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We develop an approach to calculate the admittance of effectively one-dimensional open quantum systems
in random-phase approximation �RPA�. The stationary, unperturbed system is described within the Landauer-
Büttiker formalism taking into account the Coulomb interaction in the Hartree approximation. The dynamic
changes in the effective potential are calculated microscopically from the charge-charge correlation function
resulting from the stationary scattering states. We provide explicit RPA expressions for the quantum admit-
tance. As a first example the case of a quantum capacitor is considered where we can derive a small-frequency
expansion for the admittance which lends itself to an experimental testing of the theory. A comparison of the
low-frequency expansion with the complete RPA expression shows that for a quantum capacitor a simple
classical equivalent circuit with frequency-independent elements does not describe satisfactorily the quantum
admittance with increasing frequency.
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I. INTRODUCTION

The ac-transport properties of nearly ballistic devices are
interesting from the point of view of basic research, as well
as from the point of view of technological applications. In
basic research, ac transport can provide valuable information
supplementary to stationary transport. In applications, im-
pedances are of crucial importance for the layout of ac cir-
cuits.

Recently, a number of methods for the description of
time-dependent transport phenomena in mesoscopic systems
have been proposed �for a recent review, see Ref. 1�. Among
these approaches are techniques based on nonequilibrium
Green’s functions,2–5 Wigner functions,6 bosonization
schemes,7 and phenomenological considerations.8 If there are
only small ac fields, it seems promising to calculate the lin-
ear ac response to a perturbation of the stationary system
described in the successful Landauer-Büttiker formalism.9–14

Such an approach has been developed in Refs. 15–20 and it
has been used in a number of applications.21–27 Here, the
response to an external potential is derived “which prescribes
the potentials �U�� in the reservoirs only” �see Ref. 15�. The
reservoirs carry the charge Q� so that the ac potential leads
to a perturbation in the Hamiltonian as given by H1
=��U�Q�. This approach avoids the calculation of the time-
dependent potential within the scattering area, i.e., outside
the contact reservoirs. However, knowledge of the micro-
scopic potential in the scattering area is necessary to derive a
formal response theory, beyond the often invoked spatially
uniform electric-field perturbation.28 As pointed out in Refs.
27–30 the appropriate response formalism for the interacting
electron system is the random-phase approximation �RPA�.
In our previous papers31,32 we demonstrated the application
of the complete RPA scheme to open stationary systems de-
scribed in the Landauer-Büttiker formalism. A complete RPA
scheme33 requires as a central element the calculation of the
irreducible polarization �0�r ,r� ,�� from the self-consistent

scattering functions of the stationary system. As a second
necessary ingredient for the implementation of the complete
RPA scheme, it was shown in Refs. 31 and 32 how the dy-
namic total potential in the scattering area can be determined
microscopically using the calculated irreducible polarization
and the Green’s function for the Poisson equation with Di-
richlet boundary conditions. It is explicitly shown that for a
planar structure the standard three-dimensional linear-
response theory in random-phase approximation reduces to
an effectively one-dimensional problem.

After a formal derivation of our theoretical approach we
derive in this paper explicit RPA expressions for the
frequency-dependent impedance in a general two-terminal
device under large dc bias. These expressions are evaluated
for the case of a quantum capacitor. In the limit �→0 an
expansion of the admittance follows as given by

Y = − i��Y1 + i�Y2 + ¯ � , �1�

with real constants Y1 and Y2 that can be calculated directly
from the scattering functions of the stationary system. In
numerical computations we determine the admittance of a
metal insulator semiconductor �MIS�-type heterostructure32

on which measurements of the static capacitance have al-
ready been made.34 In order to propose an experimental test
of our RPA approach, we first compute the drain-source-
voltage dependence of the coefficients Y1 and Y2 in the limit
�→0. For higher frequencies we find numerically, first, that
the expansion in Eq. �1� becomes invalid very quickly and,
second, that an equivalent circuit with frequency-
independent R and C elements does not reflect correctly the
ac properties of the considered system. Instead, there are
pronounced and systematic deviations from the equivalent
circuit behavior which should be testable in experiments as
well.
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II. GENERAL ADMITTANCE FORMULA

A. Stationary system

We consider a planar two-terminal system with a source
contact �s=1, z�zS� and a drain contact �s=2, z�zD� under
an external bias USD as shown schematically in Fig. 1. The
material of the contacts can either be a strongly n-doped
semiconductor or a metallization. In the mean-field theory
the effective potential energy is independent of the perpen-
dicular coordinate r�= �x ,y�, V=V�z�. Because of the effec-
tive screening, the potential energy is constant in the bulk of

the source contact, V�z�−d�=V1, and in the bulk of the
drain contact, V�z�d�=V2. We write for the wave function35

��r� = ��s��	,z�
exp�ik�r��

�A
, �2�

where k�= �nx2
 /Lx ,ny2
 /Ly�, nx and ny are integer num-
bers, and A=LxLy is the cell area of periodic boundary con-
ditions in the perpendicular directions. It follows from the

time-independent Schrödinger equation �Ĥ0−E��=0, with

Ĥ0=−�2 / �2m*��+V�z�, that

�−
�2

2m*

d2

dz2 + V�z� − 	���s��	,z� = 0, �3�

with

E = 	 +
�2

2m*k�
2 . �4�

The wave function in Eq. �2� is defined by the set of quantum
numbers �s ,	 ,k�� without considering the spin quantum
number. Consistent with the Landauer-Büttiker formalism
the ��s��	 ,z� are scattering functions, where the index s de-
fines the direction of incidence: the scattering functions inci-
dent from the source contact �s=1� exhibit the asymptotics

��1��	,z� =

�	 − V1�

�2

�exp�ik1�z + d�	 + S11�	�exp�− ik1�z + d�	 for z � − d

S21�	�exp�ik2�z − d�	 for z � d ,

 �5�

where S11 and S21 are elements of the energy-dependent
2�2 scattering matrix,35

ks�	� =�2m*

�2 �	 − Vs� , �6�

and 
�	−V1� is the step function. Analogous expressions
hold for the drain-incident scattering functions ��2��	 ,z�.

As usual, the effective �total� potential energy V�z�
=Vext�z�+Vel�z� contains an external part, Vext�z�, and a sec-
ond part, Vel�z�, coming from the Coulomb interaction be-
tween the electrons. The external potential arises typically
from different band offsets in the used materials or from
fixed external charges such as fully ionized impurities. The
Coulomb interaction between the electrons is taken in the
Hartree approximation so that Vel obeys the Poisson equation
having as sources only the electronic charge density,

d2

dz2Vel�z� = −
e2

�s
��z� , �7�

where �s is the dielectric constant of the host material. In
Appendix A we reproduce that the electron density is given
by

��z� = 2
m*

2
��2 �
s=1,2

�
Vs

�

d	gs�	����s��	,z��2

�ln
1 + exp„���s − 	�…� �8�

in a formal quantum statistical approach needed to formulate
the linear-response theory which we will describe in the next
section. In Eq. �8� gs�	�=m* / ��2ks�	�	 is the one-
dimensional density of states, �=1/ �kBT�, and we included a
factor of 2 to account for the spin degeneracy.

B. Harmonic perturbation

1. Random-phase approximation

We consider our system with an additional small ac bias
�U superimposed to the source-drain bias so that

USD�t� = USD + �Ue−i��+i��t, �9�

where �→0, ��0, is an adiabatic turning-on parameter.
Because of the good screening in the contacts, the applied ac
bias is assumed to lead to a dynamic potential perturbation
���r , t�=���r�exp�−i��+ i��t	 fulfilling the boundary con-
ditions ���x ,y ,z�−d�=0 and ���x ,y ,z�d�=�U. Then, the

FIG. 1. Sketch of the potential energy along the growth direc-
tion in a planar two-terminal system. It can be seen that −eUSD

=V2+ �̄2−V1− �̄1, where �̄2 and �̄1 denote the difference between
the chemical potential and the bottom of the conduction band in the
bulk contact.
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perturbation in the potential energy felt by electrons is
�V�r , t�=−e���r�exp�−i��+ i��t	 and the time-dependent
Hamiltonian becomes

Ĥ = Ĥ0 +� d3r�̂�r��V�r,t� , �10�

where Ĥ0 describes the stationary system under static source-
drain bias, see Eq. �A10�, and �̂�r� is the particle density
operator. Of course, Eq. �10� is only valid if retardation ef-
fects in the quantum system can be neglected, i.e., ��c /L,
where L is the typical length of the device. For a quantum
device with L=10 nm we find c /L�1016 Hz, which is on the
upper limit of the UV radiation. The time-dependent pertur-
bation in the electron density �induced density� ���r , t� is

calculated outside the contacts in random phase
approximation.36–38 Assuming that for the planar structure
�V�r , t�=�V�z , t� we show in Appendix B that ���r , t�
=���z , t�=���z�exp�−i�t�, with

����z� � d� = �
−d

d

dz��0�z,z�,���V�z�� . �11�

Here �0�z ,z� ,��=�s,s�=1
2

�0
�ss���z ,z� ,��,

�0
�ss���z,z�,�� = lim

�→0
�

Vs

�

d	�
Vs�

�

d	�
F�ss���z,z�,	,	��

	 − 	� + ��� + i��
,

�12�

and

F�ss���z,z�,	,	�� = 2
m*

2
��2gs�	�gs��	��ln� 1 + exp„���s − 	�…
1 + exp„���s� − 	��…
���s��	,z��*��s���	�,z����s���	�,z���*��s��	,z�� . �13�

Setting the integration limits in Eq. �11� we assume that there
is no phase coherence of the wave functions between the

contacts and the scattering area, �0
�ss���z , �z���d ,��=0. The

perturbation of the effective potential outside the contacts
which enters Eqs. �10� and �11� is determined by the Poisson
equation

��V�z� = −
e2

�s
���z� . �14�

In Eq. �14� we assume that there is no mobile charge in the
interval −d�z�d other than that of the tunneling electrons.
The solution of Eq. �14� obeying the boundary conditions
�V�z�−d�=0 and �V�z�d�=−e�U can be written as

�V�z� = �V0�z� + �
−d

d

dz�v0�z,z�����z�� , �15�

with the homogeneous solution

�V0��z� � d� = − e�U
z + d

2d
. �16�

In Eq. �15� the symmetrical Green function v0�z ,z��=
−�e2 /2�s���z−z��+zz� /d−d	 for the Poisson equation obeys
the boundary condition39 v0�z= ±d ,z��=0. Using Eqs. �11�
and �15� one obtains an integral equation for the total poten-
tial as given by

�V�z� = �V0�z� + �
−d

d

dz��
−d

d

dz�v0�z,z���0�z�,z�,���V�z�� .

�17�

We write the inverse of this equation in a convenient dis-
cretized form,

�V = �1 − v0�0�−1�V0, �18�

with z→zi=−d+ �i−1��z, i=1¯N+1, �z=2d /N, and
N→� so that �−d

d dz→�z�i=1
N+1. Furthermore, we define the

�N+1�� �N+1� matrices v0 and �0��� with �v0�ij

=�zv0�zi ,zj� and ��0�ij =�z�0�zi ,zj ,�� as well as the vec-
tors �V0 and �V with ��V0�i=�V0�zi� and ��V�i=�V�zi�. The
continuum limit of Eq. �18� can be regained using the von
Neumann theorem, �1−v0�0�−1=�n=0

� �v0�0�n, and rewriting
the obtained sums as integrals. We solve Eq. �18� numeri-
cally. Then after defining the vectors �� with ����i=���zi�
and an analogous vector �jz for the z component of the par-
ticle current density, one obtains from discretization of Eq.
�11�

�� = �0�V = �0�1 − v0�0�−1�V0, �19�

and from Eq. �B5�

�jz = �̃0�V = �̃0�1 − v0�0�−1�V0, �20�

where �̃0 is the current-density response function defined

and evaluated in Appendix B, and �̃0 is the corresponding
matrix obtained after discretization.

2. ac admittance

From the continuity equation �� /�z��jz�z , t�=
−�� /�t����z , t� one obtains the relation

�jz�z� = �jz�− d� + �
−d

z

dz��jz��z�� = �jz�− d� + i��Q�z�

= − �I/Ae + i��Q�z� , �21�

with �jz��z�= �d /dz��jz and �Q�z�=�−d
z dz����z��. From the
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boundary conditions �V�z�d�=−e�U and �V�z�−d�=0
and the continuity of �d /dz��V�z�, it follows that the total
induced charge �Q=�Q�d� vanishes. One then obtains
�jz�−d�=�jz�d�=−�I /Ae, where �I is the induced electrical
current provided by an external source and flowing through
the device. The minus sign in the last step of Eq. �21� results
from the current convention. The complex admittance is de-
fined as usual by Y =�I /�U=−Ae�jz�−d� /�U. Applying Eqs.
�21�, �20�, and �16� one obtains an explicit expression for the
admittance,

Y =
�I

�U
= Ae2W1

T�̃0�1 − v0�0�−1W0, �22�

where �W0�i=zi /2d+0.5 and W1 is a unit vector �W1�i=�1i.

III. QUANTUM CAPACITOR IN RANDOM-PHASE
APPROXIMATION

A. General results

We define a quantum capacitor through two conditions:
First, there is basically no dc currents traversing the struc-
ture,

��1��	,z � d� = 0, ��2��	,z � − d� = 0. �23�

Second, the overlap of the right-incident and the left-incident
scattering functions can be neglected,

��1��	,z���2��	�,z� � 0, �24�

for all 	, 	� and z� �−d ,d	. We then find from Eqs. �B6� and

�12� that �̃0
�12�=�̃0

�21�=�0
�12�=�0

�21�=0, and the induced cur-
rent can be split into two independent parts, �jz=�jz

�1�+�jz
�2�,

with

�jz
�s��z� = �

−d

d

dz��̃0
�ss��z,z�,���V�z�� . �25�

Since �jz
�s� results exclusively from the source-incident scat-

tering states for s=1 or exclusively from the drain-incident
scattering states for s=2 we can write for each component a
separate continuity equation,

− i����s��z� +
d

dz
�jz

�s��z� = 0, �26�

with

���s��z� = �
−d

d

dz��0
�ss��z,z�,���V�z�� . �27�

Integrating Eq. �26� one obtains using Eq. �23� under another
form, i.e., �jz

�1��d�=�jz
�2��−d�=0,

�I

eA
= − �jz

�1��− d� = i��
−d

d

dz�
−d

d

dz��0
�11��z,z�,���V�z�� .

�28�

With the definition of the admittance and Eqs. �18� and �16�,
Eq. �22� reduces after discretization to

Y = − e2Ai��zW2
T�0

�11��1 − v0�0�−1W0, �29�

where �̃0 is eliminated. In Eq. �29� we define the �N+1�
� �N+1� matrix ��0

�ss��ij =�z�0
�ss� �zi ,zj ,�� and the vector

�W2�i=1.
In Appendix C it is shown that for small frequencies an

expansion

�0
�ss��z,z�,�� = P0

�s��z,z�� + i�P1
�s��z,z�� �30�

can be derived with real functions P0
�s��z ,z�� and P1

�s��z ,z��.
Inserting this expansion into Eq. �29� one obtains a low-
frequency expansion for the admittance of a quantum capaci-
tor as

Y � − i��Y1 + i�Y2� . �31�

Here the leading order coefficient

Y1 = e2A�zW2
TP0

�1��1 − v0P0�−1W0 �32�

and the first correction

Y2 = e2A�zW2
T�P1

�1��1 − v0P0�−1 + P0
�1��1 − v0P0�−2v0P1	W0

�33�

are real, where P0=P0
�1�+P0

�2�, P1=P1
�1�+P1

�2�, �P0
�s��ij

=�zP0
�s��zi ,zj ,��, and �P1

�s��ij =�zP1
�s��zi ,zj ,��.

B. Numerical results for a MIS-type nanostructure

As a test structure for our theory we take a planar MIS-
type GaAs-AlxGa1−xAs heterostructure with a near back gate.
This structure has been analyzed in experiments,34 the sta-
tionary system has been described theoretically within Har-
tree approximation,40 and first calculations for the dynamic
behavior are presented in Refs. 31 and 32. We now calculate
the quantum admittance Y��� according to Eq. �29� up to
frequencies of 100 GHz. Using Eq. �31� one can extract from
the numerically �or experimentally� given data the param-
eters Y1=−lim�→0 Im�Y���	 /� and Y2

=lim�→0 Re�Y���	 /�2. It is then possible to recast Eq. �31�
in a normalized form,

Ȳ = − i�̄�1 + i�̄� , �34�

with �̄=� /�0, �0=Y1 /Y2, and Ȳ =YY2 /Y1
2. This normaliza-

tion allows us to collapse the calculated quantum admittance
at all considered source-drain voltages into one graph which
is presented in Fig. 2. It is immediately seen that the expan-
sion in Eq. �34� only holds for �̄→0. For finite frequencies
there are significant deviations from the value 1 for

Re�Ȳ� / �̄2 and from the value −1 for Im�Ȳ� / �̄. To discuss
these deviations we compare with the admittance Ysg of a
classical equivalent circuit consisting of a frequency-
independent resistance R and a frequency-independent ca-
pacitor C in series.17,23,41 An inspection of the admittance
Ysg��→0� of this circuit yields Y1=C and Y2=RC2. These
formulas can be regarded as quantum-mechanical expres-
sions for the elements of the equivalent circuit. In the nor-
malized form one then obtains
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Ȳsg��̄� =
�̄2

1 + �̄2 − i
�̄

1 + �̄
. �35�

It is seen from Fig. 2 that Ysg��̄� generally fails to describe
the numerical admittance. The numerical results show for
increasing source-drain voltages a systematic enhancement

of the decrease in Re�Ȳ� and the increase in Im�Ȳ� as the
frequency is increased. This finding does not result in the
classical equivalent circuit.

In Fig. 3�a� we represent the dependence of the coeffi-

cients Y1 and Y2 on the working point bias USD. The coeffi-
cient Y1 is essentially identical with the low-frequency limit
of the dynamic capacitance plotted in Fig. 3 of Ref. 32. As
demonstrated in Ref. 32 this step in Y1 is in good agreement
with a step in the experimental capacitance curve which is
caused by the formation of a two-dimensional electron gas
within the quantum capacitor. The coefficient Y2 shows a
general increase with increasing bias. As a characteristic fea-
ture it is seen that the step in the capacitance of Y1 is accom-
panied by a small hump in Y2. An inspection of the scaling
frequency �0 �Fig. 3�b�	 reveals a corresponding downward
hump.

IV. CONCLUSIONS

We present a quantum-mechanical model to calculate the
admittance of effectively one-dimensional open quantum
systems in random-phase approximation. Explicit RPA ex-
pressions for the quantum admittance of a general two-
terminal system are derived. In the case of a quantum capaci-
tor a small-frequency expansion can be obtained which lends
itself to an experimental testing of the theory. A comparison
of the low-frequency expansion with the complete RPA ex-
pression shows that for a quantum capacitor a simple classi-
cal equivalent circuit with frequency-independent elements
does not describe satisfactorily the quantum admittance with
increasing the frequency.
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APPENDIX A: STATISTICAL OPERATOR FOR THE
STATIONARY SYSTEM WITH FINITE SOURCE-

DRAIN BIAS

1. Scattering states as a complete orthonormal single-particle
basis

As shown in Refs. 35 and 42–44 the one-dimensional
scattering states ��s��	 ,z� defined over the entire z axes con-
stitute a complete orthonormal system �see also Refs. 14 and
45–48�, i.e.,

�
s=1,2

�
Vs

�

d	gs�	����s��	,z��*��s��	,z�� = ��z − z�� , �A1�

and

�
−�

�

dz���s��	,z��*��s���	�,z� = 
�	 − Vs��ss���	 − 	��/gs�	� .

�A2�

To eliminate the weight function gs�	� we substitute for a
given s in Eq. �A1� 	=�2ks

2 / �2m*�+Vs�	s�ks� �see Eq. �6�	.
One obtains

FIG. 2. Quantum admittance for MIS-type nanostructure, in a
normalized representation, for different static biases USD �param-
eters corresponding to Fig. 1 of Ref. 40�. Dashed line represents
Ysg��̄� for a classical RC circuit with frequency-independent ele-
ments. The symbols represent the critical frequencies �Ref. 32� up
to which the approximation of the quantum result �i.e., Eq. �29�	
with Ysg can be considered satisfactory.

FIG. 3. �a� Y1 and Y2 as function of the working point USD. �b�
The scaling frequency �0 vs USD.
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�
s=1,2

�
0

�

dks���s�
„	s�ks�,z…�*��s�

„	s�ks�,z�… = ��z − z�� .

�A3�

According to Eq. �6� we write in Eq. �A2� 	�
=�2�ks�

� �2 / �2m*�+Vs��	s��ks�
� �, and using the identity

�ss���	−	�� /gs�	�=�ss���ks−ks�� find

�
−�

�

dz���s�
„	s�ks�,z…�*��s��

„	s��ks�
� �,z… = 
�ks��ss���ks − ks�� .

�A4�

Since later we want to work in a number representation we
introduce a k-space discretization ks→kj = j�k, j=0,1 ,2 , . . .,
so that ��ks−ks��→� j j� /�k. Furthermore, we define �sj�z�
=��k��s�(	s�kj� ,z). With this definition an explicit
asymptotic form of the source-incident scattering wave func-
tions �s=1� follows from Eq. �5� as given by

�1j�z� =��k

2


„	1�kj� − �V1�…�exp„ikj�z + d�… + S11„	1�kj�…exp„− ikj�z + d�… for z � − d

S21„	1�kj�…exp„i�kj
2 + �2m*/�2��V1 − V2��z − d�… for z � d .


 �A5�

For the drain-incident scattering functions �s=2� we find the asymptotics

�2j�z� =��k

2


„	2�kj� − V2…�S12„	2�kj�…exp„− i�kj

2 + �2m*/�2��V2 − V1��z + d�… for z � − d

exp„− ikj�z − d�… + S22„	2�kj�…exp„ikj�z − d�… for z � d .

 �A6�

After discretization we thus write for Eq. �A3�

�
s=1

2

�
j=0

�

�sj
* �z��sj�z�� = ��z − z�� , �A7�

and for Eq. �A4�

�
−�

�

dz�sj
* �z��s�j��z� = �ss�� j j�. �A8�

In addition we introduce a complete orthonormal basis sys-
tem ���r�� for the square-integrable function in R2,
�dr���

*�r������r��=���� and ����
*�r�����r���=��r�−r���.

They are usually solutions of the time-independent
Schrödinger equation in the lateral directions,
�−�2 / �2m*���+V��r��−E�

� 	���r��=0. Then a complete
orthonormal basis for the Hilbert space of the single-particle
quantum states is given by

���r� = �r���� = �sj�z����r�� , �A9�

where � is the index triple �sj��. We find the usual complete-
ness relation ����

*�r����r��=��r−r�� and the orthonormality
relation is given by �d3r��

*�r�����r�=����.

2. Definition of the statistical operator

Because the scattering states ���� constitute a discrete and
complete orthonormal basis it is possible to introduce the
creation and annihilation operators ĉ�

† and ĉ�, respectively,
with the usual anticommutation relations 
ĉ� , ĉ��

† �=��,��,

ĉ� , ĉ���=0, and 
ĉ�

† , ĉ��
† �=0. Based on the anticommutation

relations one can formulate a particle number representation
which will be described in the following.

According to standard theory49 the field operators are

given by �̂�r�=�����r�ĉ� and �̂†�r�=����
*�r�ĉ�

† . The
many-particle Hamiltonian of the stationary electron system
can be written as

Ĥ0 =� d3r�̂†�r��−
�2

2m*� + V��r�� + V�z���̂�r� ,

=�
�

E�ĉ�
† ĉ�, �A10�

where E�=E�
� +	s�ki� is the energy of the single-particle state

����. Here we use the notation Ĥ0 since in Sec. II B we
consider a time-dependent perturbation of this Hamiltonian.
We now use as a statistical operator for the stationary system
as given by

�̂0 =
1

Z0
exp�− ��Ĥ0 − �1N1

ˆ − �2N2
ˆ �	 , �A11�

with the chemical potentials �1 and �2 of source and drain

contacts, respectively, the particle number operators N̂s

=�i�ĉsi�
† ĉsi� with N̂= N̂1+ N̂2, and

Z0 = Tr
exp�− ��Ĥ0 − �1N1
ˆ − �2N2

ˆ �	� . �A12�

The trace is done over all states of a Fock-space basis, con-
structed with the help of the single-particle scattering states
����. The trace is easy to write in the occupation number
representation,
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Z0 = �
N=0

�

�

n��

�N; ¯ n� ¯ �exp�− ��
��

�E�� − �s��ĉ��
† ĉ����N; ¯ n� ¯ � = �

�

�1 + exp„− ��E� − �s�…� . �A13�

The occupation number n� of the single-particle state ����
for electrons is 0 or 1. It is straightforward to show that the

statistical operator in Eq. �A11� is stationary, i.e., �Ĥ0 , �̂0	
=0, and that it fulfills Tr
�̂0�=1.

3. Expectation values

Using Eq. �A13� one finds for the equilibrium mean value
�n�� of the particle number operator of a single-particle state
����

Tr
�̂0ĉ�
† ĉ��� = �����n�� = ����

exp„− ��E� − �s��
1 + exp�− ��E� − �s�…

= ����fFD�E� − �s� , �A14�

with the Fermi-Dirac distribution function

fFD�E� − �s� =
1

1 + exp„��E� − �s�…
. �A15�

In agreement with the Landauer-Büttiker formalism we
then find for the mean value of the particle density operator

��r� = 2 Tr
�̂0�̂†�r��̂�r�� = 2�
�

fFD�E� − �s�����r��2

= 2�
s�
�

Vs

�

d	gs�	�fFD�E�
� + 	 − �s�����r���2���s��	,z��2,

�A16�

where we establish the continuous limit by replacing

�k�
�

→ �
s�
�

0

�

dks → �
s�
�

Vs

�

d	gs�	� �A17�

and the factor of 2 comes from the spin degeneracy. Consid-
ering ansatz �2� one can perform the � summation in Eq.
�A16� obtaining Eq. �8�.

We want to mention here that we have followed a similar
scheme for the second quantization as presented by Büttiker
in Ref. 45, Sec. II B. We obtain the same mean values for the
occupation numbers but using an ansatz for the density op-
erator rather than for the mean values as is done in Eq. �2.12�
in Ref. 45. As we show in Appendix B, using this statistical
operator for the unperturbed system, we can carry out a stan-
dard linear-response theory to obtain the polarization in the
well defined standard way.

APPENDIX B: HARMONIC PERTURBATION

In this appendix we describe our approach to calculate
dynamic linear-response properties of open quantum systems
which are defined in Sec. II A. Starting with Eq. �10� we

determine the density matrix for the perturbed system using

the von Neumann equation with Ĥ0 describing the stationary
open system, Eq. �A10�. In linear approximation one finds50

���r,�� =� d3r��0�r,r�,���V�r�,�� , �B1�

where the density-density correlation function �irreducible
polarization� is given by

�0�r,r�,�� =
i

�
�

0

�

d� exp„i�� + i���…���̂I�r,��, �̂�r��	�0.

�B2�

The index 0 means the thermodynamic expectation value
with respect to the statistical operator �̂0 as given by Eq.
�A11� and the index I means the operator in the interaction
picture. The single-particle density operators �̂ are now writ-
ten in the second quantization using the field operators of the
scattering states defined in Appendix A so that

�̂I�r,�� = �
�,��

��
*�r�����r�exp�iĤ0�/�	ĉ�

† ĉ�� exp�− iĤ0�/�	 ,

�B3�

with ���sj�� and �̂�r�= �̂I�r ,�=0�. In a standard way one
uses the anticommutation relations for the ĉ�

† and ĉ� to cal-
culate the commutator in Eq. �B2� and obtains

�0�r,r�,�� = 2 lim
�→0

�
�,��

fFD�E� − �s� − fFD�E�� − �s��

E� − E�� + ��� + i��

���
*�r�����r����

* �r�����r�� , �B4�

where we have used Eq. �A14� for the expectation values.
Different from the usual expression for �0, the Fermi-Dirac
occupation functions fFD may contain different chemical po-
tentials, either that of the source contact for s=1 or that of

FIG. 4. Transformation of the two-dimensional integral �Eq.
�C4�	. The gray area illustrates the integration domain.
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the drain contact for s=2. Furthermore, the single-particle
energies E� are given in Eq. �A10� and the overall factor of
2 in Eq. �B4� accounts for the spin degree of freedom.

In the considered planar structure the potential perturba-
tion depends only on z, �V�r��=�V�z�. In order to develop
further Eq. �B4�, we take the continuous limit �Eq. �A17�	,
and using Eqs. �4� and �2� one can first integrate over r�

obtaining ��k�−k��� and after that sum over k�. As a result,
a z-dependent density modulation ���r�=���z� is obtained
which is related to the potential modulation by Eq. �11�, and
the polarization �0�z ,z� ,�� is given by Eq. �12�.

Evaluating in the same procedure the perturbation of the
expectation value of the z component of particle current den-

sity ĵz�r�= �� /m*�Im��†�r��z�̂�r��, one obtains

�jz��z� � d� = �
−d

d

dz��̃0�z,z�,���V�z�� . �B5�

The current-density response function for a planar structure

has the form �̃0�z ,z� ,��=�ss��̃0
�ss���z ,z� ,�� with

�̃0
�ss���z,z�,�� = lim

�→0
�

Vs

�

d	�
Vs�

�

d	�
F̃�ss���z,z�,	,	��

	 − 	� + ��� + i��

�B6�

and

F̃�ss���z,z�,	,	�� = 2
m*

2
��2gs�	�gs��	��ln� 1 + exp����s − 	�	
1 + exp����s� − 	��	
 �

2im*����s��	,z��* d

dz
��s���	�,z� − ��s���	�,z�

d

dz
���s��	,z��*�

����s���	�,z���*��s��	,z�� . �B7�

APPENDIX C: LOW-FREQUENCY EXPANSION OF THE
IRREDUCIBLE POLARIZATION

For small frequencies we expand in Eq. �12� for finite �

1

	 − 	� + ��� + i��
�

1

	 − 	� + i��
−

��

�	 − 	� + i���2 ,

�C1�

finding

P0
�s��z,z�� = lim

�→0
�

Vs

�

d	�
Vs

�

d	�
F�ss��z,z�,	,	��

	 − 	� + i��
�C2�

and

P1
�s��z,z�� = −

�

i
lim
�→0

�
Vs

�

d	�
Vs

�

d	�
F�ss��z,z�,	,	��
�	 − 	� + i���2 .

�C3�

We introduce a transformation v=	+	� and u=	�−	 so that
for a general function f�	 ,	��

�
Vs

V�

d	�
Vs

V�

d	�f�	,	��

=
1

2
�

2Vs

2V�

dv�
−u0�v�

u0�v�

duf„	�v,u�,	��v,u�… , �C4�

where we introduce a cutoff energy V�→�. Furthermore,
as illustrated in Fig. 4, u0�v�Vs+V��=v−2Vs and
u0�v�Vs+V��=2V�−v. For fixed z ,z� we write F�ss�

��z ,z� ,	 ,	��=���v ,u� with �=2m* /2
��2 and

��v,u� = M�v − u

2
�M*�v + u

2
��N�v − u

2
� − N�v + u

2
�� ,

�C5�

where

M�v� = gs�v����s��v,z��*��s��v,z�� �C6�

and

N�v� = ln
1 + exp„���s − v�…� . �C7�

It is easy to see that ��v ,u�=�1�v ,u�+ i�2�v ,u�=−�*�v ,−u�
so that �1�v ,u�=−�1�v ,−u� and �2�v ,u�=�2�v ,−u�. Further-
more, since ��v ,0�=0 one finds for small �u� the expansion

��v,u → 0� � u�u�v,0� , �C8�

where we obtain a real function for the partial derivative with
respect to u at u=0,

�u�v,0� = ��M�v
2
��2

fFD�v
2

− �s� , �C9�

with the Fermi-Dirac distribution function given by Eq.
�A15�. This means that in expansion �C8�, the leading term
in the real part is linear in u while the leading term in the
imaginary part is parabolic in u. Writing lim�→0
�	−	�+ i���−1=−PV�1/u�− i
��u�, where PV denotes the
Cauchy principal value, and using the symmetry properties
of the functions �1 and �2, one obtains
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P0
�s��z,z�� = −

�

2
�

2Vs

2V�

dv�
−u0�v�

u0�v�

du
�1�v,u�

u

= �
Vs

V�

d	�
Vs

V�

d	�
F1

�ss��z,z�,	,	��
	 − 	�

, �C10�

where F�ss��z ,z� ,	 ,	��=F1
�ss��z ,z� ,	 ,	��+ iF2

�ss��z ,z� ,	 ,	��. In
Eq. �C10� we omitted the principal-value operation because
one obtains in u=0 a regular integrand due to the expansion
in Eq. �C8�. Writing51 lim�→0�	−	�+ i���−2=PV�1/u2�
− i
�d /du���u� it follows from Eq. �C3� that

P1
�s��z,z�� = −

��

2
�

2Vs

2V�

dv�
−u0�v�

u0�v�

du
�2�v,u�

u2 −
��

2

�

2Vs

2V�

dv�u�v,0� = − ��
Vs

V�

d	�
Vs

V�

d	�
F2

�ss��z,z�,	,	��
�	 − 	��2 − ���
�

Vs

V�

d	gs
2�	�

����s��	,z��2���s��	,z���2fFD�	 − �s� . �C11�

Here we omitted the principal-value operation in the first integral since the integrand is regular at u=0 because the leading
order term in �2�v ,u→0� is parabolic in u.
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