discussion so far has considered the polaritonic
field as a classical one, and therefore has neglected its fluc-
tuations around the mean-field value. Before concluding, it is
interesting to shortly address the behavior of the quantum
fluctuations in the different cases. The fluctuations around
the pump-only solution below the threshold are mostly de-
termined by the nature of the instability at the threshold
point, i.e., whether this is a single-mode or a parametric one.
The physics of the fluctuations around the three-mode solu-
tion �22� above the threshold is instead more complex,28 and
here we shall limit ourselves to a few, very general remarks.

In regions �A� and �B�, the onset of parametric oscillation
closely resembles a second-order phase transition: The sig-
nal, idler, and pump mode populations have a continuous
dependence on the pump laser intensity. The overall behavior
as a function of the pump laser intensity is qualitatively iden-
tical to the one discussed in Ref. 35 as a function of the
pump laser frequency: As the threshold point is approached
from below, the magnitude of the quantum fluctuations of the
signal and idler beam monotonically grows and eventually
becomes very large in the vicinity of the threshold where an
eigenvalue of the stability matrix �9� goes to zero. The fluc-
tuations being due to parametric creation of signal-idler po-
lariton pairs, the signal and idler beams show significant
quantum correlation.36–38 Above the threshold, the signal and
idler fields have a finite mean-field amplitude which continu-
ously starts from zero. Quantum fluctuations around this
three-mode mean-field solution have a more complex behav-
ior: A quite general fact is that the importance of the fluctua-
tions is most important close to the threshold point, and then
quickly decreases as one moves far from the threshold.28

In the �E� cases, the behavior is almost the same in the
region below the threshold: The instability having a paramet-
ric nature, the quantum fluctuations �as well as the quantum
correlations� in the signal and idler modes grow as the
threshold is approached and become strongest in the close
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vicinity of the threshold point. On the other hand, the behav-
ior above the threshold point is dramatically different: The
onset of the parametric oscillation 	provided it really starts,
as in case �E2�
 is discontinuous, and a completely different
solution branch is selected 	Fig. 9 �E2�
. Furthermore, the
landing point on the new branch is not necessarily in the
vicinity of the end point of the branch, so fluctuations are
generally moderate. Yet their magnitude becomes again large
as one approaches the end point of the branch where one
eigenvalue of the stability matrix around the three-mode so-
lution �22� tends to zero.

In the �C� case, the behavior is very different already be-
low threshold: As the instability at the end point of the
branch has a single-mode nature, the quantum fluctuations in
the signal and idler modes remain moderate also in the vi-
cinity of the threshold point, while the pump mode ones
grow very large as is typical of optical bistable systems.39

V. CONCLUSIONS AND OUTLOOK

In this paper we have given a systematic classification of
the behavior of a triply resonant optical parametric oscillator
based on a semiconductor microcavity in the strong coupling
regime. Because of the ��3� nature of the collisional excitonic
nonlinearity, the interplay of optical bistability and optical
parametric oscillation makes the behavior of these systems
much richer than the one of standard OPOs based on passive
��2� nonlinear materials, and a variety of different threshold
behaviors can be found already within a simple three-mode
theory. In agreement with recent experiments, depending on
the specific value of the detunings, either a continuous

switch on or a discontinuous jump can be found for the be-
havior of the signal intensity at the parametric threshold. The
different behaviors have been classified by means of the gen-
eral theory of bifurcations, and a simple relation between the
nature of the instability point and the behavior of the quan-
tum fluctuations at the threshold point has been pointed out.

In order to minimize the threshold incident intensity, a
rigorous and quantitative refinement of the “magic angle”
criterion is provided which takes into account the mean-field
shift of the modes due to interactions, as well as the possi-
bility of hysteresis effects in the pump-only dynamics. A
slight blue-detuning of the pump laser and a comparable red-
detuning of the signal/idler modes with respect to the pump
mode frequency turns out to be favorable in order to com-
pensate for the mean-field shift of the mode frequencies.

Generalization of the theory to the many-mode case is
under way. In order to fully take into account the inhomoge-
neous spatial profile of the pump laser spot and the compe-
tition between parametric oscillation in different ks modes,
techniques mutated from the theory of pattern formation in
nonlinear dynamical systems turn out to be of great utility.

ACKNOWLEDGMENTS

We are grateful to Cristiano Ciuti, Jerôme Tignon, and
Carole Diederichs for continuous stimulating discussions.
This research has been supported financially by the FWO-V
project Nos. G.0435.03, G.0115.06 and the Special Research
Fund of the University of Antwerp, BOF NOI UA 2004.
M.W. acknowledges financial support from the FWO-
Vlaanderen.” We also acknowledge support by the Ministero
dell’Istruzione, dell’Università e della Ricerca �MIUR�.

1 P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. Acta 27,
321 �1980�; 28, 211 �1981�.

2 J. Opt. Soc. Am. B 10, 1655 �1993�, special issue on optical
parametric oscillation and amplification.

3 R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whit-
taker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J.
Baumberg, and J. S. Roberts, Phys. Rev. Lett. 85, 3680 �2000�.

4 R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, and M. Il-
egems, Phys. Rev. Lett. 85, 2793 �2000�.

5 J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartak-
ovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, Phys.
Rev. B 62, R16247 �2000�.

6 Semicond. Sci. Technol. 18, S279-S434 �2003�, special issue on
Microcavities, edited by J. Baumberg and L. Viña.

7 Physics of Semiconductor Microcavities, edited by B. Deveaud
special issue of Phys. Status Solidi B, 242, 2145 �2005�.

8 I. Carusotto and C. Ciuti, Phys. Rev. Lett. 93, 166401 �2004�; C.
Ciuti and I. Carusotto, Phys. Status Solidi B 242, 2224 �2005�.

9 D. M. Whittaker, Phys. Rev. B 71, 115301 �2005�.
10 D. Sanvitto, D. N. Krizhanovskii, D. M. Whittaker, S. Ceccarelli,

M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 73, 241308�R�
�2006�.

11 M. Wouters and I. Carusotto �to be published�.
12 D. M. Whittaker, Phys. Rev. B 63, 193305 �2001�.

13 C. Ciuti, P. Schwendimann, and A. Quattropani, Semicond. Sci.
Technol. 18, S279 �2003�, and references therein.

14 N. A. Gippius et al., Europhys. Lett. 67, 997 �2004�.
15 G. Dasbach, C. Diederichs, J. Tignon, C. Ciuti, Ph. Roussignol,

C. Delalande, M. Bayer, and A. Forchel, Phys. Rev. B 71,
161308�R� �2005�.

16 C. Richy, K. I. Petsas, E. Giacobino, C. Fabre, and L. Lugiato, J.
Opt. Soc. Am. B 12, 456 �1995�.

17 M. Vaupel, A. Maître, and C. Fabre, Phys. Rev. Lett. 83, 5278
�1999�; M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maître,
and C. Fabre, Phys. Rev. A 67, 023808 �2003�.

18 L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J.
Horowicz, Nuovo Cimento Soc. Ital. Fis., D 10, 959 �1988�.

19 I. A. Shelykh, A. V. Kavokin, and G. Malpuech, Phys. Status
Solidi B 242, 2271 �2005�.

20 W. Langbein, Proceedings of ICPS 26, Edinburgh, UK, 2002 �un-
published�.

21 M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386 �1984�.
22 C. Ciuti and I. Carusotto, Phys. Rev. A 74, 033811 �2006�.
23 A. Baas, J.-Ph. Karr, M. Romanelli, A. Bramati, and E. Gia-

cobino, Phys. Rev. B 70, 161307�R� �2004�.
24 C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Sch-

wendimann, Phys. Rev. B 58, 7926 �1998�.
25 M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G.

PARAMETRIC OSCILLATION THRESHOLD OF… PHYSICAL REVIEW B 75, 075332 �2007�

075332-11



Malpuech, and A. Kavokin, Phys. Rev. B 72, 201301�R� �2005�.
26 For a discussion of disorder effects in disordered Bose systems at

equilibrium, see, e.g., M. P. A. Fisher, P. B. Weichman, G. Grin-
stein, and D. S. Fisher, Phys. Rev. B 40, 546 �1989�.

27 R. L. Sutherland, Handbook of Nonlinear Optics �Marcel Dekker,
New York, 2003�.

28 M. Wouters and I. Carusotto, Phys. Rev. B 74, 245316 �2006�.
29 A. Verger, C. Ciuti, and I. Carusotto, Phys. Rev. B 73, 193306

�2006�.
30 R. W. Boyd, Nonlinear Optics �Academic Press, San Diego,

1992�.
31 A. Baas, J.-Ph. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A

69, 023809 �2004�.
32 C. Ciuti, P. Schwendimann, and A. Quattropani, Phys. Rev. B 63,

041303�R� �2001�.
33 J. Hale and H. Koçak, Dynamics and Bifurcations �Springer-

Verlag, New York, 1991�.
34 M. Wouters and I. Carusotto, cond-mat/0606755 �unpublished�.
35 I. Carusotto and C. Ciuti, Phys. Rev. B 72, 125335 �2005�.
36 C. Ciuti, P. Schwendimann, and A. Quattropani, Phys. Rev. B 63,

041303�R� �2001�.
37 J. Ph. Karr, A. Baas, and E. Giacobino, Phys. Rev. A 69, 063807

�2004�.
38 S. Savasta, O. Di Stefano, V. Savona, and W. Langbein, Phys.

Rev. Lett. 94, 246401 �2005�.
39 D. F. Walls and G. J. Milburn, Quantum Optics �Springer-Verlag,

Berlin, 1994�.
40 Stability has to be intended here within the three-mode approxi-

mation: Eckhaus type instabilities due to the many modes in
which parametric oscillation can take place have not been taken
into account here and will be the subject of the forthcoming
publication �Ref. 11�.

MICHIEL WOUTERS AND IACOPO CARUSOTTO PHYSICAL REVIEW B 75, 075332 �2007�

075332-12


