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Construction of a paired wave function for spinless electrons at filling fraction »=2/5
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We construct a wave function, generalizing the well-known Moore-Read Pfaffian, that describes spinless
electrons at filling fraction v=2/5 (or bosons at filling fraction »=2/3) as the ground state of a very simple
three body potential. We find, analogous to the Pfaffian, that when quasiholes are added there is a ground state
degeneracy which can be identified as zero modes of the quasiholes. The zero modes are identified as having
semionic statistics. We write this wave function as a correlator of the Virasoro minimal model conformal field
theory M(5,3). Since this model is nonunitary, we conclude that this wave function is likely a quantum critical
state. Nonetheless, we find that the overlaps of this wave function with exact diagonalizations in the lowest and
first excited Landau level are very high, suggesting that this wave function may have experimental relevance

for some transition that may occur in that regime.
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I. INTRODUCTION

The vast majority of quantum Hall states observed experi-
mentally in the lowest Landau level (LLL) are very accu-
rately described in terms of composite fermion! (or equiva-
lently the hierarchy?) wave functions. Despite these
successes, there are a number of quantum Hall states that
remain much less well understood and may require more
exotic explanations. For example, there exist a few experi-
mentally observed quantum Hall plateaus in the LLL that do
not fit into the wusual hierarchy-composite-fermion
framework.? Also, in the first excited Landau level (1LL),
even the “simple” observed filling fractions (such as v=2
+1/3 and 2+2/5) appear from numerics to have strong dif-
ferences from the corresponding states in the LLL.>*> Of the
nonhierarchy exotic states that have been proposed, perhaps
the best understood is the Moore-Read Pfaffian,® which is
thought to describe’ the plateau observed at ¥v=2+1/2, and
whose quasiparticle excitations have exotic non-Abelian sta-
tistics. However, for the neighboring experimentally ob-
served plateau® at v=2+2/5 there are at least two competing
trial states which have been proposed: the hierarchy (com-
posite fermion) state’:> and the (particle-hole conjugate of
the) Z; Read-Rezayi parafermion state,”'? a generalization of
the Pfaffian which has an even richer non-Abelian structure.
Another case where more exotic states may occur is in the
quantum Hall effect of rotating bosons.!!

In this paper we will study another type of generalization
of the Pfaffian that gives a different trial state at »=2/5 (or
2+2/5) for spinless electrons. We call this new wave func-
tion the “Gaffnian,” for reasons described below. The Hamil-
tonian that generates this wave function as its unique highest
density zero energy state is an extremely simple generaliza-
tion of the Hamiltonian that similarly generates the Moore-
Read Pfaffian (and is also similar in spirit to the Hamilto-
nians that generate the Read-Rezayi wave functions). Similar
to the Pfaffian and Read-Rezayi states, when additional flux
is added, there is a degeneracy of states associated with zero
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modes of the quasiholes. In the present case the zero modes
have semionic statistics, compared to fermionic statistics in
the Pfaffian case, or parafermionic statistics in the Read-
Rezayi case. We then write this wave function as the cor-
relator of a conformal field theory, known as the Virasoro
M(5,3) minimal model. Since this field theory is nonunitary
we conclude that the wave function is likely not to represent
a phase, but rather a quantum critical point between phases.
As such, the concept of non-Abelian statistics is not neces-
sarily applicable. Nonetheless, exact diagonalizations show
extremely high overlaps with this trial wave function. We
take this to suggest that this wave function is likely relevant
to a phase transition that is somehow ‘“near” the hierarchy
phase.

The outline of this paper is as follows. In Sec. I we will
introduce this new wave function and explore some of its
properties. We define this wave function as the unique high-
est density zero energy state of a simple Hamiltonian. We
then consider what happens when additional flux is added to
the system. As mentioned above, in the presence of quasi-
holes, there is a ground state degeneracy stemming from
semionic zero modes. Since some of the analytic manipula-
tions are messy, we relegate some of the details to rather
lengthy appendixes. In particular, the demonstration that the
Gaffnian is a unique ground state of this Hamiltonian, and
the explicit counting of quasihole states is put in Appendix
A. However, for the interested reader, this appendix shows
explicitly the mechanism by which the semions occur. In
Sec. III we construct the Gaffnian as a correlator of the
M(5,3) Virasoro minimal model conformal field theory. In
Sec. IV we examine results of exact diagonalizations. We
look at low energy excitations to find evidence of criticality,
and we also discover that the overlap of the Gaffnian with
the hierarchy wave function is remarkably high (we also find
high overlap with exact diagonalizations of systems with in-
teractions close to Coulomb). Finally, in Sec. V we give a
brief discussion of some of our results.
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II. THE GAFFNIAN WAVE FUNCTION

Before constructing our new trial wave function, for mo-
tivation we review construction of Laughlin wave functions.
In the lowest Landau level, two particles i and j in relative
wave function (z;—z;)*2 are said to have relative angular mo-
mentum L,. The relative angular momentum of two fermions
L, must be odd and positive so the minimum relative angular
momentum is L3""=1 (for bosons, L3""=0 and L, must be
even). We define a projection operator P4 to project out (i.e.,
to keep only) states where any two particles have relative
angular momentum less than Ly""+p (with p even). This
projection op'emtor12 can serve as a Hamiltonian. The Laugh-
lin v=1/(Ly"+p) state is the unique highest density (zero
energy) ground state of P5 (with L)"+p odd for fermions
and even for bosons). Note that the construction of project-
ing out states where the relative angular momentum of two
particles is less than L)"+p is precisely equivalent to the
statement that the resulting wave function must vanish at
least as Ly"+p powers, ie., at least as quickly as

(Z;—zj)LIZmn*f’, as any two particles i and j approach each
other.

We now generalize this construction. Analogous to the
two particle case, we can define the three particle relative
angular momentum L; to be the total power (degree) of the
relative wave function between the three particles. (See Refs.
14 and 15 for more precise definitions, which are not needed
here.) In other words, if the wave function vanishes as L,
powers as all three particles come to the same point, then the
wave function contains no components with relative angular
momentum less than L;. In a single Landau level the relative
angular momentum of three fermions L; has a minimum
value L3""=3 (for bosons, L3""=0). It is not hard to
show!*!7 that Ly # L}""+1 is dictated by symmetry, but any
other Ly;=L3" is allowed. We analogously define a projec-
tion operator P4 to project out (i.e., to keep only) states
where any three particles have relative angular momentum
less than L5"+p which will serve as our Hamiltonian. It is
well known®'310 that the Pfaffian (at v=1/2 for fermions
and v=1 for bosons) is the unique highest density (zero en-
ergy) ground state of the Hamiltonian P%. In Ref. 17 another
state, known as the “Haffnian” is shown to be the unique
highest density (zero energy) ground state of P§ (which is a
v=1/3 state for fermions and v=1/2 state for bosons). Using
the method of Refs. 16 and 17 we can show that the Hamil-
tonian P% also has a unique highest density (zero energy)
ground state. The argument is straightforward and is given in
the appendixes of this paper. This unique state occurs at v
=2/5 for fermions (v=2/3 for bosons), and is the focus of
this paper. Since this new p=3 state lies between the p=2
Pfaffian and the p=4 Haffnian, we alphaphonetically inter-
polate and dub this new state the “Gaffnian.”

Before commencing our study of the Gaffnian, we note
that several other states can be constructed analogously. By
considering general k-particle angular momenta L;, we can
construct a general P. In Ref. 9 it was shown that the
Hamiltonian Pi generates the Z,_; Read-Rezayi state (the Z,
state being the Pfaffian). The study of several other values of
p and k is given in Ref. 14 by three of the current authors. In
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Ref. 14 we discuss that among these possible Hamiltonians
there is a class of resulting ground state wave functions (for
bosons) which we name “proper,” defined by the fact that
they do not vanish when k particles come together but do
vanish as p powers when k+1 come together. The filling
fraction for such proper wave functions follows the formula
v=k/p. The Pfaffian, Haffnian, Gaffnian, Read-Rezayi
states, and Laughlin states (all for bosons) are all examples
of such proper wave functions and follow this general rule
for filling fraction. As usual, fermionic states can be con-
structed from the bosonic versions by attachment of an over-
all Jastrow factor, with the resulting wave functions having
filling fraction Vgeymi= Vgose! (VBoset+ 1)-

Knowing that a unique quantum Hall ground state exists
for the Hamiltonian Pg, we set about describing the proper-
ties of the Gaffnian. We begin by writing down the wave
function explicitly.

We will represent a particle’s coordinate as an analytic
variable z=x+iy which is simply the complex representation
of the particle position r. On the spherical geometry, z is the
stereographic projection of the position on the sphere of ra-
dius R to the plane. All distances are measured in units of the
magnetic length. We can write any single particle wave func-
tion as an analytic function times a measure wu(r). On the
disk the measure is the usual Gaussian factor? ,u(r):e“z'z"‘,
whereas on the sphere!? (with stereographic projection to the
plane) the measure is u(r)=[1+|z[*/(4R*)]"1*N¢? with N, (
=2R? when the magnetic length is unity) being the total num-
ber of flux penetrating the sphere.®!# On the sphere the de-
gree of the polynomial y(z) ranges from z° to zV¢ giving a
complete basis of the Ny+1 states of the LLL. We will not
write the measure explicitly, instead writing all wave func-
tions simply as analytic functions (which must be fully sym-
metric for bosons and fully antisymmetric for fermions).

It is convenient to think, for a moment, about bosons at
v=2/3. Since the Hamiltonian P3 puts no restriction on the
two particle angular momentum, there is no restriction
against two bosons being at the same point z,. However,
when a third particle approaches, it must approach the other
two'# such that the overall angular momentum of the three
particles is p=3, i.e., the wave function vanishes as (z;
—Zz0)?. (In this sense, the Gaffnian, similar to the Pfaffian and
Haffnian, is a paired state in the spirit of that originally pro-
posed in Ref. 18.) The Gaffnian wave function can be written
explicitly as'’

v=5 Il G-z Il (ze-20*
a<b<N/I2 NR<c<d
1
x Il G-z Il ———|. O
e<NR<f g<NI2 (Zg - Zg+N/2)

where g=0 corresponds to a bosonic (¥=2/3) wave function
and g=1 is a fermionic (v=2/5) wave function. We have

assumed the number N of particles is even and S means
symmetrize or antisymmetrize over all particle coordinates
for bosons or fermions, respectively. One can confirm di-
rectly that the above wave function for ¢g=0 correctly has the
property that it does not vanish as two particles come to the
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same position but vanishes as three powers as the third par-
ticle arrives. Further, we show in Appendix A that this is the
unique lowest density wave function (lowest degree homo-
geneous, translationally invariant polynomial) that has this
property. As is standard in spherical geometry>!'?> we can
obtain the value of the flux by looking at the maximum
power of z; that occurs. Counting powers of z we find that the
Gaffnian wave function occurs on the sphere for total flux

Ng=3N2-3+¢(N-1). (2)

This value of flux is the same as that for the standard hier-
archy v=2/5 state.!” This should not be a surprise, since
some of the first trial wave functions for v=2/5 (for fermi-
ons) in the hierarchy were based on pairing.'® In the appen-
dix we analytically establish that this state is the unique zero
energy state of the Hamiltonian Pg at this flux. We have
numerically confirmed this fact by explicitly diagonalizing
the Hamiltonian Pg with up to N=12 particles on the spheri-
cal geometry and up to N=10 particles on the torus. [We note
that on the torus the Gaffnian occurs at Ny=(3/2+¢)N
meaning there is no “shift,” which is always the case on the
torus. |

In Appendix C we consider possible generalizations of the
form of the Gaffnian wave function (1). In particular, we
find trial states for wave functions of the Jain series
v=p/(mp+1) (with m odd for bosons and even for fermions)
with the same value of the flux as the usual Jain sequence.
Since (as we will discuss below) the Gaffnian is distinct from
the hierarchy (or Jain) states, we suspect that these trial states
are similarly distinct from the usual Jain states. However, we
leave detailed study of these wave functions for further work.

Since the Gaffnian is a paired state,>!® we expect that
each additional flux added will correspond to two quasiholes,
each with charge e”=ev/2 with —e the charge on the elemen-
tary underlying “electron” (or underlying boson for ¢=0).
Generally, we define the number of extra flux added to the
Gaffnian ground state to be

n=Ny—[3N2-3+g(N-1)] 3)

[compare to Eq. (2)]. Note that n here is defined so that it is
half integer if N is odd. To construct wave functions in the
presence of n (integral) additional flux, we can insert a factor
of

H (Za—Wj) H

a<N/2;j=<n NI2<b=N:n<k<2n

(zp—wi) (4)

into the above wave function inside the symmetrization
where the w’s indicate the quasihole positions. However, for
2n fixed quasihole positions, there are apparently (2: ) in-
equivalent ways to choose which of the positions w; are la-
beled with an index j<n and which with an index j >n. One
might expect that the different groupings of the positions into
these two groups generate equally many inequivalent quasi-
hole wave functions. The fact that we find more than one
independent quasihole wave function means that there are
zero modes associated with these quasiholes.® Analogous to
the Pfaffian,'® however, it turns out that there are many linear
dependencies between these many different wave functions.
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In Appendix A, we show explicitly how to count the zero
energy ground state degeneracy of the system with Hamil-
tonian P% at any flux (strictly speaking the appendix only
addresses the case of N and 2n even, although the odd case
proceeds similarly). We find that the degeneracy of zero en-
ergy states is given by

F,

§* ((N—F)/2+2n)<n+F/2—l> )
Fi= == )V 2n F ’

where the maximum value of F is given by Fp
=min(N,2n-2). To verify this result, we have numerically
performed exact diagonalizations. For every case we have
examined, we find perfect agreement between this analytic
rule and the results of our exact diagonalization of the
Hamiltonian P;. (We have examined N=4,6 with n<6,
N=8 with n<4, N=10 with n<2, N=5 with n<7/2 and
N=7 with n<5/2.)

The first term in Eq. (5) corresponds to the positional
degeneracy of the quasiholes and can be thought of as 2n
bosons in (N-F)/2+1 orbitals. The second term is the de-
generacy of the zero modes and can be thought of as F
fermions in n+F/2—1 orbitals. Since the number of orbitals
changes half as fast as number of particles, these zero modes
are a realization of semionic exclusion statistics.?

The form of Eq. (5) is quite analogous to the zero-mode
counting expressions found for the Pfaffian,'® Haffnian,!”
and Read-Rezayi states.”?' However, in those cases the zero
modes have fermionic, bosonic, and parafermionic statistics,
respectively. For the fermionic (Pfaffian) case we put F fer-
mions in a fixed number n orbitals.'"® For the bosonic
(Haffnian) case,'” we put F fermions in n+F-2 orbitals
(which is equivalent to putting F bosons in n—1 orbitals).
The Gaffnian case is quite naturally an interpolation between
these two cases. (The Read-Rezayi parafermion case cannot
be phrased in this language so easily.?!)

As with the Pfaffian,'® Haffnian,'” and Read-Rezayi’?!
cases, the structure of Eq. (5) also tells us how to decompose
these degenerate states into angular momentum multiplets.
We simply calculate the multiplets of the 2n bosons in
(N=F)/2+1 orbitals and also the multiplets of the F fermi-
ons in n+F/2—1 orbitals and then add these together using
standard angular momentum addition rules. An explicit ex-
ample of this angular momentum addition is given in
Appendix B.

As discussed above, we can also look at wave functions
with fixed quasiparticle positions. The number of linearly
independent states should just be given by the zero-mode
contribution to the above equation

o e FR2-1
D= 2 ( F )

F(- DF=(= 1)V

(6)

Indeed by generating wave functions [described by Eq. (4)
inserted into Eq. (1)] numerically and checking for linear
independence, we find precisely this number of independent
states for all cases we have tried (N=4, n<6; N=6, n<35,
N=8, n<3).

075317-3



SIMON et al.

It is interesting to note that in the case of N=2n-2 (so
Fax=2n-2) the sum (6) gives the 2n—1st Fibonacci num-
ber Fib(2n—1)=Fib(N,—1). This can be proven trivially by
induction on n to show that D, +D,,,;»,=D,,, ;. We note that
the Z; Read-Rezayi state also has a degeneracy of Fib(N,,
—1). Another similarity we have found is that both states
have a two-fold degeneracy of the ground state at zero mo-
mentum on the torus geometry (in addition to the usual cen-
ter of mass degeneracy®). However, the two ground states
(the Gaffnian and the particle-hole conjugate of the Z; Read-
Rezayi state) occur at different values of the flux for a finite
spherical system, so they are topologically different states.
Also, as mentioned above, the state counting formula anal-
gous to Eq. (5) involves parafermionic?' zero modes for the
Read-Rezayi case compared to semionic modes for the
Gaffnian.

III. CONFORMAL FIELD THEORY

We now write this Gaffnian wave function as a correlator
of a conformal field theory (CFT).?? Making the connection
to CFT has, in the past, been extremely powerful in under-
standing states with non-Abelian statistics. (See, for ex-
ample, Refs. 6, 9, 21, and 23). For example, the structure of
a CFT can tell us about behavior of the degenerate space
under adiabatic braiding of quasiholes.”> We note that it is
certainly not the case that any analytic wave function is the
correlator of a CFT, so in this respect, the Gaffnian is an
example of a very select class of wave functions.?* Further,
as we will see below, the relevant CFT is one of the very
simplest ones possible among an infinite set of possibilities.

A CFT describing a paired state should contain a field ¢
with fusion relation ¢/ X ¢y~ 1 such that it has operator prod-
uct expansion

P Pw) ~ (2= w) 2o [1+ -] (7)

with 1 the identity, A, the conformal weight (or dimension)
of ¢, and dots representing less singular terms. We can then
construct a paired wave function

[T (z; =z (®)

i<j

N
V= H l//(zi)
i=1

Repeating the arguments which are presented in Ref. 9 it is
clear that (for ¢g=0, i.e., for bosons) this wave function will
not vanish as two particles come to the same position since
the (fractional) Jastrow factor precisely cancels the singular-
ity of the operator product expansion. However, the wave
function vanishes as z**# powers when the third particle ap-
proaches the other two [since there are three (fractional) Ja-
strow factors and only one singularity]. The Moore-Read
Pfaffian® is described in this way by the Ising CFT, also
known as the M (4,3) minimal model,?> which contains such
a field ¢ with weight A,,=1/2 so the wave function vanishes
as 72 as three particles come to the same point. The Gaffnian
is correspondingly described by one of the simplest generali-
zations of the Ising CFT, known as the minimal model
M(5,3). This CFT has a field ¢ with A,=3/4 so that the
wave function vanishes as z> as three particles coalesce (for
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FIG. 1. In the Virasoro minimal model conformal field theory
M(5,3), there are three nontrivial fields ¢, ¢, and o with dimen-
sions A given in the left table and fusion algebra given in right
table.

¢=0). The dimensions and fusion rules for the three primary
fields (¢, o, and ¢) in this model are given in Fig. 1. The
fusion of the field o with the field ¢ gives us the operator
product expansion®?

Do) ~ (Z=w) " Pe(w) + -+, )

where here the exponent —1/2 is determined by the confor-
mal weights in Fig. 1 as A,—A,—~A,. As described in Ref. 9
this power of 1/2 means that the quasihole created by the
field o must have charge ¢“=ev/2 consistent with our expec-
tation for a paired state. To see how this happens we write a
general wave function in the presence of 2n quasiholes as

2n N

=\ [T ow)IT vlz)
j=1 i=1

N 2n
XH (z _Zj)3/2+ql_[ H (zi- Wj)1/2~ (10)
i<j i=1 j=1

Given the operator product expansion (9), the final exponent
in Eq. (9) must have power 1/2 so that the wave function is
single valued in the z’s. This Jastrow factor then pushes pre-
cisely a charge ev/2 away from each quasihole.

We can also use the fusion rules to count the degeneracy
of the 2n quasihole state. The degeneracy is given by the
number of ways the o fields in Eq. (10) can fuse together to

(G
2
a
1
0 2 4 6

FIG. 2. The Bratteli diagram shows how the 2n quasihole fields
o fuse together. This is just a graphical representation of the fusion
rules (Table I) where at each horizontal step, the states at the pre-
vious horizontal position are fused with one more o field. The num-
ber of conformal blocks—which gives the non-Abelian
degeneracy—is seen graphically by the number of paths through the
diagram starting and ending at the bottom when N (and 2n) is even.
When N (and 2n) is odd, the path needs to start at the bottom but
end at the top to fuse with the one unpaired ¢ field. By straightfor-
ward counting, the number of such paths with 2n steps can be seen
to be the 2n—1st Fibonacci number.
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form the identity. This is illustrated graphically as the num-
ber of paths through the Bratteli diagram?® shown in Fig. 2.
The number of paths is Fib(2n—1), which is consistent with
the result of our above counting formula. If the number of
particles N is even, then we pair the ¢ fields to form identi-
ties, and the o fields must also pair to form the identity.
However, if N is odd, we can only form the identity if the o
fields fuse to form one more ¢ that can then fuse to form the
identity with the one remaining ¢ field.

One may ask how we know that we have the correct con-
formal field theory (particularly in light of the fact that clas-
sification of all conformal field theories is an ongoing re-
search field). The fact that we have a paired state at filling
fraction v=2/3 for bosons (i.e., the fact that the wave func-
tion does not vanish when two particles come together)
means we must have a field ¢ which fuses with itself to form
the identity. The fact that the Hamiltonian forces the wave
function to vanish as three powers when three particles come
together further fixes the dimension A, It is easy enough to
show that the only Virasoro minimal model conformal field
theory with such a field is M(5,3). If we further insist that
the charge of the quasihole should be ev/2, as is expected for
a paired state, this fixes the exponent of the final factor in Eq.
(10), and this in turn fixes A(P—A(,: 1/4. We must also insist
that the fusion relations for fusing many quasiparticles with
each other have the form of the Bratteli diagram in Fig. 2.
Finally, one can look at the subleading behavior of the wave
function as particles approach each other to extract the cen-
tral charge of the theory, which again is consistent with
M(5,3) (we do not perform this calculation here). These
restrictions place serious constraint on any possible confor-
mal field theory we would like to use to represent the
Gaffnian state. Certainly there is no “simple” (i.e., minimal
model) theory other than M (5,3) with the required proper-
ties. However, we have not proven that no other theory ex-
ists.

The conformal field theory M(5,3) is nonunitary.?? This
highly suggests that the Gaffnian wave function does not
represent a true phase, but rather represents a quantum criti-
cal point. The argument for this goes as follows: The edge
state theory in 1+1 dimensions of a quantum Hall state
should be described by the same conformal field theory as
the bulk two-dimensional theory.® However, since the edge
state theory is a dynamical theory, it must be unitary. If we
have a trial wave function that is generated by a nonunitary
theory, apparently the only way out of this conundrum is that
the edge state theory does not exist; i.e., edge excitations do
not stay on the edge, but leak into the bulk. This could in-
deed be the case if the ground state has arbitrarily low energy
excitations in the thermodynamic limit. This could, in turn,
occur if the wave function represents a quantum critical
point. Indeed, there have been past examples of critical quan-
tum Hall states which are described by nonunitary
CFTs.'%1726 While there is no strict proof that a nonunitary
conformal field theory necessarily implies a critical state,
there is also no understanding of how anything else could
occur.

IV. EXACT DIAGONALIZATIONS

We now turn to exact diagonalizations. Strictly speaking,
the Hamiltonian Pg has been defined to be a projection op-
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Neutral Excitation Energy Gap

oL v
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

I/N

FIG. 3. Lowest neutral gap excitation of the Gaffnian as a func-
tion of system size [using the Hamiltonian in Eq. (11)] in units of
V30=V3,. Data is shown for N=8,10,12 particles. The solid is a
linear fit of all three data points. The dashed line is a fit of the two
larger systems only (suggesting that if we could access even larger
systems, the extrapolations might be even closer to zero). This data
suggests the possibility that the gap may extrapolate to zero in the
thermodynamic limit, as would be expected for a critical state.
However, from the available numerical data, we cannot exclude the
possibility that it extrapolates to a finite value.

erator that acts on the full wave function (to keep any states
where any three particles have relative angular momentum
less than three). As such, this Hamiltonian has eigenvalues
that are either zero (for the zero energy space) or unity. A
more physical version of this Hamiltonian can be written as

H= 2 (V3oPY+ VioPry), (11)

i<j<k

where we have defined a general three body operator Pf].k
which projects out (i.e., keeps) any component of the wave
function where the three particles i, j, and k have relative
angular momentum L,;,+p. [On the sphere,'”>!* one defines
P}, to project out (i.e., keep) any cluster of three particles
with total angular momentum 3N,/2—p.]

Note that three particles cannot'* have relative angular
momentum of L ;,+1, so this Hamiltonian gives energy to
any case where the relative angular momentum of any cluster
of three particles is less than three. [Some readers may have
assumed that the form of Eq. (11) is what we meant all along
when we have been writing Pg, as we were not very explicit
about what we meant.] Since the Hamiltonian (11) gives en-
ergy to any cluster of three particles with relative angular
momentum less than 3, it has precisely the same zero energy
space as P;. However, the excitation spectrum here is differ-
ent, and is dependent on the values of V34 and Vj ;.

Let us first examine the issue of criticality. In Fig. 3, we
show the lowest energy neutral excitation of H [from Eq.
(I1)] as a function of system size for N=8,10,12 on a
spherical geometry with V3 y=V;, (We have chosen to look
at bosons on a sphere because we can go to larger systems.)
As can be seen in the figure it appears that the gap extrapo-
lates to a positive value, but it is not possible to rule out
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FIG. 4. Squared overlaps of trial states with the exact ground
state at »=2/5 on a sphere with 10 electrons, as we vary the inter-
action. Solid line is the overlap of the Gaffnian wave function with
the exact ground state. The dashed line is the hierarchy 2/5 state
(Ref. 25) with the exact ground state. The top is results for the
lowest Landau level, the bottom is the first excited Landau level. In
the horizontal direction the interaction is varied around the
Coulomb interaction by adding an additional 6V; Haldane
pseudopotential.

extrapolation to a zero value which would be a sign of criti-
cality. Furthermore, changing the ratio of V3 o/ V3, (data not
shown) does not appear to substantially affect the ratio of the
extrapolated energy to the reference energy of the gap for
N=10.

We now turn to the question of whether the Gaffnian is
physically relevant to the physics of 2D electron systems. We
have performed exact diagonalization studies on a spherical
geometry for ten electrons in the lowest Landau level (LLL)
and first excited Landau Level (1LL), and we have varied the
electron-electron interaction in the neighborhood of the Cou-
lomb interaction by varying the Haldane pseudopotential®!?
coefficient V,. In Fig. 4, we show the overlap of the exact
ground state with our trial wave function. Results are shown
for the Gaffnian (solid) and the hierarchy 2/5 state>?
(dashed). Over a range of V, both trial states have quite good
overlaps with the ground state considering that the zero an-
gular momentum Hilbert space has 52 dimensions. (Note that
for many of the well known numerical cases'?> where ex-
tremely large overlaps have been reported, the dimension of
the available Hilbert space is much smaller than this.) Near
the regime of V| where the overlaps drop, we believe the
system is in the Read-Rezayi phase'” (although at a different
value of flux on the sphere). Since both the Gaffnian and
hierarchy states have such large overlaps with the ground
state, they necessarily have large overlaps with each other,
although in the thermodynamic limit they become orthogo-
nal.
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We have also performed exact diagonalization on the
torus geometry. Here, the Gaffnian ground state is found to
be doubly degenerate (in addition to the usual center of mass
degeneracy). The two zero energy ground states are distin-
guished by a parity quantum number. The state with positive
parity again has extremely high overlap with the hierarchy
state, similar to the overlaps on the sphere. As on the sphere,
both of these have a high overlap with the exact ground state
for a wide range of interactions. However, we do not find
that the exact ground state has an even approximate double
degeneracy in the regimes where the overlaps of the
Gaffnian and the hierarchy are large. Approximate double
degeneracy of the ground state is found where we believe the
Read-Rezayi state is the proper ground state.!”

V. DISCUSSION

If the Gaffnian does turn out to be a critical state, as
suggested here, this then raises the question as to what the
neighboring phases are. It is reasonable that one would be a
“strong pairing” phase (albeit one that cannot be easily de-
scribed within BCS theory?®) which may correspond to the
hierarchy wave function itself.'® This would be quite natural
considering the high mutual overlaps of the hierarchy and
Gaftnian.

The nature of the state on the opposite side of the transi-
tion is a bit harder to guess at. One possibility is that it is the
Read-Rezayi state. This would make some sense because of
the similar ground state degeneracy. Here, we imagine that as
we approach the transition from the hierarchy side, the puta-
tive zero energy state would drop continuously and hit zero
energy at the Gaffnian critical point. It would then stay at
zero energy through the Read-Rezayi phase. On the other
hand, we should note that there is a notable topological dif-
ference between the Read-Rezayi and Gaffnian state, which
is more evident on the sphere as they occur at different val-
ues of flux.

Yet another possible candidate for a state that might occur
nearby is a charge density wave state. We leave the project of
sorting out the details of this transition for future work.

If the Gaffnian is in fact a critical state, this means that the
concept of “non-Abelian” statistics® may not be well defined.
Indeed, the idea of statistics describes what happens to a
system when particles are adiabatically exchanged. Since the
definition of adiabatic usually requires any perturbation to
the system to be on a time scale slower than /A with A the
minimum gap in the system, if the system has gapless exci-
tations, there is generally no way to have adiabaticity. One
might ask whether any remnant of the idea of non-Abelian
statistics still remain. This is a question that is hard to answer
without knowing the details of what these “critical” low en-
ergy excitations are.

We now turn to the question of actual experiments. If we
believe the Gaffnian to be a critical point, it would have to be
observed as a (compressible) transition point between two
phases. Certainly the macroscopic degeneracy in the pres-
ence of quasiparticles would be one clear experimental sig-
nature (which in principle should show up in, say, the spe-
cific heat). However, as discussed above, there may be other
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low energy critical modes in the system which could make it
hard to pick out this contribution from other degrees of free-
dom. Further study of the critical modes will certainly be
required before any detailed prediction can be made.

In this paper we have discussed in detail the Gaffnian
wave function which is the exact ground state of a particular
three-body interaction. One might be concerned that such an
interaction is not particularly physical. (Although should
fractional quantum Hall effect ever be realized in cold rotat-
ing atoms, it appears possible, at least in principle, to engi-
neer multiparticle interactions.?’) Nonetheless, we remind
the reader that this strange interaction is simply a way to
make the analytic study of this wave function tractable. We
believe that very similar physics may be observed even for
quite different (and more realistic) interactions. This tech-
nique has been used successfully in the past to study states
such as the Pfaffian'® and the Read-Rezayi® states which,
although exact ground states of many-body interactions, also
appear to properly describe the same phase realized for the
two body Coulomb interaction. In other words, the nonphysi-
cal interaction represents a wide range of possible interac-
tions that show the same physics. Indeed, our numerical
work seems to suggest something similar may be at play
here.
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APPENDIX A: ANALYTIC COUNTING OF ZERO ENERGY
STATES

In this appendix we will enumerate all possible zero en-
ergy states of the Hamiltonian P% on the sphere with any
number of particles and at any given flux. Our approach will
be in two parts. In Sec. A 1 we will write down a linearly
independent set of zero energy states (and we will count
them). It is this section that shows most clearly how the
semionic zero modes arise. Then in Sec. A 2 we will show
that these wave functions are indeed zero energy states of Pg.
Finally, we will show in Appendix A 3 that these states in-
deed form a complete set of the zero energy states. The ar-
guments here are quite similar to those given in Refs. 16 and
17. However, here the situation is more complicated as our
zero modes are not simple fermions and bosons as in those
two references. Note that throughout this appendix we will
focus on the case where N (and therefore 2n) is even. The N
odd case is a relatively simple generalization.

1. Counting states

We start with the requirement that ¢ vanishes as three
powers as any three particles approach each other. The wave
function (1) clearly provides one such solution (at a given
value of flux). We will call this the Gaffnian ground state. In
this section we propose a more general form for wave func-
tions when there are some arbitrary number 2n quasiholes
(or n additional flux) added to the ground state, and we will
count the number of such states that are linearly independent.

Inspired by the work of Refs. 16 and 17 and analogous to
the Pfaffian, Haffnian, and Haldane-Rezayi states, we write
our proposed wave function in a form with broken and un-
broken pairs. Let us declare that F' of the N total particles are
unpaired. Restrictions on F will be determined later. We then
propose the following form for our wave functions:

[ G-z

I<e<NR<f<N
FI2 (N+F)/2

(D(Zg+F/2’Zg+(N+F)/2;W15 W)
X H H H (Zi_Zj)HqQ(Zh -+« 3 ZF/258N/ 2415 - 7Z(N+F)/2) s (A1)
2

1<g<(N-F)I2 Lg+F12 ~ g+ (N+F) i=1 j=N/2+1

where as above S either symmetrizes (for bosons, even ¢) or antisymmetrizes (for fermions, odd ¢) over all of the z
coordinates. Here we have defined ® to be the Read-Rezayi quasihole insertion'®

2 H(Zl Wr2i-1 )(Zz Wf(zz))

( ')2 T€S,, i=1 (AZ)

D(z1,20:wp, ..o Wy,) =

and () is a wave function for the zero modes to be determined later. (The sum over 7€ S,, is the sum over permutations of the
2n variables w.) We now specialize to the case of g=0 (bosons) for simplicity. Since the particles must be at the flux N,
—3( —1)+n we will deduce that the highest degree of the unpaired particle coordinates is n—1. To see how this is deduced we
start by defining A={z,,...,2x}, and B={zy/241>--.,2x}). We then simply count up powers of z; appearing in i
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Yo = S[H(ZAz _ ZAj)z H(ZBz _ ZB]-)2 H(ZAi _ ZBj)H MH(ZA"L — ZB]-) Q( @ ) ]

i<j i<i i (24; — 28,) 7
——
2(5 1) for A 2(5-1) for B & for A&B —1+n for A&B £ for A&B 777 for A&B
both paired & unpaired paired only unpaired only (A3)

Here S symmetrizes over all coordinates z. In this equation,
we have written beneath each term the number of powers of
z; occurring. Thus adding up the powers, we conclude that ()
is some polynomial in unpaired coordinates of degree m;:0
=m;<n-1 —g for each unpaired coordinate z;. Notice also,
that this puts a restriction on F: F<2n-2, and since obvi-
ously F<N, we obtain

F < min(2n -2,N) (A4)

as written above in the main text. The maximum degree of )
occurs when F=0 and is given by n—1.

To see how many linearly independent wave functions we
have for given {N,n,F} we proceed as follows. We choose

lrb H(Zl_zj) H(I) Zk7wla ---7W2n) H
i<j 1<a<b<F/I2
(N-F)I2 FI2 (N-F)12 (N+F)/2
X IT MMGe-2° 11 11 G-z Il (-z)°Q. ...
=1  e=1 m=1 f=N/2+1
where S’ symmetrizes over {z} and
{215 s ZF2sZva )2y - -+ s Zvemy2) Separately. In other words,

S’ is what remains of the original full symmetrization over
the N particles. The underlined factors contain the
dependence of J on Z, and are symmetric in {Z;}, while
the doubly underlined factor is symmetric in
{21, o szmsZveyas - Zwaryn) as well. Thus, the symme-
trization S’ reduces to S” which symmetrizes over unpaired
particles only (because the expression is already symmetric
in Z;), and we can rewrite the wave function as

(N=F)/2 F/2 (N=F)/2 (N+F)/2
g=(ysy |0t 1T -2 1T 11
=1 e=1 m=1 f=N/2+1
X(Zm - Zf)3 H (Zl Zj) H (I)(Zk):| ’ (A6)
i<j

where &LJ is a Laughlin-Jastrow factor in the unpaired par-
ticle coordinates. We thus discover that ()(---) can always be

(Za - Zb)z H

g=1 h=N/2+1

N-F (necessarily even here) of the N coordinates and group
them together in pairs {(za 2, )} for i=1,..., (N=F)/2 with
a;,b;ell,...,N] anda#a b#b forHﬁJ and a;# b; for
all i,j. We then bring together the position of the palred
paired particles to coordinates Z;. In other words we set Zq,
=z, =Z; for i=1 ., (N=F)/2. Taking this limit selects out a
partlcular group of terms from the original full symmetriza-
tion that do not vanish. In particular the nonvanishing terms
are the terms in which a factor of <I>(zai,z,,i; "')(Zﬂ,-_zbf)_l
appeared for each pair (Z“,-’Zbi)' The other terms will have a
factor of (za’_—zbi) in the numerator, and will vanish in these
limits. After taking these limits we are left with

2
(Zc - Zd)
NI2+1<c<d<(N+F)/2

FI2 (N+F)12

sZFI252N/2+15 -+ - ’Z(N+F)/2)

(A5)

taken to be fully symmetric in its arguments (any nonsym-
metric parts vanish when symmetrized). We can thus think of
this as a bosonic wave function for the zero modes. How-
ever, we have already determined the maximal degree of
Q(-++) to be n—1 —g. The minimal degree is obviously 0, so

we have a total of n—2% orbitals in which to put F bosons.
(L) E_

n=3 +F-1 n+5-1 . .

There are P 7 ) such linear independent wave
functions. This is equivalent to placing F fermions in
n+F/2—1 orbitals. Since the number of orbitals changes half
as fast as the number of particles we put in them, these
particles have semionic exclusion statistics.?”

2. Zero energy

We will continue on to demonstrate that the linearly inde-
pendent set of wave functions we have just written down is
in fact a complete set of zero energy states of the Hamil-
tonian P%. First, however, we show that these wave functions
are indeed zero energy states. The wave function for any zero
energy state must vanish as three or more powers when three
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particle positions come to the same point. On the sphere,'!*

this is equivalent to restricting the total angular momentum
of the cluster of three particles to be no greater than 3N,/2
-3.

First we will show that the proposed wave functions
are zero energy eigenstates of this Hamiltonian. For the
ground state, i.e., no additional flux (n=0) we have N,
:3(%’— 1). Let us look at the (ijk) = (zi.2j.24) triplet. We want
to know what the highest total angular momentum is for this
triplet in our wave function ¢;. The wave function can be
rewritten (in the manner of Haldane'?) as a sum of terms
proportional to frel(zi’zj’Zk)ftot(zi»zjizk)’ Where frel( ) iS an
eigenstate of /;, the three particle relative angular momen-
tum operator, and f,,( ) is an eigenstate of L, the three
particle total angular momentum operator. Note that, as
above, we will always focus on ¢g=0 for simplicity. (The ¢
#0 case is a relatively minor generalization.) To find the
total angular momentum, we look at the maximal degree of
zf‘zfz,f in fi(), and find the total angular momentum L
=max[%(a+ B+7)]. To find the maximum total angular mo-
mentum we must consider all possible ways to have chosen
the triplet (z;,z;,2,) from the many terms in the wave func-
tion. In particular, we must look at all cases of which coor-
dinate is one of the paired variables, and which is unpaired,
as well as looking at which variable is an A coordinate, and
which is a B coordinate. Here we are looking at the relative
angular momentum of a given triplet in each of the many
terms of the symmetrization sum. All possibilities are enu-
merated next.

Case 1: i, j, ke A, i<j<k. Here we have

deg. 2(N 1) o A
=dec = —_ - —_ —_ - .
o gz,- G 2 2

dee wo=2] (5-2) 1]+ -
B=deg, y=2|| T -2|-1]+5 -1,

N N
y=deg, =2 5—3 +5—1. (A7)
Using L=%(a+[3+ ) and with N,=3(N/2-1) we obtain in
this case L:%N¢—6.

Case 2a: i, je A, i<j; ke B with pairing of the form
(ia)(jb)(ck), i.e., terms of the form

q)(zi’za) q)(Zj,Zb) q)(ZC,Zk)
(zi—20) (Z—2) (ze—2)

(A8)

Here we have
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a=de lﬂ =2|:<N——1>—1i|+<N——l>—1 ( )

gzi G 2 7 5 A9
B——de =2|:N_—2:|+<N_—1>—1
gzj ¢G 2 7 B

N N
y=deg, y=2| Z-1|+|7-2]-1.

Similarly, adding up these powers we obtain an angular mo-
mentum L= %N¢—4.

Case 2b: i, je A, i<j; ke B with pairing of the form
(ia)(jk), i.e., terms of the form

(I)(Zi,Za) (I)(Z > Zk)

. Al10
R (A0
Here we have
(3 o2
a= egzin_ 2_ - + 2_ -1
—dee, wo=2| 324 (5 1)
B_ egzjlpG_ 2_ + 2_ bl
=d —Z[ZX 1] <IX 2) (A11)
Y= egzklpG_ 2_ + 2_

which results in an angular momentum L=%N¢—3.

These cases are the only possibilities. Thus the highest
total angular momentum for any triplet is %N¢—3 and so the
proposed wave function i/; is a zero energy eigenstate of the
Gaffnian Hamiltonian Pj as claimed.

3. Completeness

Now we show that the proposed wave functions span the
complete set of zero energy states of the Gaffnian Hamil-
tonian. To do this we will construct the most general zero
energy eigenstate and show that it takes the form of our
proposed wave function. Take the following zero energy
wave function ¢G=%J¢G, where here iq; is the Laughlin-
Jastrow factor for all of the particles. Consider the behavior
of i as particles in an arbitrary triplet (ijk) approach each
other, while the other particles remain far away from the
three:

Ve o (2 — 2j)* (25 — ) (2 — 2)” (20 — 23) %9 (25 — 21) 9% (2, — 25) %

a—+[B+~v=6, part of wiJ

a+B+7v=qij+qjk+qri=Q, part of g (A12)
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The wave function vanishes as 6+Q powers as these three
particles come together. This is equivalent'>!* to saying that
the total angular momentum of three particles
is L:%N¢—(6+Q). (Since we are on the sphere, the maxi-

LNy .
mum angular momentum of each particle is . Any relative
angular momentum reduces the total by a corresponding
amount.'>'%) Furthermore, by analyticity of #; we must
have g,,,=-2.

Now, in order for ¢; to be a zero energy state of the
Gaffnian Hamiltonian, we must have Q=-3 (so that the
relative angular momentum of the cluster is greater than or
equal to 3=6+(). From here on we will concentrate on the
¢ factor of the eigenstates, restoring the ubiquitous 4,[/]%J at
the end. Allowed forms in the Laurent expansion of ¢ as
(ijk) approach each other are

1

(zi—2)*@ -z’ (AL3)

g — %
(zi—2)(z -2 (A14)
! (A15)

(zi—z2))(z;— 2z — 2)

as well as the same terms with (ijk) permuted. However, it is
easy to see that the second two forms reduce to the first since
expression (A14) is equivalent to

-1 -1

+ (A16)
(zi-2)*zi—z)  (z—-z)(zj—-2)*
and expression (A15) is equivalent to
-1 -1
(A17)

(2= Zi)z(zj - ) ’ (z

It follows then, that it is enough to consider forms of the type
of Eq. (A13) for triplets (ijk) [as well as the same form with
permutations of (ijk)]. When (ijk) — Z, the most general zero
energy eigenstate should have the form

- Zj)(Zk - Zi)2

¢ o F(Z,',Z!',Zk)
G

R — (AI8)

[or a form similar to this with any permutation of (ijk)],
where F(---) must be analytic (i.e., with no poles).

Now arbitrarily pair up and relabel the particles, e.g.,
(ZAI,ZBI),(ZAZ,ZBZ), ’(ZANIZ’ZBN/Z)' Look at the most singu-
lar part of ¢ as particles within these pairs approach each
other, while pairs are kept separated:

1 1 1

> 3 e
(ZA1 - ZBI) (ZA2 - ZBZ)

b > )2 b

(ZAN/Z LBy
(A19)

Since we have isolated the most singular part of ¢, it is
clear that ¢y, cannot contain factors (z4 —25)” I, If we now
consider triplets (A,,B;,k)Vk e {A,,B}, and brlng particle k
close to (A;,B)) it is clear that ¢,, must contain a factor of
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(zAl—zk)‘1 or (zBl—zk)‘l, but not both, in order to satisfy the
requirements on the pole structure deduced above. We might
be led to naively define

dun=3 (H b

J m,n (ZAl - ZDI’._”)(ZCL - ZBI)

) . (A20)

where U D/={z;}; ND/'= (i.e., a partition of the set of
particle coordinates), and j indexes all possible partitions.
However, the pole structure places further restrictions on the
sets C and D. In particular, A; and B; cannot both be in C or
in D. Otherwise, supposing A;,B; € C, we have (schemati-
cally) the following:

1 1
(ZAI —231)2 (ZAi_ ZBI.)Z
1

”(ZAI - ZA[)(ZAI _ZB,) -

b

(A21)

and we immediately recognize, that the triplet (A;,A;,B;) has
too many poles (Q <-3). We conclude, that for ith pair only
one factor is allowed in ¢y, either (z4,—24)" I or
(z4 —zB) ! That is, the partitions are such that C includes
only one representative of any pair, and D includes the
complementary member of this pair, i.e., necessarily A; € C,
B;eD or B;eC, A; € D. At this point we can recognize that
our notation of C and D is redundant, and that we can rewrite

b
LD (H )
k e partitions \ i#j (ZAff - ZB’;)

(A22)

where ¢, cannot contain any more poles, and the conven-
tions are that for all k the same coordinates are paired up,

ie., {A¥ BN}= {Ak Bk } are equal as sets. The difference be-
tween partition k and partition k' is the order of coordinates
within a pair, i.e., we could have Ak =2k, Zpk=24K OF
ZAR=24K Zpk=2pk Clearly the sum over k is a subset of sym-

metrization over all particles.

Finally, we should also include the exchange of pairs
(z4k,zpk) < (z4k,25%), since the most singular part is symmet-
ric under this éxcljlange, and arrive at

N = E 2

( P
— . .. k— Zpk
pairings k € partitions \ i#j (ZAl. ZB./,)

) . (A23)

Then for the particular choice of pairs we will have

R e ID D> (H & )
ZB) pairings k € partitions \ i#j (ZAk_ZBk)

(A24)

and recover the whole eigenfunction by symmetrization over
all particles and multiplication by the Jastrow factor squared:
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1
vo=u,5 11

i (24 ;T ZB,.)2
SIS (H—"”‘ )
pairings k  partitions \ i# (ZAjF - ZBf)

The wave function of the densest state has as few zeros as

(A25)

possible, and to find it we may choose ¢, =1, then

1 1
eS| 33 (H | )
pairings k € partitions \ i (ZA;‘ —ZBf) i#j (ZAjf _ZB;f)
(A26)
1 1
=yis| 11 5 . (A27)
i (ZAI._ZBi) i#j (ZAi_ZBj)

This can be recognized as the proposed Gaffnian wave func-
tion with no broken pairs and no added flux. To obtain the
states of lower density we need to consider the case of non-

constant &k(zAl,zBl; ;ZAle’ZBN/z)' By analyzing the sym-
metry of denominators we find that ¢, must be symmetric
under the exchange of pairs (zAi,zBi)H(zAj,zB/_). We now
claim that a complete basis for functions that satisfy this
symmetry condition is given by functions of the form

NI2
E H fi(ZAT(i)sZBT(l.))v (A28)

reSyy i=1

where the f;’s are chosen from a basis for arbitrary polyno-
mials of their two arguments. While this may seem to be a
strange way to write a basis for the polynomial
<7’k(ZA1 JZB 5 ;ZAN/Z’ZBN/Z) this is actually a form well known
to physicists. To see this, imagine a system of N/2 bosons
where the “position” of each boson is specified by two coor-
dinates (z;,z,). The functions f; are basis functions for the
single “particle” positions. All multiparticle states can be
written as symmetrized (bosonic) linear combinations of the
occupancies of these basis states.

Consider now the case, when we have added n quanta of
flux to the Gaffnian ground state. The highest degree of f;( )
is n, and we could choose basis polynomials f;(z;,z,) of the
form z}'z5? with 0<<n,,n,<n. The dimension of this space is
(n+1)>. However, a different basis set turns out to be more
useful. Specifically, it is useful to separate functions f; that
vanish in the limit z; — z,, from ones that do not.

We choose a basis for our space of f; which decomposes
into two disjoint sub-bases: the symmetric z}'z32+22z5! with
O0<n;<n,<n and the antisymmetric z|'z3?—z|%z5' with
0=<n,;=<n,=<n-1. The dimensions of subspaces spanned by
them are %(n+2)(n+1) and %(n+1)n, respectively. Clearly
the span of the antisymmetric sub-basis vanishes as z;—z5.
The quotient of the full space by the span of the antisymmet-
ric sub-basis is just the span of the symmetric sub-basis (S),
i.e., symmetric polynomials. Of these, polynomials which
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vanish as z;,—z, are spanned by (z;-2,)%(Z]'252+7/225)),
with 0=<n;=<n,<n-2. The dimension of this subspace is
%n(n -1).

The quotient of S by the subspace of the vanishing sym-
metric polynomials has dimension 2n+1 and contains sym-
metric polynomials in two variables that do not vanish in the
limit z; — z,, we will call this quotient Q. However, by con-
sidering the Taylor expansion'® of Read-Rezayi pairing form
®(z,,z,) given in Eq. (A2) we have already found a set of
2n+1 linearly independent symmetric polynomials in two
variables, thus we may choose them as the basis of this quo-
tient space.

Now given a choice of ¢, we obtain a zero energy state of
the Hamiltonian. Further, all possible zero energy states can
be written in this way. We can now decompose any ¢ into
basis polynomials f; of the above described form. Let our
choice be such that f;( ) for 1 <i $§ belong to the subspace
of polynomials that vanish as z;,—z, and f() for
§+ 1 $i$§ belong to the complementary subspace, i.e., Q.
Then each vanishing f;( ) simplifies with the appropriate fac-
tor in the denominator of ¢ producing a “broken pair,” and
the remaining factors form what we above called Q(),
whereas the product of nonvanishing f;( ) can be reexpressed
as a linear combination of Read-Rezayi pairing forms ®( ).
Thus we conclude that the most general zero energy eigen-
state of Hy is of the conjectured form, and therefore we
counted the complete degeneracy of eigenstates for a given
value of additional flux n.

APPENDIX B: AN EXAMPLE OF ANGULAR MOMENTUM
ADDITION

We would like to determine the full angular momentum
spectrum of the zero energy states of the Hamiltonian P%
using Eq. (5). Here we will consider the example of N=4
particles and n=3 (six quasiholes). Equation (5) tells us that
we should have a total number of zero energy states given by
the sum of three terms corresponding to F=0,2,4. For
F=4 we have (6 bosons in 1 orbitals) ® (4 fermions in 4
orbitals). Both six bosons in one orbital on four fermions in
four orbitals have L=0, so overall this is an L=0 state. The
F=2 case is more tricky. Here we have (6 bosons in 2
orbitals) ® (2 fermions in 3 orbitals). First we take six
bosons in two orbitals. When there are two orbitals on a
sphere, we clearly have L=1/2. So the two orbitals have
L,=+1/2. There are seven ways to fill these orbitals with six
bosons, which we can write as (6,0), (5,1),...,(0,6). Counting
the total L, of each of these states, we get 3,2,1,0,-1,-2,
—3 which we recognize as being L=3. Thus, six bosons in
two orbitals is L=3. Similarly, we look at two fermions in
three orbitals. The three orbitals must be L=1 with
L,=1,0,-1. We can fill the three orbitals with two fermions
in three ways, which have L,=1,0,-1 so we recognize this
as L=1. Now we must add together the angular momentum
of (6 bosons in 2 orbitals) ® (2 fermions in 3 orbitals). This
means we need to add L=3 with L=1. By the usual angular
momentum addition rules we obtain L=2,3,4. Finally, we
turn to the F=0 case. Here we have (6 bosons in 3 orbitals)
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® (0 fermions in 2 orbitals). The 0 fermions in two orbitals
clearly has L=0. It is a simple exercise to count up the pos-
sibilities for six bosons in three orbitals. We discover that
this has L=0,2,4,6. Putting together all of the results we
find that the zero energy states of the Hamiltonian P; for N
particles with n=3 occur at angular momentum
L=0,0,2,2,3,4,4,6 which agrees with the results of exact
diagonalizations.

APPENDIX C: FURTHER GENERALIZED WAVE
FUNCTIONS

Although there may be many possible ways to generalize
Gaffnian wave function,'” the form written in Eq. (1) sug-
gests a generalization from paired to clustered wave func-
tions where instead of dividing the particles into two groups,
we divide the particles into g groups. Let us assume the
number of particles N in the system is divisible by g and
write N=gn. We then write the wave function

g
v=5y11 I1 (zi—z))
a=1 | (a-1)n<i<j<an
n
1
xq 11 —
I<a<b<g | i=1 La-1)n+i = L(b-1)n+i

x 11

I<si<jsN

(Zi—Zj)m (C1)
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with m=1 where again S symmetrizes or antisymmetrizes
for bosons (odd m) or fermions (even m), respectively.
Counting powers of z we discover that this wave function
occurs at flux

Ny=(Nlg=1)=(g=1)+m(N-1) (C2)

=(1/g+m)N-(g+m) (C3)
corresponding to a filling fraction v=g/(gm+ 1) which is just
the Jain sequence. Furthermore the precise value of the flux
(the shift) is also in agreement with the Jain series. This
construction clearly reproduces the Gaffnian for g=2. For
the bosonic case (m=1) for general g this construction pro-
duces a wave function that does not vanish when g particles
come to the same point, but vanishes as g+1 powers as the
(g+1) st particle arrives at that point. However, for g >2 this
trial wave function is not the densest possible wave function
with this particular property.'* Nonetheless, we believe that
this, and other related wave functions can generally be con-
structed with simple projection rules. For example, for the
g=3, m=1 case of Eq. (C1) this wave function is the unique
densest wave function that does not vanish as three particles
come together, that always vanishes as at least four powers
when four particles come together, and vanishes faster than
four powers if particles are brought together in groups of two
and then two groups of two are brought together.
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