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Certain well known quantum Hall states—including the Laughlin states, the Moore-Read Pfaffian, and the
Read-Rezayi Parafermion states—can be defined as the unique lowest degree symmetric analytic function that
vanishes as at least p powers as some number �g+1� of particles approach the same point. Analogously, these
same quantum Hall states can be generated as the exact highest density zero energy state of simple angular
momentum projection operators. Following this theme we determine the highest density zero energy state for
many other values of p and g.
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I. INTRODUCTION

For two dimensional electron systems in very high mag-
netic fields, the kinetic energy becomes fully quenched, elec-
trons become restricted to the lowest Landau level �LLL�,
and the effective Hamiltonian is reduced to the potential en-
ergy of the electron-electron interaction.1 While naive intu-
ition might suggest that a Hamiltonian with only a potential
energy would result in a crystalline ground state, the analytic
structure of the lowest Landau level puts enormous restric-
tions on the type of wave functions that can exist. It is this
structure that is responsible for all the richness of the frac-
tional quantum Hall effect.

In Laughlin’s original explanation of the fractional quan-
tum Hall effect,1 he noticed that, due to the LLL analytic
structure, his trial state could be completely defined by stat-
ing that the many particle wave function must vanish as a
particular power of the distance between two electrons. In
particular, for the Laughlin �=1/m state, the wave function
vanishes as �z1−z2�m as particles with position z1 and z2 ap-
proach each other. The highest density wave function with
this property is precisely the Laughlin state. It was discov-
ered soon thereafter that these Laughlin wave functions were
in fact the exact unique highest density zero-energy ground
state of particles interacting with particularly simple short
range model potentials2,3 that amount to projection Hamilto-
nians. In this paper, we focus on these two related issues—
the manner in which wave functions vanish, and the exis-
tence of simple model projection Hamiltonians.

To be more explicit, let us define L2 to be the relative
angular momentum of two particles. For electrons �which are
fermions�, L2 must always be odd and the minimum value of
L2 in the LLL is given by L2

min=1. For bosons in a magnetic
field �or rotating Bose gases, which can be mapped to bosons
in a magnetic field4�, L2 must be even and L2

min=0. We can
then define a projection operator P2

p to project out any state
where any two particles have relative angular momentum
less than L2

min+ p. In the lowest Landau level, this projection

operator is precisely the above-mentioned Hamiltonian that
gives the Laughlin �=1/ �L2

min+ p� state as its ground state
when p is even. In other words, this projection operator,
when used as a Hamiltonian, gives positive energy to any
situation where the wave function vanishes as �z1−z2�m with
m�L2

min+ p, leaving the Laughlin state as the unique highest
density zero energy �ground� state. Note that for p odd, the
wave function cannot vanish as p powers, so P2

p has the same
effect as P2

p+1 in that both forbid relative angular momentum
of p−1 or less.

Another very interesting set of trial wave functions have
also been studied that follow very much in this spirit. The
Read-Rezayi Zg parafermionic wave functions5 are the
unique exact highest density zero energy �ground� state of
simple �g+1� body interactions. Correspondingly, these
wave functions can be completely defined by specifying the
manner in which the wave functions vanish as g+1 particles
come to the same point. The Moore-Read Pfaffian6 state,
which is thought to be the ground state wave function for the
observed �=5/2 plateau,7 is precisely the g=2 member of
this series. In addition, the particle hole conjugate of the g
=3 Read-Rezayi state has been proposed to be a candidate
for the observed �=12/5 fractional quantum Hall state.8 Fi-
nally, we note that the g=1 element of this series is just the
Laughlin state with p=1 or p=2.

Analogously to our above construction for the Laughlin
series, we may define Lg+1 to be the relative angular momen-
tum of a cluster of g+1 particles. It can be shown �and we
will show below� that for electrons in the LLL, the minimal
value of Lg+1 is given by Lg+1

min =g�g+1� /2. For bosons, the
minimal value would be Lg+1

min =0. Symmetry dictates �as
shown in Appendix A� that Lg+1=Lg+1

min +1 cannot occur, al-
though any other value of Lg+1�Lg+1

min can occur for g�1
�and L2 must be even or odd for bosons or fermions, respec-
tively�. Again we define Pg+1

p to be a projection operator that
projects out any state where any cluster of g+1 particles has
relative angular momentum Lg+1�Lg+1

min + p. The Read-Rezayi
state can then be obtained5 from using the projection opera-
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tor Pg+1
2 as a Hamiltonian in the lowest Landau level. �Note

that since Lg+1=Lg+1
min +1 is not allowed, the effect of Pg+1

1 and
Pg+1

2 are both the same in that they give nonzero energy to
states where any cluster has relative angular momentum
Lg+1=Lg+1

min.� In this work we will consider the obvious gen-
eralization of the Read-Rezayi construction, taking the
Hamiltonian in the LLL to be given by the projection opera-
tor Pg+1

p for general g and p.
The general restriction that the minimum relative angular

momentum of g+1 particles be Lg+1�Lg+1
min + p can be ex-

pressed in terms of how the wave function vanishes as g
+1 particles approach each other. For bosons, where Lg+1

min

=0, the wave function does not need to vanish as g particles
approach a given position z̃ but as the �g+1�st particle ar-
rives, the wave function must vanish as �zg+1− z̃�p. The situ-
ation for fermions, however, is a bit more complicated, and
will be discussed in Sec. IV below.

The purpose of this paper is to determine the highest den-
sity zero energy state of the proposed Hamiltonian Pg+1

p

which is a natural generalization of the Laughlin, Moore-
Read, Read-Rezayi, Haffnian, and Gaffnian Hamiltonians.
While we will not find a solution for arbitrary g and p, we
will be able to find a solution for many values of g and p that
have not been previously discussed. We note that in addition
to the Laughlin states �g=1 with any p� and the Read-Rezayi
states �p=1 or p=2 with any g�, the ground state of the g
=2 and p=4 case, know as the “Haffnian” has been previ-
ously discussed by Green.9 In addition, the ground state of
g=2 and p=3 has been dubbed the “Gaffnian,” and is dis-
cussed in depth in a companion paper by the current
authors.10 �The name “Gaffnian” is an alphaphonetic interpo-
lation between the p=2 pFaffian and the p=4 Haffnian�.

The outline of this paper is as follows. We begin by fixing
notations and conventions in Sec. I A. In Sec. II we define

the concept of a “proper” cluster wave function which is
crucial to our arguments. Through much of this paper we
focus on boson wave functions. In Sec. III we start filling out
a table as to the highest density ground state of the Hamil-
tonian Pg+1

p . Although we do not fill in all possible values of
p and g, we do determine quite a few �results are given in
Table I�. In Sec. IV we discuss attaching Jastrow factors to
the resulting wave functions, and in particular the fermionic
analog of these wave functions. We find that the structure of
the table for fermions and bosons is identical.

Preliminaries. We will always represent a particle’s coor-
dinate as an analytic variable z. On the plane z=x+ iy is
simply the complex representation of the particle position r.
On the sphere, z is the stereographic projection of the posi-
tion on the sphere of radius R to the plane. All distances will
be measured in units of the magnetic length. In the symmet-
ric gauge, the single particle lowest Landau level wave func-
tions ��r� are given as analytic functions ��z� times a mea-
sure ��r�:

��r� = ��r���z� . �1�

On the disk the measure is1

��r� = e−�z�2/4, �2�

whereas on the sphere �with stereographic projection� the
measure is5

��r� =
1

�1 + �z�2/�4R2��1+N	/2 �3�

with N	 being the total number of flux penetrating the
sphere. On the sphere the degree of the polynomial ��z�
ranges from z0 to zN	 giving a complete basis of the N	+1

TABLE I. Highest density zero energy ground state of bosons with Hamiltonian Pg+1
p . The entries in this table are “name of state”

followed by filling fraction. Abbreviations are P=Pfaffian; G=Gaffnian; H=Haffnian; Jn=Jastrow Factor to the nth power; Rn=Zn Read-
Rezayi state. So for example, the g=2, p=9 slot has G J2 : 2

7 which means the wave function is the Gaffnian times 2 Jastrow factors which
occurs at filling fraction 2/7. Note that Laughlin states are listed only as Jn. An asterisk indicates that the state is “marginal” in that there are
other states competing with this state that differ at most by a finite shift. For fermions the structure of the table would be identical except that
the filling fractions would be related to these bosonic filling fractions by Eq. �9�.

p=1,2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10 p=11 p=12 p=13 …

g = 1 J2: 1
2 J4: 1

4 J4: 1
4 J6: 1

6 J6: 1
6 J8: 1

8 J8: 1
8 J10: 1

10 J10: 1
10 J12: 1

12 J12: 1
12 J14: 1

14

g = 2 P:1 G: 2
3

*H: 1
2 J2: 1

2 J2: 1
2 PJ2: 1

3 PJ2: 1
3 GJ2: 2

7
*HJ2: 1

4 J4: 1
4 J4: 1

4 PJ4: 1
5

g = 3 R3: 3
2

*P:1 P:1

g = 4 R4:2 R3: 3
2 R3: 3

2

g = 5 R5: 5
2

R4:2 R4:2

g = 6 R6:3 R5: 5
2 R5: 5

2

] ] ] ]
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states of the LLL. On the disk, the degree of � can be arbi-
trary.

We will write multiparticle wave functions 
 for N par-
ticles in the lowest Landau level as an analytic functions � of
N variables times the measure �


�r1, . . . ,rN� = ��z1, . . . ,zN���r1, . . . ,rN� �4�

with

��r1, . . . ,rN� = �
i=1

N

��ri� . �5�

On the sphere, the polynomial � cannot be of degree greater
than N	 in any variable zi.

A quantum Hall ground state wave function will be a
translationally, rotationally invariant quantum liquid. The re-
striction we impose on � is that it must be a translationally
invariant homogeneous polynomial of degree N	. On the
sphere, the degree N	 is just the number of flux through the
sphere. Conversely, given a �translationally and rotationally
invariant� quantum Hall wave function on a sphere, the flux
N	 can be identified as the highest power of zi that occurs.
We note that so long as our interaction in the lowest Landau
level is time reversal invariant, we can �and will� choose the
the polynomial � with real coefficients of all terms. As the
size of a system is extrapolated to the thermodynamic limit,
we have the relation

N	 =
1

�
N − S �6�

with � the filling fraction, and S is known as the “shift.” We
note that on a torus geometry there is typically no shift.11

For a bosonic wave function � must be symmetric in its
arguments, whereas for a fermionic wave function it must be
antisymmetric in its arguments. A well known theorem tells
us that any antisymmetric function can be written as a single
Vandermonde determinant times a bosonic function. In this
way we can generally write

�fermion�z1, . . . ,zN� = J�boson�z1, . . . ,zN� , �7�

where

J = �
i�j

�zi − zj� . �8�

Using this relation, the translation from bosons to fermions is
quite easy. It is easy to see that the filling fraction � f for
fermions is related to that of the corresponding filling frac-
tion for bosons �b via

� f =
�b

�b + 1
. �9�

Throughout much of this paper we will be focused on
bosonic wave functions for clarity. We will return to the issue
of fermionic wave functions briefly in Sec. IV below.

II. PROPER CLUSTER WAVE FUNCTIONS

We begin by focusing on bosonic wave functions. A
g-cluster wave function � will be defined by the analytic

manner in which the wave function vanishes when the g+1
particles are brought to the same point z̃. Generally, we will
write this g+1 particle limiting behavior

lim
z1,. . .,zg+1→z̃

��z1, . . . ,zN� � f�z1, . . . ,zg+1��̃�z̃;zg+2 . . . zN� ,

�10�

where f is assumed to be an overall symmetric, translation-
ally invariant, homogeneous polynomial of degree p. �By
translationally invariant, we mean that we must have f in-
variant under shifting all zi→zi+�.� The relative angular
momentum of such a g+1 cluster is defined to be Lg+1= p on
the disk. Thus, on the disc a group of g+1 particles is not
allowed to have relative angular momentum less than p.

On the sphere, the notation is somewhat more
complicated.2 Each single particle state in the LLL has an-
gular momentum N	 /2. The total angular momentum of g
+1 bosons in the same single particle state is then �g
+1�N	 /2. If the relative angular momentum of the cluster is
p then the total angular momentum of the cluster is �g
+1�N	 /2− p.

On the torus, no simple concept of angular momentum
exists. Indeed, the only way to describe the analog appears to
be to specify the number of powers with which the wave
function vanishes as particles approach each other �i.e., sim-
ply p�. Thus specifying p appears to be more universal than
speaking in terms of angular momentum.

We assume that f vanishes when all g+1 of its arguments
coalesce at the same point. If f does not vanish when g
particles coalesce, we say we have a “proper” g-clustered
wave function. If f does vanish when g or fewer particles
coalesce, then we say we have an “improper” g-clustered
wave function.

In the proper case, the fact that f is homogeneous, trans-
lationally invariant of degree p, tells us that when g particles
are put at the point z̃ we will have f vanishing as zp as the
�g+1�st particle approaches:

lim
z→z̃

f�z̃, z̃, . . . , z̃,z� � �z̃ − z�p. �11�

The wave function � must vanish in this manner as any �g
+1�st particle approaches. We can thus write that

��z̃, z̃, . . . , z̃,zg+1,zg+2, . . . ,zN�

� � �
i=g+1

N

�z̃ − zi�p	�̃1�z̃;zg+1, . . . ,zN� , �12�

where �̃1 is a wave function satisfying Eq. �10� for the re-
maining N−g particles �and may have some dependence on z̃
as well�.

Using this recursion relation, it is easy to calculate the
filling fraction and shift of this wave function. We claim that
for a proper f of degree p �i.e., one that does not vanish when
g of its arguments come to the same point�, the densest wave
function satisfying condition 10 occurs at flux N	= pN /g
− p so long as N is a multiple of g. Thus, this wave function
has filling fraction and shift
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� = g/p, S = p . �13�

To see this result more explicitly, we imagine bringing to-
gether particles into groups of g particles and using the
above recursion relation �12� a total of N /g−1 times. Let us

put the first cluster of particles at position z̃1, the second at
position z̃2 and so forth until we have grouped the �N /g
−1�th group at position z̃N/g−1. The last g particles we leave
ungrouped. Using the recursion law we obtain a wave
function

��z̃1, . . . , z̃1, z̃2, . . . z̃2, . . . , z̃N/g−1, . . . , z̃N/g−1,zN−g,zN−g+1, . . . ,zN�

= �
1�a�b�N/g−1

�z̃a − z̃b�pg �
1�i�N/g−1

�
k=N−g

N

�z̃i − zk�p
N/g−1�z̃1, . . . , z̃N/g−1;zN−g,zN−g+1, . . . ,zN� , �14�

where 
N/g−1 is not allowed to vanish as any of its g remain-
ing arguments zj coalesce. The highest density wave function
satisfying the limiting behavior Eq. �10� �i.e., the quantum
Hall state with no quasiholes� could thus have 
 being unity.
Examining the degree of this polynomial with respect to the
position of zN we see that it is of degree p�N /g−1�. Thus, we
have a wave function corresponding to flux N	= p�N /g−1�
= �p /g�N− p which indicates �=g / p and S= p as claimed.

For each proper function f , there exists at most one cor-
responding quantum Hall ground state wave function which
would be the maximum density translationally invariant
wave function for which Eq. �10� is always obeyed. Of
course, just because we have constructed an appropriate f for
g+1 particles, it is not clear how one can construct a wave
function with a large number of particles N such that Eq.
�10� is obeyed as any combination of g+1 particles approach
each other. In essence we are asking how to “sew” together
many functions f to form a macroscopic wave function.
Sometimes no such macroscopic wave function exists. For
example, in Appendix B it is shown that for odd pg no such
macroscopic wave function exists. We note, however, that
many proper cluster wave functions are already known. The
Zg Read-Rezayi states, for example, are proper p=2 states
for any g �including the Pfaffian, which is g=2, p=2�. The
Laughlin states are proper for g=1 with even p. The
Haffnian state9 is proper with g=2, p=4 case, and recently
the current authors10 have studied the “Gaffnian” state,
which is proper with g=2, p=3. Further, in the next section
we will not need to know that any more proper wave func-
tions actually exist. What is important is that if they exist, we
know what their filling fractions are.

III. MAIN RESULTS

We now examine possible pair combinations of g and p
and ask what the ground state is of the projection Hamil-
tonian Pg+1

p . Again we will consider here only the case of
bosons. These results are summarized in Table I. In many of
the examples below, we will use the same type of reasoning:
A wave function that vanishes as g+1 particles come to-
gether must be either improper or proper �either it does or
does not vanish as only g particles come together�. We de-

termine the densest possible zero energy state for both of the
two possibilities and then compare these two with each other
to find the densest of all possible zero energy states.

g=1 the Laughlin series. The Hamiltonian P2
p gives posi-

tive energy to any pair of particles with relative angular mo-
mentum less than p. This leaves the highest density zero
energy ground state being the �=1/ p bosonic Laughlin state
for even p. For odd p, the Hamiltonian does not allow pairs
to have relative angular momentum p−1 so the highest
ground zero energy ground state is the 1/ �p+1� bosonic
Laughlin state.

p=1, p=2 the Read-Rezayi series. As discussed in the In-
troduction, it has been shown5 that projecting out the mini-
mal angular momentum of g+1 particles �projecting out
Lg+1=0 for bosons� results in the Zg Read-Rezayi state. Since
Lg+1�0 as shown in Appendix A, we then conclude that the
highest density zero energy state of both Pg+1

1 and Pg+1
2 is the

Zg Read-Rezayi state whose filling fraction is �=g /2 for
bosons. Note that this includes g=2 with p=1,2 which gives
the Moore-Read state �which is just the g=2 member of the
Read-Rezayi series�.

g=2, p=3 Gaffnian. The case g=2, p=3 gives the
Gaffnian state.10 We need not go into much detail as to the
physics of this state but to indicate that such a proper cluster
wave function at �=2/3 for bosons exists. Detailed discus-
sion of this wave function is given in Ref. 10. For complete-
ness, we now consider also the possibility that the ground
state is not a proper cluster wave function, but rather an
“improper” wave function �meaning it vanishes as only two
particles come together�. However, we know that the highest
density bosonic wave function that vanishes when two come
together is the Laughlin �=1/2 state, which is not as dense
as the Gaffnian.

g=2, p=4 Haffnian. Similarly, the g=2, p=4 case give
the Haffnian.9 Again, this proper cluster wave function for
�=1/2 for bosons has been previously discussed in detail.
Again, we consider the possibility that the highest density
state is an improper wave function. Indeed, the highest den-
sity improper wave function is the Laughlin �=1/2 state
which which vanishes even faster than the Haffnian as three
particles come to the same point �so it is also a zero energy
state of P3

4�. Comparing these two possibilities, the Haffnian
is considered the ground since it has a shift of S=4 whereas
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the Laughlin �=1/2 state has a shift of S=2. Thus the filling
fraction of the Haffnian is slightly greater by an amount or-
der 1 /N �with N the number of particles�. Note, however, on
a torus geometry, where there is no shift, the density of these
two states is the same �and indeed, there are many other
states with the same density too9,13�.

The g=2 series for p=5,6. Let us start by considering the
cases of g=2 and p=5,6. Suppose the highest density
ground state is a proper cluster wave function. In this case,
the filling fractions in these two cases would be �=2/5 and
�=2/6, respectively �see Eq. �13��. We now consider the
possibility that the ground state is improper. The highest den-
sity improper state �i.e., state that vanishes as two particles
come together� is the Laughlin �=1/2 state. This is denser
than the proper possibilities. Furthermore the Laughlin �
=1/2 state is also a zero energy state of the relevant Hamil-
tonians P3

5 and P3
6 since the Laughlin state vanishes as 6

powers when three particles come together. Thus we con-
clude that the Laughlin �=1/2 state is the densest zero en-
ergy state of these Hamiltonians.

The periodic g=2 series. For p�6, we proceed similarly.
If the highest density ground state is proper, the filling frac-
tion is �=g / p. Now suppose the ground state is improper. In
this case, the wave function must vanish as two particles
come together. It is well known that any symmetric polyno-
mial � that vanishes as two particles come together can be
written as two Jastrow factors �see Eq. �8�� times another
symmetric polynomial ��

��z1, . . . ,zN� = J2���z1, . . . ,zN� �15�

�cf. Eq. �7��. The filling fraction � of � is related to the filling
fraction �� of �� via

� =
��

2 + ��
. �16�

This is analogous to the usual composite fermion transforma-
tion �compare also Eq. �9��. Further, if � vanishes as p pow-
ers when three particles come together, then �� vanishes as
p�= p−6 powers �the 6 being from the Jastrow factors�.
Thus, if � is improper with g=2 we are equivalently looking
for a wave function �� that vanishes at least as p−6 powers
when three particles come together. Thus, we discover that
the highest density improper wave function for 6� p�12 is
just two Jastrow factors times the ground state of P2

p−6. For
p�6 we have already calculated the ground state of P2

p �i.e.,
p=1,2 is Pfaffian, p=3 is Gaffnian, p=4 is Haffnian, and
p=5,6 is Laughlin�, thus we know the highest density im-
proper ground state of P2

p for 6� p�12. It is easy to verify
that the filling fraction of this improper state is greater than
the �=g / p proper possibility. For 12� p�18 we can repeat
the argument and find that it is again the same series but with
four Jastrow factors and so forth.

Read-Rezayi series again for p=3,4. We now consider
the case of p=3,4 for arbitrary g. If the highest density state
is a proper g-cluster wave function then the filling fraction
will be �=g / p as usual. If the wave function is improper,
then it must vanish as only g particles come together. How-
ever, we already know that the highest density state that van-

ishes as g particles come together is the Zg−1 Read-Rezayi
state whose filling fraction is �= �g−1� /2. Furthermore, as
shown in Appendix C the Zg−1 Read-Rezayi wave function
vanishes as four powers when g+1 particles come together
�for g�1�. Thus, so long as �g−1� /2�g / p, the Read-Rezayi
Zg−1 state is the highest density zero energy state of Pg+1

3 and
Pg+1

4 . Note that this inequality is satisfied for g�2, p=4 and
g�3, p=3.

The g=3, p=3 Pfaffian. For the g=3, p=3 case, the above
inequality ��g−1� /2�g / p� is instead an equality. Thus, this
case is marginal. Here, the putative proper state occurs at �
=1, and the improper state is the Z2 Read-Rezayi state �the
Moore-Read Pfaffian� which is also �=1. The shift of the
Pfaffian is S=2, whereas the shift of a p=3 proper state
should be S=3. Thus, we would expect that the proper state
is denser. However, in Appendix B we show that, by sym-
metry, no proper state can exist for pg odd as we have in this
case. So there is no wave function at �=1 with shift S=3.
Thus, the Pfaffian is the densest possible zero energy state of
P3

3. In this case, we do not eliminate the possibility that an-
other zero energy state may exist with exactly this filling
fraction �and perhaps the same shift�. An otherwise “proper”
state where a term has been added to fix the symmetry could
occur. Indeed, exact diagonalization on the torus has re-
vealed at least one other zero energy state at the same filling
fraction.

The g=3, p=5,6 states: Gaffnian conjecture. We again
consider first the possibility that the ground state of P4

5 and
P4

6 are proper. These wave functions would have filling frac-
tions 3/5 and 3/6, respectively. The other possibility is that
the highest density ground state is improper �i.e., it vanishes
as only three particles come together�. Now consider the
Gaffnian wave function. This has filling fraction 2/3, and
from the explicit form of the wave function given in Ref. 10
it can be seen that it vanishes as six powers when four par-
ticles come together. Hence, the highest density ground
states of P4

5 and P4
6 must be improper. However, there could

be another �improper� zero energy state that also vanishes as
three particles come together which is higher density than the
Gaffnian. We conjecture that the Gaffnian is indeed the high-
est density zero energy state in these cases. However, we
have not been able to prove this conjecture.

IV. ADDING JASTROW FACTORS

So far we have only considered bosonic wave functions.
Given any bosonic wave function �0 such as any of those
discussed above, we can construct wave functions

� = �0�
i�j

�zi − zj�M = JM�0. �17�

For even M this would then be another bosonic wave func-
tion, whereas for odd M this would be a fermionic wave
function. Of particular interest is the M =1 case which was
also discussed above in Eq. �7�. Here, more generally, the
filling fraction � of � in terms of the filling fraction �0 of �0
as

� =
�0

M + �0
. �18�
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There is, of course, a one to one mapping between the
possible space of wave functions �0 and those in the space of
�. The defining limiting behavior of the wave function � is
now given by �cf. Eq. �10��

lim
z1,. . .,zg+1→z̃

��z1, . . . ,zN�

� f�z1, . . . ,zg+1�� �
1�i�j�g+1

�zi − zj�M	�̃0�z̃;zg+2 . . . zN�

�19�

when g+1 particles come together and �for f “proper”�

lim
z1,. . .,zk→z̃

��z1, . . . ,zN� � � �
1�i�j�k

�zi − zj�M	�̃0k�z̃;zk+1 . . . zN�

�20�

when k�g+1 particles come together. In other words, the
wave function vanishes as the Jastrow factor only when less
than g+1 particles come together, and vanishes increasingly
quickly �as defined by the function f� when g+1 come to-
gether. Thus, if f vanishes as p powers when g+1 particles
come together, the wave function � vanishes as Mg�g
+1� /2+ p powers when g+1 particles come together.

Enforcing the presence of Jastrow factors is a well known
procedure. For bosons, M =2 is obtained by forbidding any
two particles to have relative angular momentum of zero. In
other words, adding a term P2

2 to the Hamiltonian will assure
that any zero energy wave function contains an overall M
=2 Jastrow factor. This term, P2

2 is usually known as a V0
interaction2 since it projects out pairs of particles with rela-
tive angular momentum zero. Similarly, to enforce an M =4
Jastrow factor, one adds P2

4 to the Hamiltonian. �In the usu-
ally nomenclature this is a V0 term and a V2 term�. So, for
example, if a given wave function �0 is the highest density
zero energy ground state of Pg+1

p then �=JM�0 should be the
highest density zero energy ground state of

P2
M + Pg+1

Mg�g+1�/2+p �21�

with M even. It is interesting to note that in cases listed in
Table I above, the term enforcing the Jastrow factors is not
needed. For example, the highest density zero energy state of
P3

3 is the Gaffnian. Thus, choosing any even M we would
expect that the highest density zero energy state of P2

M

+ P3
3M+p should be JM times the Gaffnian. It is interesting that

in this particular case the highest density zero energy state of
P3

3M+p is already JM times the Gaffnian without including the
Jastrow forcing term P2

M. This is an intriguing phenomenon,
and we do not know if it is general.

We now return to the case of fermions. As mentioned
above in the Introduction �see Eq. �7�� any Fermi wave func-
tion can be written as a Bose wave function times a single
Jastrow factor. Thus, by simply using a system of fermions,
an M =1 Jastrow factor is automatically obtained. We also
note that this immediately tells us that the minimum angular
momentum of g+1 fermions in the LLL is

Lg+1
min;fermion = g�g + 1�/2. �22�

Since we have defined Pg+1
p to project out relative angular

momenta L�Lmin+ p, the table generated as the highest den-
sity zero energy state of Pg+1

p is the same for fermions as it is
for bosons only the resulting fermion wave functions have an
overall Jastrow factor attached �M =1�.

To add further Jastrow factors to a fermionic wave func-
tion, we follow the analogous scheme to the bosonic case,
projecting out any pairs of fermions with the minimal angu-
lar momenta. Thus, for fermions, our operator P2

2 is defined
to project out any pair with minimum angular momentum
less than L=L2

min;fermion+2=3. Thus, a zero energy state of P2
2

for fermions must have at least M =3 Jastrow factors in the
wave function. Conventionally such a term is known as a V1
term of the Hamiltonian. Similarly, a zero energy state of P2

4

for fermions must have at least M =5 Jastrow factors in the
wave function. Note that, by construction, this again follows
the rule that the resulting wave functions will always be the
bosonic analog times a single Jastrow factor.

V. DISCUSSION

The wave functions we have constructed in this paper all
stem from reasonably simple Hamiltonians, which involve
projecting out clusters of particles with given angular mo-
menta. The simplicity of this construction is, of course, much
of the attraction of our theory. It is interesting that the only
fundamentally “new” state that has appeared on our table of
states so far is the Gaffnian, which will be discussed in depth
in a companion to this paper.10 It would be interesting to fill
in the rest of Table I to see if any other new states might
appear.

Some of the states that fit in our scheme are of course well
known and well established to occur in nature. For example,
the Laughlin states are certainly seen in the lowest Landau
level.1 Also among the states that fit in our construction is the
Moore-Read Pfaffian,6 which is believed to be the origin of
the plateau seen in the first excited Landau level7 at �=2
+1/2. In addition, there are several states in our scheme that
seem likely to be seen in nature, although there remains
some level of uncertainty. For example, there is some
evidence5 that the particle-hole conjugate of the g=3 Read-
Rezayi state is a good trial state for �=2+2/5, which has
been observed recently.8 A detailed discussion of the
Gaffnian wave function is given in a companion to this
paper.10 Although the Gaffnian has extremely high overlap
with �=2/5 there is reason to believe that the Gaffnian is a
critical state rather than a phase.

It is interesting to note that in the lowest Landau level,
most of the known physics appears to be outside of the gen-
eral scheme set out in this paper. Instead, it appears that most
of the states seen in the LLL are most easily explained within
a composite fermion theory.12 In contrast to the current work,
the composite fermion wave functions �with the exception of
the Laughlin states� are not the exact ground state of any
known simple Hamiltonian—even though they are extremely
accurate wave functions for Coulomb �and similar� interac-
tions in the LLL. There are also possibilities that some of
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these states might be observed in systems of cold atoms.
Rotating Bose condensates can be thought of as Bosons in a
magentic field and thus �if sufficiently two dimensional� be-
come quantum Hall systems.4 In cold atom systems, the great
freedom to tune parameters experimentally allows Hamilto-
nians with desired interactions to be designed. Indeed, a
scheme has been devised15 which essentially generate ex-
actly the type of �g+1� particle interaction necessary to yield
the Read-Rezayi cluster series. Another approach to generat-
ing the Pfaffian in cold atoms have also been proposed16

which does not rely on rotation. Since the Hamiltonians we
are proposing in this paper are relatively simple, we might
hope that experimentalists will be able to devise systems in
which these Hamiltonians are realized.

It is important to note, however, that even in the absence
of a physical realization of these multiparticle interactions,
the classification scheme laid out here remains relevant to
real systems with realizable physical interactions. As dis-
cussed, the Pfaffian and Read-Rezayi states are exact ground
states of nonphysical many body Hamiltonians. Nonetheless,
these states �more precisely these “phases of matter”� also
appear to be realized for the more realistic and experimen-
tally relevant interactions. The use of the nonphysical multi-
particle interaction is simply a way to get a more analytically
tractable handle on a state of matter that is hard to study for
more realistic interactions. Similarly in this work, we do not
actually suspect that multiparticle interactions will be di-
rectly relevant anytime soon. Nonetheless, the phases of mat-
ter in our “periodic table” may be realized in much more
realistic situations.

ACKNOWLEDGMENTS

E.H.R. acknowledges support from DOE under Contract
No. DE-FG03-02ER-45981. N.R.C. acknowledges support
from EPSRC Grant No. GR/S61263/01 and ICAM. The au-
thors acknowledge conversations with F. D. M. Haldane, N.
Read, and I. Berdnikov.

APPENDIX A: Lg+1ÅLg+1
min+1

The statement that g+1 bosons have relative angular mo-
mentum p is equivalent to saying that as the particles all
approach the same point, the wave function vanishes as a pth
degree polynomial f in the sense of Eq. �10�. The function f
must be a translationally invariant symmetric polynomial.
We claim that no such polynomial exists of degree one. To
see this we note that there is only a single symmetric poly-
nomial in g+1 variable of degree one



i=1

g+1

zi �A1�

and under translation zi→zi+a this is not invariant. Thus we
conclude that g+1 bosons cannot have relative angular mo-
mentum 1. Writing any fermion wave function as an overall
Jastrow factor times a boson wave function �See Eq. �7�� one
can then show that generally Lg+1 cannot be Lg+1

min +1.

APPENDIX B: ODD pg PROPER BOSON WAVE
FUNCTIONS DO NOT EXIST

Here, we claim that when both g and p are odd no mac-
roscopic bosonic wave function exists with shift of p for that
g and p. To see this, we use the recursion relation Eq. �12�
�which is true as long as the wave function does not vanish
as g particles coalesce, i.e., as long as it is proper� and group
the particles into groups of g at positions z̃i. The wave func-
tion of the clustered superparticles is given by

� = �
i�j

�z̃i − z̃ j�pg. �B1�

However, a cluster of g bosons must remain a bosonic object
�i.e., the wave function is symmetric under interchange�,
whereas pg is odd. This tells us immediately that no such
wave function can exist.

APPENDIX C: THE READ-REZAYI WAVE FUNCTION

As shown by Ref. 14, the bosonic Read-Rezayi wave
function can be written by dividing the particles into g
groups, giving Jastrow factors only between particles in the
same group, and then symmetrizing over all choices of
which particle is in which group. We will assume the total
number of particles N is divisible by g and define the first
group to be particles 1 , . . . ,N /g the second group to be
N /g+1, . . . ,2N /g and so forth. We thus write the Zg Read-
Rezayi bosonic wave function as

� = SN� �
0�i1�j1�N/g

�zi1
− zj1

�2 �
N/g�i2�j2�2N/g

�zi2
− zj2

�2
¯

� �
�g−1�N/g�ig�jg�N

�zig
− zjg

�2	 , �C1�

where SN represents symmetrization over all particle coordi-
nates. It is simple to establish that the filling fraction is �
=g /2 and the shift is S=2. When g bosons come together,
one can be in each group so the wave function does not
vanish. When g+1 bosons come together, at least two of
them must be in the same group and the wave function van-
ishes as p=2 powers. Similarly when g+2 particles come
together �for g�1�, at least two groups have two bosons in
them, meaning the wave function vanishes as p=4 powers.
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