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The k ·p approximation and the band anticrossing model modified for the strain are used to describe the
electronic states of the strained bulk GaAs1−xNx and InAs1−yNy ternaries in the vicinity of the center of the
Brillouin zone �� point� and their respective band offsets have been evaluated, before implementing them into
the superlattice structure. By minimizing the total mechanical energy of the stack of the alternating layers of
GaAs1−xNx and InAs1−yNy in the superlattice, the ratio of the thicknesses of the epilayers is determined to make
the structure lattice matching on InP�001�. Energy miniband structure of the superlattice is then investigated
using the transfer-matrix formalism, predicting the evolution of the band-edge transition energies for different
nitrogen concentrations and thickness combinations. The results show the potential to significantly reduce the
band gap compared to quaternary alloys of similar average concentration and to obtain photon absorption and
emission energies in the range of 0.65–0.35 eV at 300 K for a typical nitrogen concentration of �5%. Finally,
the optical-absorption coefficient of such a superlattice, as a function of the nitrogen concentration, the change
in electron effective masses, and the temperature are estimated under the anisotropic medium approximation.
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I. INTRODUCTION

It has been long known that a small quantity of nitrogen
in GaAs and GaP forms a deep level impurity.1 However, the
unusual large band-gap lowering observed in �In�GaAs1−xNx

with low nitrogen fraction2,3 has sparked a new interest in the
development of dilute nitrogen containing III-V semiconduc-
tors for long-wavelength optoelectronic devices �e.g., IR la-
sers, detectors, solar cells�.3–7 Thus far most of the work had
been concentrated on the development of �In�GaAsN alloys
lattice-matched to the GaAs substrate.1–6 Theoretically, the
band gap of GaAs1−xNx can be further reduced by subjecting
it to a biaxial tensile strain, e.g., by fabricating pseudomor-
phically strained layers on commonly available InP sub-
strates. While such an approach, in principle, could allow
access to smaller band gap �longer wavelength�, only a few
atomic monolayers of the material can be grown due to the
large lattice mismatch between GaAs1−xNx and InP �
�3.8–4.8 % for x�0.05, 300 K�. This limitation can be cir-
cumvented using the principle of strain balancing,8–11 by in-
troducing alternating layers of InAs1−yNy with opposite
strain ��2.4–3.1 % for x�0.05, 300 K� in combination with
GaAs1−xNx. Therefore a pseudomorphically strained super-
lattice �Fig. 1� can be realized from a sequence of GaAs1−xNx
and InAs1−yNy layers if the thickness of each layer is kept
below the threshold for its lattice relaxation. In such a short-
period superlattice, carrier wave function in the given well
layer penetrates deep into the other neighboring well layers
in the growth direction, if the barrier material is thin. The
effect of this encroachment of the wave function can be
treated assuming the anisotropy is introduced by the layers
along the growth direction. In other words, a short-period
superlattice can be assumed as being made up of a material
that has different properties along the growth direction and
the direction perpendicular to the growth. The amount of
anisotropy would depend on the amount of wave-function

encroachment in the neighboring layers. The thicker the bar-
rier layer, the smaller the penetration and the higher the an-
isotropy would be. On the other hand if the barrier layer is
very thin, the wave function will be smooth across the struc-
ture, which is equivalent to the bulk, and hence the structure
will be isotropic along the growth direction and the direction
perpendicular to the growth. This anisotropy will change the
effective mass of the carriers in two perpendicular directions
and the anisotropy factor, defined as the ratio of the reduced
effective masses along the plane and perpendicular to the
superlattice layers, can be used to find the variation in the

FIG. 1. Schematic of the strain-balanced superlattice on InP
substrate. Converging and diverging arrows show the compressive
and tensile stresses on the layers, respectively. Stresses on each
layer, being opposite in nature, cancel each other, producing a total
of zero stress on the substrate.
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absorption coefficients of the superlattice in comparison to
the bulk.

In this work, along with the calculations of the electronic
band structure of the individual strained InAs1−yNy and
GaAs1−xNx layers and the conditions for the strain balancing
to create a GaAs1−xNx / InAs1−yNy short-period superlattice
lattice matched on InP�001�, the electronic band structure of
such a superlattice for different combinations of nitrogen
concentrations x and y is investigated. The evolution of the
optical-absorption coefficient of the superlattice as a function
of the temperature, effective masses, and the nitrogen con-
centration is also analyzed.

The paper is organized as follows: in Sec. II we will dis-
cuss the strain-balancing concept and conditions for a
GaAs1−xNx / InAs1−yNy superlattice structure with an estimate
of monolayer ratio to create a strain balancing. In Sec. III we
will discuss the band-structure calculation formalism for
conduction and valence bands for III-V-N near the � point,
with calculation results for GaAs1−xNx and InAs1−yNy. In
Sec. IV, the transfer-matrix technique is used to calculate the
effective band gap of the GaAs1−xNx / InAs1−yNy for different
combinations of x and y. Finally, before the conclusions we
will present an optical-absorption coefficient formalism and
results for the superlattice using the anisotropy in the struc-
ture in Sec. V.

II. STRAIN BALANCING

If the misfit between a bulk substrate and a grown epil-
ayer is sufficiently small, first atomic layers that are depos-
ited will be strained to match the substrate, and a coherent
�or pseudomorphic� interface will be formed. However, as
the epilayer thickness increases, the homogenous strain en-
ergy becomes so large that a critical thickness is reached
where it becomes favorable for misfit dislocations to be
introduced.12,13 By balancing the stresses in one compres-
sively strained layer by another tensilely strained layer, the
stack of layers can be engineered to have nearly zero total
stress on the substrate. In principle, to get a strain-balanced
structure, the tensile and compressive layers should be
pseudomorphically strained to the substrate of crystalline na-
ture. One way to achieve the relation for thickness of the two
adjacent layers strain balancing each other is by minimizing
the energy density with respect to the strain in one layer. The
elastic strain energy of the layer can be written in terms of
the stress and strain tensors �ij and �ij, respectively, as14

E =
1

2
�

V
�
i,j

�ij�ijdV , �1�

where i , j=x ,y ,z are the three Cartesian directions. For a
cubic symmetry in �001� orientation, Hook’s law provides
the following three equations:14

�xx = C11�xx + C12�yy + C12�zz,

�yy = C12�xx + C11�yy + C12�zz,

0 = C12�xx + C12�yy + C11�zz, �2�

where C11 and C12 are the elastic stiffness constants. For the
biaxial stress in the plane of an epilayer, the strain compo-
nents in the epilayer are given as

�xx = �yy =
a0 − aa

aa
= �� , �3�

where aa and a0 are the in-plane lattice constants of the ep-
ilayer and the substrate, respectively. Using the third equa-
tion of the equation set �2�, we have

�zz = �� = −
2C12

C11
�� . �4�

Using Eqs. �1�–�4�, the energy density �energy per unit vol-
ume� of the strained epilayer is

U =
1

2
C11��xx

2 + �yy
2 + �zz

2 � + C12��xx�zz + �zz�xx + �xx�yy�

= �C11 + C12 −
2C12

2

C11
���

2 = G��
2, �5�

where the constant G, in the chosen 	001
 direction, is given
as �C11+C12−2C12

2 /C11� and would be different in other di-
rections. For a strained layer superlattice made up of two
zinc-blende structure materials, the strain energy density is
given as

UAB =
UAtB + UBtA

tA + tB
, �6�

where tA and tB are the thicknesses of the two respective
layers. Minimizing the total energy with respect to the strain
in a given layer, for a superlattice fabricated from alternating
layers of materials A and B, the condition for zero in-plane
stress or the condition for strain balancing requires15,16

tA

tB
= −

�BGBaA

�AGAaB
, �7�

where aA and aB are the lattice constants of material layers A
and B, respectively, G is a constant defined in Eq. �5�, and
the strain component � is defined in Eq. �3�.

For semiconductors alloys of interest and for relatively
small nitrogen concentrations �x ,y�0.05� the average strain
in individual layers when strained to InP ranges from 3 to
5 %, and in order to prevent lattice strain relaxation, by anal-
ogy to experimental data for materials systems with similar
lattice mismatches and elastic constants like GaP or InP on
GaAs �Ref. 8� and InAs on InP, the thickness of individual
layers has to be maintained below 4 and 7 monolayers for
GaAsN and InAsN, respectively. The evaluation of the criti-
cal thickness introduced by Van der Merwe,17 Matthews and
Blakeslee,18 and Bean and People13 provide critical thickness
that often differs by order of magnitude and most often are
applicable for only a finite range of strain. In addition, it has
been shown that for the epitaxial synthesis of thin films the
growth kinetics �temperature, deposition rates� play an im-
portant role in determining the critical thicknesses for given
epistructures, an example of such dependence is provided by
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Price.19 Thus from a practical standpoint the critical thick-
ness is generally extracted empirically. It is worth noting
that, for materials considered here, the analogy to experi-
mental data for materials systems with merely similar lattice
mismatches and elastic constants provides a relatively good
estimate of the lower limit of the critical thicknesses at play,
since an enhancement of the biaxial modulus and of the en-
ergy of the formation of dislocations are expected through
nitrogen alloying �e.g., see Refs.13 and 17�. We have thus
limited the boundary of our study to the range of thicknesses
where in principle two-dimensional defect-free structures are
likely to be realized.

When the above-mentioned condition is respected, one
using the condition described in Eq. �7� can evaluate the
necessary average thickness-ratio condition for strain balanc-
ing. Figure 2 shows the variation of the ratio of the numbers
of monolayers of �GaAs1−xNx�m and �InAs1−yNy�n required to
obtain exact strain balancing to InP�001� for different nitro-
gen concentrations. When strained to InP, increasing nitro-
gen concentration increases the tensile strain of the
GaAs1−xNx layer, while the compressive strain on the
InAs1−yNy layer decreases. Thus a thicker InAs1−yNy layer is
needed to produce strain balancing, hence the ratio m :n to
produce exact strain balancing decreases with increasing ni-
trogen concentration. The magnitude of the ratio m :n, of
course, is a function of individual nitrogen concentrations x
and y in GaAs1−xNx and InAs1−yNy sublayers. For illustrative
purposes in Fig. 2, several arbitrary nitrogen concentrations
are represented. For practical applications, fabrication
�growth� of partial monolayers to produce exact strain bal-
ancing may not be easy to control or desirable �due to the
interface roughness and scattering�. Residual biaxial strain is
developed on the substrate if the in-plane lattice constant of
the superlattice, resulting from the energy minimization, is
not the same as that of the substrate 	residual strain
= �asubstrate−asuperlattice� /asubstrate
. Figure 3 shows the varia-
tion of residual biaxial strain on the InP substrate due to the
nonstrain balanced GaAs1−xNx / InAs1−yNy superlattice for
different nitrogen concentrations. The intersection of the ver-
tical lines with the curves of different nitrogen concentra-

tions gives the amount of the residual strain for the exact
fractional ratio of the monolayers �viz., m :n=1:8, 1:4, 1:3,
1:2, 3:4, 1:1, 5:4, 3:2�. On the other hand, the intersection of
the horizontal zero-strain line with the curves of different
nitrogen concentrations gives the monolayer ratio for exact
strain balancing. Based on these estimations, hereafter, the
monolayer ratio for the two layers of the superlattice is cho-
sen to be �1:3.

III. BAND STRUCTURE NEAR THE CENTER OF THE
BRILLOUIN ZONE (� POINT)

A. Effects of strain on the band structure

In-plane strain on a lattice mismatched ternary AB1−xCx
epilayer grown on a thick substrate, as defined in Eq. �3�, is
given as

�� =
a0 − a�x�

a�x�
, �8�

where a0 is the lattice constant of the substrate and a�x�
= �1−x�aAB+xaAC is the lattice constant of the ternary
AB1−xCx. For compressive strain, for example, for InAs1−yNy
lattice matched to InP, a�y��a0 therefore the in-plane strain
is negative. On the other hand, it is positive for a tensile
strain material, for example, for GaAs1−xNx lattice matched
to InP, where a�x��a0. Using Eqs. �3�, �4�, and �8� for a
strained layer, the conduction band is shifted by20

�ECB = ac�2�xx + �zz� = 2ac�1 −
C12

C11
��� . �9�

Due to the sign and magnitude of the hydrostatic deforma-
tion potential ac, the conduction band lowers for the tensile
strain and moves up for the compressive strain in comparison
to the unstrained position. The conduction bands are sub-
jected only to the hydrostatic deformation potential.21 Due to
the valence-band component of hydrostatic deformation po-
tential av, the center of gravity of the valence band of a
strained epilayer shifts by an amount20

FIG. 2. Ratio of the numbers of monolayers �MLs� �m /n� of
GaAs1−xNx and InAs1−yNy required to strain-balance the
�GaAs1−xNx�m / �InAs1−yNy�n superlattice on InP for different nitro-
gen concentrations and different combinations of x and y.

FIG. 3. Residual in-plane biaxial strain on InP for different
GaAs1−xNx and InAs1−xNx monolayers thickness ratios in
�GaAs1−xNx�m / �InAs1−xNx�n superlattice and different nitrogen con-
centrations. Vertical lines show different combinations of ratio m /n.
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− P = av��xx + �yy + �zz� . �10�

On the other hand, the tetragonal deformation potential re-
moves the degeneracy of the mj = ±3/2 and mj = ±1/2 va-
lence subbands at k=0 and induces an energy shift of these
bands in opposite directions. The analytical expressions for
the magnitude of these shifts for mj = ±3/2 and mj = ±1/2
subbands is given by20

− Q =
b

2
��xx + �yy − 2�zz� �11�

and

�Q − ��
2

+
1

2
�9Q2 + �2 + 2Q� , �12�

respectively. Here, � is the spin-orbit coupling term. Hence
the net shift of the mj = ±3/2 and mj = ±1/2 hole bands with
respect to the unstrained valence-band maxima is given as

�E�mj=±3/2
 = − P − Q �13�

and

�E�mj=±1/2
 = − P +
�Q − ��

2
+

1

2
�9Q2 + �2 + 2Q� , �14�

respectively. Total separation between the two valence sub-
bands is then given as

�E = �E�mj=±1/2
 − �E�mj=±3/2


=
�3Q − ��

2
+

1

2
�9Q2 + �2 + 2Q� . �15�

Table I summarizes the effect of the strain on the conduction
and valence bands. Negative or positive in the second and
third columns shows a decrease or increase of the energy of
the band with respect to the fixed unstrained band maxima.
Here it is worth noting that for a given layer the lattice con-
stant will also depend on the change in the temperature. This
consideration may be important for practical realizations
since the growth temperatures for the semiconductors of in-
terest ��450 °C� is generally different from the operating
temperature. Since the thermal expansion coefficients of ma-

terials considered here are not the same, an additional ther-
moelastic strain may be generated in the system. As dis-
cussed by Freundlich et al.,22 when the temperature of GaAs
on InP is dropped from growth temperature ��650 °C� to
the operating room temperature, the magnitude of the ther-
moelastic stress is �1 kbar, which corresponds to the varia-
tion of the band gap in the order of 10 meV.

Material parameters used for the calculations are given in
Table II. All of the parameters of the III-V-N, except the
band gap, are determined by the linear extrapolation of the
parameters for binaries.23–26 Temperature dependence of the
band gaps is determined by a Varshni-like formula27 given as

Eg�T� = Eg�T = 0� −
	T2

T + 

, �16�

where T is the absolute temperature, and 	 and 
 are the
experimentally fitted parameters given in Table II.

TABLE I. Physical quantitites related to strain and their effects on the bands.

Quantity Compressive strain Tensile strain

�InAs1−yNy / InP� �GaAs1−xNx / InP�

In-plane strain, �� =
a0−a

a
Negative Positive

Perpendicular strain �zz=��=−
2C12

C11
��

Positive Negative

Conduction-band shift, �ECB=ac�2�xx+�zz� Positive Negative

Valence-band shift due to the hydrostatic
deformation potential, −P=av��xx+�yy +�zz�

Negative Positive

mj = ±3/2 hole shift due to the tetragonal
deformation potential, −Q= b

2 ��xx+�yy −2�zz�
Positive Negative

mj = ±1/2 hole shift due to the tetragonal

deformation potential,
�Q−��

2 + 1
2
�9Q2+�2+2Q�

Negative Positive

TABLE II. Material parameters used for the calculations.

Parameter GaAs InAs GaN InN

Lattice constant �Å� 5.653 6.0583 4.50 4.98

Energy band gap �eV� �0 K�, 1.519 0.417

	 �meV/K� 0.5405 0.276


 �K� 204 93

Thermal expansion, � �10−6 K−1� 5.6 4.6

�SO�meV� 341 390 17 0.006

me /m0 0.067 0.026

�1 6.98 20.0 2.67 3.72

�1 2.06 8.5 0.75 1.26

ac �eV� −7.17 −5.08 −2.2 −1.85

av �eV� 2 1.00 5.2 1.5

b �eV� −1.66 −1.8 −2.2 −1.2

C11�1011 dynes cm−2� 11.9a 8.329a 29.6a 18.7b

C12 �1011 dynes cm−2� 5.38a 4.526a 13.0a 12.5b

aReference 25.
bReference 26.
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B. Evolution of the conduction band of strained layers of
GaAs1−xNx and InAs1−yNy

The band anticrossing �BAC� model was introduced by
Shan et al.28 to explain the two-level repulsion observed in
the GaInNAs alloys.29 Despite the simple physical nature,
the model has been shown to describe the material properties
of III-V-N very well.30–33 It explains the pressure and con-
centration dependencies of the GaAs1−xNx alloy by introduc-
ing a conduction-band splitting caused by the anticrossing
interaction between the N-localized state and the conduction
band of host III-V matrix. The new conduction subbands
originated by such a splitting due to the N-induced perturba-
tion are denoted as E− and E+ and are given as28

E±�k� =
1

2
�EN + EIII-V�k� ± �	EN − EIII-V�k�
2 + 4xVN

2 � ,

�17�

where EN is the energy of the localized nitrogen state,
EIII-V�k� is the dispersion of the host crystal conduction band,
VN is the strength of the anticrossing interaction between the
N-localized states and the conduction-band states of host ma-
trix, and x is the nitrogen concentration. All the energies are
relative to the valence-band maximum of the unperturbed
host crystal. The BAC model with VN=2.7 eV provides an
excellent fit for the nitrogen concentration x�0.03. With a
larger x, there is some discrepancy between the experimental
band gap and the BAC model.34 Other than the pressure and
compositional band-gap dependence, the BAC model was
also used successfully to predict an increase in the electron
effective mass in III-V-N alloys. It gives a simple analytic
expression for the electron effective mass that can be directly
extracted from Eq. �17� as

1

m* =
1


2� �2E−�k�
�k2 �

k=0

=
1

2mIII-V
�1 −

EIII-V�k� − EN

��	EIII-V�k� − EN
2 + 4xVN
2 �
� , �18�

where mIII-V is the electron effective mass in the host crystal
in the absence of nitrogen. Note that, near k=0, 	EIII−V�k�
−EN
 is a negative quantity. Equation �18� can be simplified
to give

m* = mIII-V�1 +
xVN

2

�EN − E−�2� . �19�

The model predicts that the effective mass will increase rap-
idly to about 0.1m0 until x=0.01 and then saturates to the
value of about 0.11m0 for larger x. It is worth noting that, in
practice, higher nitrogen concentrations have yielded effec-
tive masses in excess of 0.2m0 �e.g., see Ref. 34, and refer-
ences therein�.

C. Evolution of the valence band of strained layers of
GaAs1−xNx and InAs1−yNy

For the calculation of valence bands, we use the
Luttinger-Kohn model based on a six-band k ·p

approximation35,36 including the spin-orbit effects. We in-
clude the effects of strain using a formalism described by Bir
and Pikus.37 Since the coupling between conduction and va-
lence bands is proportional to k, for k�0 conduction band
decouples with the valence band, favoring the six-band
model. Recently, eight-band k ·p model has also been used
after modification to include the 2�2 interaction matrix for
nitrogen and GaAs host material to produce 10�10 k ·p
model,38–40 including the interaction of the conduction and
valence bands.

The full 6�6 matrix can be block diagonalized into two
3�3 matrices, and in kz direction is given as41

H = �H11�kz� 0 0

0 H22�kz� �1

0 �1 H33�kz�
��3/2, ± 3/2


�3/2, ± 1/2

�1/2, ± 1/2


,

�20�

where

H11�kz� =

2

2m0
�2�2 − �1�kz

2 − P − Q ,

FIG. 4. Band structure of �a� bulk GaAs0.98N0.02 on InP �001� at
300 K for kx=ky =0. The mj = ±3/2 hole band is moved down rela-
tive to the mj = ±1/2 hole band, removing the degeneracy at k=0.
�b� bulk InAs0.98N0.02 on InP �001� at 300 K for kx=ky =0. The
mj = ±1/2 hole band is moved down relative to the mj = ±3/2 hole
band. Unstrained structure is given by the dotted line.
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H22�kz� = H11 −
2

3
� ,

H33�kz� = −
1

3
� −


2

2m0
�2�1 + 4�2�kz

2 − P + 2Q ,

�1 =
2

3
� , �21�

and �1 and �2 are the Luttinger parameters for effective
masses, m0 is the electron mass, kz is the wave vector along

the z direction �along the direction of the growth�, 
 is the
Planck constant/2�. In the kz direction, carriers correspond-
ing to the mj = ±3/2 band get decoupled from the rest of the
bands, with the dispersion relation given as

Emj=±3/2 = H11 =

2

2m0
�2�2 − �1�kz

2 − P − Q . �22�

The remaining 2�2 matrix can be used to find the coupled
dispersion relation for mj = ±1/2 and spin-orbit states as

Eso
mj=±1/2 =

1

2
�	H33�kz� + H22�kz�
� ±

1

2
	�	H33�kz� + H22�kz�
2 − 4�H33�kz� � H22�kz� − ��2/3��2�
 , �23�

where the mj = ±1/2 dispersion corresponds to the + sign and
the spin-orbit dispersion to the − sign in the right-hand side
of the equation.

Figures 4�a� and 4�b� show the valence-band structure of
the bulk GaAs0.98N0.02 and InAs0.98N0.02 layer strained on
InP�001�. The band energy is plotted as a function of kz �kx

=ky =0�. Degeneracy between mj = ±3/2 and mj = ±1/2 hole
bands at the zone center has been removed due to the strain
effects, as discussed earlier in Sec. III A. For GaAs0.98N0.02,
being tensilely strained, the mj = ±3/2 band is moved lower
than mj = ±1/2, as can be seen from the definitions in Table
I, an effect which is opposite in the compressively strained
InAs1−xNx on InP�001�. Dotted curves in figures show the
band structure for the unstrained bulk layer.

IV. BAND-STRUCTURE CALCULATIONS OF A
SUPERLATTICE: TRANSFER-MATRIX ALGORITHM

A. Transfer-matrix method

For a fixed energy and fixed in-plane wave vectors kx and
ky, we can construct the total envelope function of a super-
lattice as a linear combination of the eigenvectors of the
corresponding Hamiltonian. For each region j, the full enve-
lope function has the general shape

��z� = �
q

aq
j Fq

j eikzj
q �z−lj� + �

q

bq
j Fq

j e−ikzj
q �z−lj�, �24�

where the sum is over all the bands q �CB, VB�, aq
j and bq

j

are complex constants, Fq
j are eigenvector matrices, and lj

defines the distance of the jth interface from the origin.
Boundary conditions at each interface are42

�� j�z=lj
= �� j+1�z=lj+1

and

� 1

mj

�� j

�z
�

z=lj

= � 1

mj+1

�� j+1

�z
�

z=lj+1

. �25�

Here, mj is the effective mass in the jth layer. For kx=ky =0,
the mj = ±3/2 hole band gets decoupled from the rest of the
bands, and the transfer matrix can be found applying the
above two boundary conditions to relate constants a and b of
the jth and �j+1�th layers, and is given as

�aj

bj � = Mj�j+1��aj+1

bj+1 � , �26�

where

Mj�j+1� =�1 +
mjkj+1

mj+1kj
1 −

mjkj+1

mj+1kj

1 −
mjkj+1

mj+1kj
1 +

mjkj+1

mj+1kj

�
��e−ikj+1Lj+1 0

0 eikj+1Lj+1
� . �27�

Here, Lj is the thickness of the jth layer. For a large number
of layers, the total transfer matrix can be written as the prod-
uct of transfer matrices across each layer,

�a1

b1 � = Mtotal�aN

bN � ,

Mtotal = �m11 m12

m21 m22
� = M12M23M34 ¯ . �28�

We now require a1=bN=0 for decaying solutions in the
first and last barriers, the width of which is assumed to be
large enough for this condition to hold. To satisfy this con-
dition, the element m11 goes to zero and hence the solution of
the equation m11�E�=0 provides the energy states of the cor-
responding carriers in mj = ±3/2 hole states. The same pro-
cess can be repeated for mj = ±1/2 states also, but due to the
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interaction with spin-orbit split-off states we have to deal
with a 4�4 transfer matrix, with added numerical complex-
ity.

B. Miniband energies in the superlattice

Subband energy calculations of the
�GaAs1−xNx�m/ �InAs1−yNy�n superlattice is done under the
envelope function approximation, using the transfer-matrix
method as described earlier and demonstrated in previous
works.43,44 Due to the high probability of the wave-function
penetration through the thin barriers separating the wells,
Pauli’s principle suggests the formation of separate energy
level for each well for a given carrier type. Hence in the
presence of large number of wells in a given superlattice,
crowded separate energy levels form the minibands for dif-
ferent types of carriers in different bands, viz., conduction,
mj = ±1/2, and mj = ±3/2 bands. Increasing the number of
wells increases the width of the minibands with small change
in the miniband edge. Increase in the well thickness moves
the miniband edge closer to the bulk band edge, but due to
the critical thickness limits of the strained layer, as discussed
in Sec. II, there is not much choice for such a variation.
Variation of nitrogen concentration, on the other hand,
changes the conduction miniband edge significantly, with
small strain related changes in the valence miniband edge.
The gap between the band-edge extrema of the conduction
miniband and the valence miniband determines the electrical
and optical properties of the structure. The energy gap be-
tween the first mj = ±1/2 miniband edge to the first electron
miniband edge �E1/2� and the one between the mj = ±3/2
miniband edge to the first electron miniband edge �E3/2� cor-
respond to the onset of absorption and emission energies of
the structure, as shown in Fig. 5 for x=y=0.01. In Fig. 5, the
band edge of the InAsN valence band is assumed as the
reference zero �refer to the Fig. 5 caption for more details�.
For a given thickness of the GaAs1−xNx layer �3 monolayers�,
the thickness of the InAs1−yNy layer is chosen to strain bal-
ance the superlattice structure on the InP substrate. As the
miniband edges of the valence and conduction bands
changes with the nitrogen incorporation, due to the anoma-
lous band-gap reduction of the bulk GaAs1−xNx and
InAs1−yNy, the effective band gap of the structure varies.
Figure 6 shows the evolution of E3/2 as a function of the
nitrogen concentrations at 300 K. This graph also shows the
variation in the nature of the curves for different amounts of
nitrogen concentration in InAs�N� in proportion to the nitro-
gen concentration in GaAs�N�. For the top curve �dash dot�,
the nitrogen concentration is zero in InAs and is the upper
limit for the effective band gap of the superlattice structure
for given nitrogen concentration in GaAsN. With the addi-
tion of nitrogen in InAs, its band gap reduces and it also
reduces the effective band gap of the superlattice for a given
nitrogen concentration in GaAs�N�. As an example, this
trend is shown for two typical nitrogen concentrations in
InAs1−yNy, y=x /2, and y=x, as shown by the dashed and
solid curves, respectively. Hence the variation of nitrogen
concentration can be taken as an added parameter to control
the effective features of the superlattice structure. It can be

seen that by varying the nitrogen concentration the emission
and absorption energies of the structure can be tuned from
�0.64 to �0.35 eV for x ,y�0.05, at T=300 K, showing the
potential of these heterostructures for attaining operating
wavelengths beyond 3 �m on InP.

One of the alternatives to the strain-balanced superlattice
�GaAs1−xNx�m / �InAs1−yNy�n is the quaternary alloy

FIG. 5. �Color online� Calculated diagram of the type-I �conduc-
tion band and valence bands as solid lines� and type-II �valence
band as dashed line� band alignments for 20 period
GaAs0.99N0.01�3 MLs� / InAs0.99N0.01�7 MLs� superlattice system.
Also shown is the effective band gap as a separation of miniband
edges in conduction and valence subbands. For clarity purposes,
only the edge of the mj = ±1/2 miniband is shown as a small dotted
horizontal line in the valence band.

FIG. 6. Evolution of energy gaps E3/2, between the mj = ±3/2
holes and the electron minibands of a 20 period
GaAs1−xNx�3 MLs� / InAs1−yNy SL as a function of the nitrogen
concentration at 300 K for y=x /2, y=x, and y=0. Note that for
each different nitrogen data point the thickness of the InAs1−xNx

sublayers �4–9 MLs� is adjusted to satisfy the lattice matching con-
dition of the SL to InP �001�. Also shown is the band-gap variation
of the InGaAsN quaternary alloy with nitrogen concentration, when
the lattice is matched to InP.
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InaGa1−aAs1−bNb, where a=n / �m+n� and b= �mx+ny� / �m
+n�. This alloy can be grown on GaAs or InP substrates, but
has its own limitations. The novel quaternary alloy allows
the tuning of the band gap from 1.42 eV to below 1 eV on
GaAs substrate. Lattice matched InaGa1−aAs1−bNb on InP has
recently been investigated for the potential use in the mid-
infrared device applications,45 with a potential of giving a
band gap as low as 0.6 eV.28,30,38,46,47 Yet access to lower
band gaps is highly desirable for many mid-IR device appli-
cations like mid-IR lasers or thermophotovoltaic
converters.48 To lower the band gaps further, either the alloy
has to be strained, which may produce defect related prob-
lems causing a short life span of the devices or the need to
introduce a high content of indium which again further com-
plicates the growth procedure and restricts the amount of
nitrogen content.49–51 Furthermore, although the increase of
the nitrogen incorporation is a possibility,52 alloys with ni-
trogen beyond 4–5 % exhibit poor material quality, making
them inadequate for many optoelectronic applications. Under
the BAC model approximation the band gap of InGaAsN
lattice matched on InP is shown in Fig. 6. It is worth noting
that the “ordered alloys effect”53 associated with the use of
the proposed superlattice allows a significant band-gap re-
duction �about 100 meV� in comparison to that of a quater-
nary �bulklike� InGaAsN of similar average concentration.

V. ABSORPTION COEFFICIENTS

Optical absorption in a semiconductor material is one of
the very important physical phenomena to be considered for
the application in many optoelectronic devices. The param-
eter that characterizes the optical absorption is called the
absorption coefficient and is defined as the ratio of the num-
ber of photons absorbed per unit volume per second to the
number of photons injected per unit area per second. Hence
the absorption coefficient gives the fraction of photons ab-
sorbed per unit distance and is denoted by � �cm−1�. Absorp-
tion coefficients of the bulk semiconductors and quantum
wells have been studied intensively in many texts 	for ex-
ample, Chap. 13, of Ref. 20 and references therein
.

The absorption coefficient � in the crystal for a bulk semi-
conductor is given as20

��
�� = 2A0�
n

��n�0��2��
� − Eg − En� , �29�

where A0=
�e2�î·pcv�2

nrc�0m0
2�

, î is the unit vector along the direction of
the propagation of the incoming photon, pcv is the transition-
matrix element between the conduction and valence bands, e
is an electronic charge, nr is the refractive index, c is the
velocity of the electromagnetic wave in a vacuum, �0 is the
permittivity of the vacuum, m0 is the electron mass, � is the
angular frequency of the incoming electromagnetic wave, 


is the Planck’s constant/2�, Ry = 1
�4��s�2

�re
4

2
2 ,�r is the reduced

effective mass of holes and electrons and is given as 1
�r

= 1
me

+ 1
mh

, �s=K�0, K is a dielectric constant, �n�0� is a nor-
malized wave function for both bound and continuum states
and is given as

�n�0��bound =
1

�a00
3 n3 , �30�

and

�E�0��continuum =
e�/�E/Ry

4�Rya00
3 sinh��/�E/Ry�

, �31�

respectively. Here, the excitonic Bohr radius a00=
4��s


2

e2�r
.

With inclusion of this, the total absorption �also called Elliott
formula� due to both bound and continuum states in bulk
semiconductor can be given as �for example, Ref. 20�

��
�� =
A0

2�2Rya00
3 �4�

n=1

�
�/n3

�� + 1/n2� + �2 +
�e�/��

sinh��/���
� ,

�32�

where �=

�−Eg

Ry
, and � is the Lorenzian width corresponding

to the phonon broadening.
For the superlattice structure discussed in Sec. IV, we will

use an anisotropic medium approach, in which the absorption
coefficient of the bulk material is modified to take care of the
anisotropy introduced by the presence of the superlattice pe-
riodicity. As discussed in Sec. IV, due to the penetration of
the carrier wave function into the adjacent wells separated by
thin barriers in a superlattice, the coupling between the two
neighboring wells is very large to allow for the hybridization
of the original discrete energy levels of isolated wells into
minibands. The electron and hole tunneling through the
minibands leads to the motion in the growth direction, which
is characterized by the effective masses modified by the su-
perlattice potential. The superlattice is then characterized by
a three-dimensional effective medium with different in-plane
and growth-direction effective masses.

The superlattice absorption coefficient then can be as-
sumed as a deviation from a bulk absorption coefficient by
considering the anisotropy introduced in the reduced effec-
tive masses of the carriers in the plane of the layers �in-plane
reduced effective mass ��� and perpendicular to the plane of
layers �growth direction or transverse reduced effective mass
���, respectively. The ratio of these two masses can be de-
fined as an anisotropy parameter,

� = ��/��. �33�

This parameter modifies the absorption coefficient as sug-
gested in Ref. 54, and is given as

��
�,�� =
A0

2�2Ry����a00� ���3� 2

1 + �
�2

��4�
n=1

�
�/n3

	����� + 1/n2
 + �2 +
�e�/������

sinh	�/������

� ,

�34�

where

����� =

� − Eg

Ry����
, a00� ��� =

4��s

2

e2m�

,
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Ry���� =
1

�4��s�2

m�e4

2
2 , m� =
2��

1 + �
.

The in-plane and transverse reduced effective mass can be
calculated as

1

��

=
1

me�

+
1

mh�

,
1

��

=
1

me�

+
1

mh�

. �35�

The in-plane effective mass m� is assumed to be the average
of effective masses of two different layers w and b of thick-
ness Lw and Lb, respectively, in superlattice

mi�
=

mi
wLw + mi

bLb

Lw + Lb
with i = e, lh, or hh . �36�

As a first approximation, transverse effective mass m� can
be obtained from

1

m�

= � 1


2

d2E

dq2 �
q=0

�37�

where the energy E is extracted from a dispersion relation for
a superlattice42

cos�qd� = cos�kwLw�cosh�kbLb�

−
1

2
�� −

1

�
�sinh�kbLb�sin�kwLw� , �38�

where kw=�2mwE


2 , kb=�2mb�V−E�


2 for E�V and �=
kwmb

kbmw
.

Using Eqs. �37� and �38�, we may derive the transverse
effective mass as

m� = −

2

d2 	− cos�Lwkw�sinh�Lbkb�LbB

− sin�Lwkw�cosh�Lbkb�LwA


−

2

d2�−
1

2

1

�2

mb

mw
� A

kb
+

Bkw

kb
2 �sinh�Lbkb�sin�Lwkw��

−

2

d2�−
1

2
�� −

1

�
��− cosh�Lbkb�sin�Lwkw�LbB

+ sinh�Lbkb�cos�Lwkw�LwA�� , �39�

where A=� mw

2
2E
, B=� mb

2
2�V−E� and d=Lw+Lb.

Since the dielectric constant of GaAs�N� and InAs�N� are
not very different from each other,25 the ratio of the in-plane
and transverse dielectric constants for a superlattice structure
is �1. Hence the dielectric constant of the superlattice is
taken as the weighted average for two layers of superlattice
as

�2 =
�wLw + �bLb

Lw/�w + Lb/�b
. �40�

For �=1, Eq. �34� becomes similar to Eq. �32� and the con-
dition corresponds to the one of no anisotropy or the bulk
material absorption coefficient.

In the presence of the alternate layers of GaAs1−xNx and
InAs1−yNy, the value of � is always less than unity and it
decreases with thicker barriers �or more anisotropy�. Using
the formalism derived from Eqs. �29�–�40�, the room-
temperature �300 K� absorption coefficients of 20 period
GaAs0.99N0.01/ InAs0.99N0.01 superlattice strain balanced to
InP�001� is shown in Fig. 7 and compared with that of the
bulklike In0.56Ga0.44As0.99N0.01 layer with the same average
concentration. The In concentration in the bulklike layer is
chosen to make it lattice matched to InP. A lower band-gap
threshold of the absorption by the superlattice structure can
be seen in comparison to that of the bulklike material for
given nitrogen concentration, when both are lattice matched
to InP. In addition to the absorption of lower energy photons,
the magnitude of the absorption is also enhanced by the fac-
tor of �1.5, which, in part is associated with the significantly
higher effective masses of the carriers in the superlattice
structure. The heavier effective-mass contribution comes
from the presence of the nitrogen related effects and the an-
isotropy produced by the superlattice potential in the direc-
tion of the growth. The contribution of the photon absorption
between the higher-order minibands in the valence and con-
duction bands of the superlattice structure would only be
seen in the energy range of �0.8 eV and hence is neglected
in the study because it falls in the energy range beyond our
interest.

Figure 8 shows the variation of the absorption coefficient
of GaAs0.99N0.01/ InAs0.99N0.01 superlattice structure with
temperature, excitonic effects are pronounced below �50 K,
due to the stronger Coulombic attraction between the holes
and electrons because of reduced thermalization �or phonon
broadening�. At higher temperatures, the excitonic absorp-
tion vanishes gradually. The variation of the effective band
gap of the superlattice structures, used to demonstrate the
absorption coefficients, with the temperature is based on the
Varshni-like formula given in Eq. �16�. Figure 9 shows the
variation of the absorption coefficients of the
GaAs0.99N0.01/ InAs0.99N0.01 superlattice structure, with re-

FIG. 7. Absorption coefficient of 20 period
GaAs0.99N0.01�3 MLs� / InAs0.99N0.01 �7 MLs� superlattice strain-
balanced to InP�001�. For comparison purpose the absorption coef-
ficient of the bulklike In0.56Ga0.44As0.99N0.01, lattice matched to InP,
is also given.
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spect to the nitrogen concentration at 10 K. It can be seen
that the lower energy photons can be absorbed, with rela-
tively higher magnitude of the absorption coefficients, as the
nitrogen concentration increases. This can be understood by
the fact that the band gap of the superlattice structure is

reduced along with the increase in the effective mass of the
carriers, as the nitrogen concentration increases. The behav-
ior of the effective mass near the band edge of dilute nitrides
is not understood fully yet, but there is some indication that
it reaches the maximum for a certain value of nitrogen
concentration.55–57 The effect of the effective mass on the
absorption coefficient is depicted in Fig. 10 for varying ef-
fective masses from 0.1me to 0.3me. An increase in effective
mass produces two effects: first it reduces the effective mini-
band edges, reducing the effective band gap of the superlat-
tice structure, and second, it increases the magnitude of the
absorption coefficient. Note, if the effective mass remains
constant at a specific value �say 0.1me�, for any higher values
of nitrogen the absorption coefficient would shift to the
lower energies due to the lower band gaps produced by ni-
trogen effects only. It should also be noted that in this calcu-
lation the contribution of intersubband absorption, which
may be important for some devices considering the free-
carrier absorption or far-infrared absorption, is neglected.
The simplicity of the analytical expression for the absorption
coefficients including the excitonic effect and previously
shown good quantitative agreement with the experimental
results54 makes this approach an ideal methodology for the
quantitative evaluation of the coefficients.

VI. CONCLUSIONS

We have investigated the electronic properties of the con-
duction band and valence band of the strained GaAs1−xNx
and InAs1−yNy on InP�001� for kx=ky =0. The ratio m :n
of the monolayer thicknesses of individual layers of
�GaAs1−xNx�m and �InAs1−xNx�n needed to create a strain-
balanced superlattice on InP�001� is determined by minimiz-
ing the total energy of the stack. For most of the calculations,
the appropriate ratio is found to be �1:3 with little or no
residual strain on InP. A study of the effective band gap
between the conduction and valence miniband edges of
�GaAs1−xNx�m/ �GaAs1−yNy�n short period strain balanced su-
perlattices is performed for different combinations of x and

FIG. 8. Variation of the absorption coefficient of 20 period
GaAs0.99N0.01�3 MLs� / InAs0.99N0.01 �7 MLs� superlattice strain-
balanced to InP�001� for different temperatures.

FIG. 9. Variation of the absorption coefficient of 20 period
GaAs1−xNx�3 MLs� / InAs1−xNx �7 MLs� superlattice strain-balanced
to InP�001� for different nitrogen concentrations at 10 K.

FIG. 10. Variation of the absorption coefficient of 20 period
GaAs0.99N0.01�3 MLs� / InAs0.99N0.01 �7 MLs� superlattice strain-
balanced to InP�001� for different electron effective mass.
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y. The results predict the possibility of tuning photons ab-
sorption and emission wavelengths well beyond the 3-�m
mark at 300 K, while maintaining the entire structure lattice
matched to InP.

The optical-absorption coefficient of the superlattice
structure is also determined as a function of nitrogen concen-
tration, effective mass, and temperature, using the aniso-
tropic medium approach, and compared with a bulklike
InGaAsN. For a given nitrogen concentration and tempera-
ture, an absorption of lower energy photons with a magni-
tude �1.5 higher in comparison to that of the counterpart

InGaAsN is found. At lower temperature ��50 K�, the band
edge of the structure was less pronounced due to the pres-
ence of strong excitonic contributions.
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