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Low-energy polaritons in semiconductor microcavities are important for many processes, such as, e.g.,
polariton condensation. Organic microcavities frequently feature both strong exciton-photon coupling and
substantial scattering in the exciton subsystem. Low-energy polaritons possessing small or vanishing group
velocities are especially susceptible to the effects of such scattering that can render them strongly localized. We
compare the time evolution of low-energy wave packets in perfect microcavities and in a model one-
dimensional cavity with diagonal disorder to illustrate this localization of polaritons and to draw attention to
the need to explore its consequences for the kinetics and collective properties of polaritons.
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I. INTRODUCTION

Planar semiconductor microcavities have attracted much
attention as they provide a method to enhance and control
the interaction between the light and electronic excitations.
When the microcavity mode �cavity photon� is resonant with
the excitonic transition, two different regimes can be distin-
guished based on the competition between the processes of
the exciton-photon coupling and damping �both photon
damping and exciton dephasing�. The weak-coupling regime
corresponds to the damping prevailing over the light-matter
interaction, and the latter then simply modifies the radiative
decay rate and the emission angular pattern of the cavity
mode. In contrast, in the strong-coupling regime the damping
processes are weak in comparison with the exciton-photon
interaction, and the true eigenstates of the system are mixed
exciton-photon states, cavity polaritons. This particularly re-
sults in the appearance of the gap in the spectrum of the
excitations whose magnitude is established by Rabi �split-
ting� energy. In inorganic semiconductors, the strong-
coupling regime has been investigated extensively, both ex-
perimentally and theoretically,1–7 and the dynamics of
microcavity polaritons is now reasonably well understood.8

These studies continue to expand because of the prospect of
important applications such as the polariton laser related to
the polariton condensation in the lowest energy state;5,9–17

most recently, a set of experimental data has been reported18

evidently exhibiting the features of Bose-Einstein condensa-
tion of polaritons.

In another development, organic materials have been uti-
lized in microcavities as optically active semiconductors. In
many organic materials, excitons are known to be small-
radius states, Frenkel excitons, which interact much stronger
with photons than large-radius Wannier-Mott excitons in in-
organic semiconductors. The cavity polaritons, therefore,
may exhibit much larger Rabi splittings on the order of a few
hundred meV; large splittings have in fact been observed
experimentally.19–29 At the same time, Frenkel excitons typi-
cally also feature substantially stronger interactions with
phonons and disorder—electronic resonances in both disor-
dered and crystalline organic systems are frequently found

rather broad and dispersionless. It is thus likely that manifes-
tations of exciton polaritons in organic microcavities could
be quite different from the corresponding inorganic counter-
parts.

In this paper, we are concerned with the nature and dy-
namics of the low-energy exciton polaritons in organic mi-
crocavities, the states of particular importance for the prob-
lem of polariton condensation. Our goal here is to illustrate
some qualitative features of the dynamics in both perfect and
disordered systems and, thereby, to draw attention to the
need of more detailed experimental and theoretical studies to
elucidate conditions for the polariton laser operation based
on organic systems.

The bare planar cavity photons are coherent wave excita-
tions with a continuous spectrum and whose energy ��k�
=�k depends on the magnitude k= �k� of the two-dimensional
�2D� wave vector k,

�k = ��2 + �2c2k2/��1/2, �1�

where � is the cutoff energy for the lowest transverse quan-
tization photon branch we restrict our attention to, c is the
speed of light, and � the appropriate dielectric constant.

In the vicinity of the excitonic resonance, �k�� �� being
the exciton energy�, strong exciton-photon coupling leads to
the formation of new mixed states of exciton polaritons
whose two-branch �E±� energy spectrum features a gap as,
e.g., illustrated in Fig. 1. Especially interesting are systems
with detuning ��−�� small in comparison with the Rabi split-
ting. In the absence of the exciton scattering processes, cav-
ity polaritons are also clearly coherent excitations that can be
well characterized by wave vectors k and have energies
E±�k�. Frenkel exciton scattering �due to phonons and/or dis-
order� in organic systems with weak intermolecular interac-
tions results in the exciton localization: excitons propagate
not as coherent wave packets but by hopping; in such a re-
gime, the wave vector k is no longer a “good” quantum
number.

As we are actually interested in lowest energy polariton
states, we will constrain further discussion mostly to the
lower polariton �LP� branch. One can quickly notice that,
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since the photon energy �1� rapidly increases with k, higher-
k photon states would be only very weakly interacting with
exciton states. Therefore, a very large number of eigenstates
of the system with energies close the upper end of the LP
branch �see Fig. 1� are essentially reflective of the bare lo-
calized exciton states with an incoherent propagation mode.
For the remaining fewer and lower energy states of the LP
branch, however, the exciton-photon interaction is strong and
one is then faced with an interesting interplay of the bare
localized nature of the “exciton part” of the polariton and the
bare coherent character of its “photon part.”

Transparent physical arguments were used in Ref. 30 in-
volving the indeterminacy �broadening� of the polariton
wave vector k owing to the exciton dephasing from the gen-
eral relation,31

�k =
dk

dE
�E�k� =

�E�k�
�vg�k�

, �2�

where vg�k� is the group velocity of parent polaritons in the
perfect systen and �E�k� is the energy broadening due to
scattering. Based on Eq. �2�, one can at least distinguish
polaritonic states where k is relatively well-defined in the
sense of

�k � k . �3�

If �E�k� is weakly k-dependent, then, evidently from Eq. �2�,
condition �3� would be necessarily violated in regions of the
spectrum where the group velocity vg�k� vanishes. For the

LP branch, as seen in Fig. 1, this occurs both at its lower- and
higher-energy ends. Reference30 provided estimates of the
corresponding “end points” kmin and kmax, where �k�k, for
organic planar microcavities within the macroscopic electro-
dynamics description of polaritons. It was then anticipated
that exciton scattering would render eigenstates correspond-
ing to parent polaritons with k�kmin and k	kmax spatially
localized in accordance with uncertainty relations like
�x�kx�1. As we discussed above, at the higher-energy end
�k	kmax� of the LP branch, the eigenstates are practically
bare exciton states in nature. At the lower-energy end �k
�kmin�, one would deal with localized polaritons having
comparable exciton and photon contents, particularly for the
detuning ��−�� small with respect to the Rabi splitting. Fur-
ther numerical calculations32,33 for 1D microcavities with di-
agonal exciton disorder confirmed this qualitative picture for
the polariton states. Below, we will use a similar 1D micro-
cavity model to illustrate the nature of the low-energy LP
states as well as time evolution of low-energy wave packets.

II. DYNAMICS OF LOW-ENERGY WAVE PACKETS IN
PERFECT MICROCAVITIES

Before proceeding with a model analysis of polaritons in
a disordered system, we will briefly discuss the time evolu-
tion of wave packets in perfect microcavities where all po-
laritons are coherent states well characterized by their wave
vectors. Not only will this establish a comparative bench-
mark, but it is useful in itself as such dynamics reflects fea-
tures of the polariton spectrum, and hence of the exciton-
photon hybridization.

Of course, specific features of the low-energy wave pack-
ets stem from the fact that the polariton dispersion near the
bottom of the LP branch �k�0� is manifestly parabolic,


�k� � 
0 + �k2, � = �/2M , �4�

M being the cavity polariton effective mass, which makes the
broadening of wave packets a relevant factor. Consider now
a wave packet formed with the states close to the branch
bottom,

U�r,t� = e−i
0t� dkA�k�ei�k·r−�k2t�. �5�

It is convenient to choose the weight amplitude function
A�k� Gaussian: A�k�= �� /2
3�1/2 exp�−��k−k0�2	, centered
at wave vector k0. With this amplitude function, Eq. �5�
yields

�U�r,t��2 = C�t�exp
−
��r − 2�k0t�2

2��2 + �2t2� � �6�

for the time evolution of the spatial “intensity” of the wave
packet,

C�t� =
�

2
��2 + �2t2�
.

Equation �6� describes a Gaussian-shaped wave packet in 2D
whose center

FIG. 1. The energy spectrum of the polaritonic eigenstates in a
1D model microcavity described by the Hamiltonian �10� with N
=1500 molecular sites and N=1500 photon modes. Parameters of
the systems are as follows: average exciton energy �=2 eV, cavity
photon cutoff energy �=1.9 eV, dielectric constant �=3, and
exciton-photon interaction energy �=0.15 eV. The dashed lines
show the energy eigenvalues in the system without exciton disorder,
�=0; the solid lines correspond to the spectrum in the system with
disorder, �=0.03 eV. Here the energies are shown as a function of
state “number” sorted in an increasing energy order, separately for
the lower �LP� and upper �UP� polariton branches. In the system
without disorder, the state numbers would be immediately convert-
ible to the corresponding wave vectors. On this scale, the UP
branches of perfect and disordered systems are hardly
distinguishable.
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rc�t� = vgt, vg = 2�k0

moves with the group velocity consistent with the dispersion
�4�, and whose linear width increases with time in accor-
dance with the 1D variance

s�t� = �� + �2t2/��1/2. �7�

The total energy in the wave packet is conserved: with our
choice of the amplitude function,

� dr�U�r,t��2 = 1.

Of course, Eq. �6� can be derived as a product of two
independent 1D normalized evolutions such as

�U�x,t��2 = �C�t� exp
−
��x − 2�k0t�2

2��2 + �2t2� � , �8�

which we will be relevant in our discussion of 1D microcavi-
ties, in this case the 1D packet amplitude function

A�k� = ��/2
3�1/4 exp�− ��k − k0�2	 . �9�

The spatial broadening �7� features an initial value of �1/2

and a characteristic time tb=� /� such that, at times t� tb, the
variance grows linearly with velocity vb=��−1/2. To appre-
ciate the scales, some rough estimates can be made. So for
the effective polariton mass M on the order of 10−5 m0 �m0
being the vacuum electron mass�, parameter �=� /2M �5
�104 cm2/s. Estimates in Ref. 30 made with the Rabi split-
ting and detuning �100 meV yielded for microcavities with
disordered organics kmin�104 cm−1. Then for the wave
packets satisfying 1��1/2kmin�10, the characteristic time
would be 0.2� tb�20 ps and the corresponding velocity 5
�108�vb�5�107 cm/s. In our 1D numerical example be-
low, we will use the value of parameter � within the segment
just discussed.

We note that by changing physical parameters of the mi-
crocavity and organic material, as well as conditions for the
polariton excitation, one can influence the dynamics de-
scribed above. One should also be aware that the evolution
times are limited by the actual lifetimes � of small wave-
vector cavity polaritons. Long lifetimes � on the order of
10 ps can be achieved only in microcavities with high qual-
ity factors Q=
�.

III. TIME EVOLUTION IN A 1D MICROCAVITY WITH
DIAGONAL DISORDER

Finding polariton states in disordered planar microcavities
microscopically is a difficult task, which we are not attempt-
ing in this paper. As a first excursion into the study of disor-
der effects on polariton dynamics, here we will follow Ref.
32 to explore the dynamics in a simpler microscopic model
of a 1D microcavity with digonal exciton disorder. One-
dimensional microcavities are interesting in themselves and
can have experimental realizations; from the results known
in the theory of disordered systems,34 one can also anticipate
that certain qualitative features may be common for 1D and
2D systems.

The microscopic model we study is set up in the follow-
ing Hamiltonian:

H = 

n

�� + �n�an
†an + 


k

�kbk
†bk + �


nk

� �

N�k
�eiknaan

†bk

+ e−iknabk
†an� . �10�

It consists of a lattice of N “molecular sites” spaced by dis-
tance a and comprises the exciton part �an is the exciton
annihilation operator on the site n�, photon part �bk is the
photon annihilation operator with the wave vector k and a
given polarization�, as well as the ordinary exciton-photon
interaction. We restrict our consideration here to only one
photon polarization strongly interacting with excitons. The
cavity photon energy �k is defined by Eq. �1�, � represents
the average exciton energy, while �n is the on-site exciton
energy fluctuations. We will use uncorrelated normally dis-
tributed �n with the zero mean and the standard variation �,

��n�m� = �2�nm. �11�

The exciton-photon interaction is written in such a form that
2� yields the Rabi splitting energy in the perfect system. We
chose to use the same number N of photon modes; the wave
vectors k are discrete with 2
 /Na increments. Our approach
is to straightforwardly find the normalized polariton eigen-
states ��i� �i is the state index� of the Hamiltonian �10� and
then use them in the site-coordinate representation,

��n� = „�p�n�,�e�n�…, 

n

���n��2 = 1, �12�

where �p and �e, respectively, describe the photon and ex-
citon parts of the polariton wave function, and n denotes the
nth site.

We have tried various numerical parameters in the model
Hamiltonian with the results being qualitatively consistent;
the parameters we exploit in this paper have been chosen, on
the one hand, to be reasonably comparable with the experi-
mental data in the output and, on the other hand, to better
illustrate our point within a practical computational effort. It
should be kept in mind though that we consider a simplistic
model system and the numerical values of results may differ,
likely within an order of magnitude, for various systems.

The numerical parameters are indicated in the caption to
Fig. 1 and have been used to calculate the eigenstates of the
Hamiltonian �10� with N=1500 for a cavity of the physical
length L=Na=150 �m and a small negative detuning ��
−��=−0.1 eV. Figure 1 compares the energy spectra in the
perfect microcavity and in the cavity with one realization of
the excitonic disorder, Eq. �11�, �=0.03 eV. It is apparent
that the effect of this amount of disorder on the polariton
energy spectrum per se is relatively small, except in the
higher-energy region of the LP branch where eigenstates, as
we discussed, are practically of a pure exciton nature.

The lower-energy part of the LP branch, however, corre-
sponds to the polariton states � �12� in which the exciton
and photon are strongly coupled ��=0.15	 ��−��=0.1 eV�
with comparable weight contributions in �p and �e. A dra-
matic effect of the disorder is in the strongly localized char-
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acter of the polaritonic eigenstates near the bottom of the LP
branch, as illustrated in Fig. 2�a� �needless to say, the same
behavior is observed for the states near the bottom of the UP
branch, which we are not concerned with in this paper�. Of
course, both the photon �p and exciton �e parts of a local-
ized polariton state are localized on the same spatial scale,
however the exciton part of the spatial wave function is more
“wiggly” reflecting the individual site energy fluctuations;
see Fig. 3. For better clarity, in Figs. 2 and 4 we show only
the smoother behaving photon parts �p. Panel �a� of Fig. 2
displays examples of ��p�2 for four states near the bottom of
the LP branch in a realization of the disordered system that
are localized at different locations of the 150 �m sample.
The inset to this panel shows the spatial structure of one of
these states in more detail; it demonstrates both the spatial
scale l of localization in this energy range �l�1 �m with the
used parameters� as well as a “macroscopic” size of the lo-
calized state on the scale of the lattice spacing: l�a
=100 nm.

A more detailed comparison of the photon and exciton
components within a localized polariton state is illustrated in
Fig. 3 for one of the states near the bottom of the LP branch.
The wave functions in this figure are shown along with the
actual diagonal disorder realization used to calculate this
state. The difference in the displayed disorder patterns is that
in panel �b� of Fig. 3 we show the original site energy fluc-

tuations �n, while in panel �a� the disorder is smoothed by
spatial box-averaging fluctuations �n with the box size of
seven sites. It is evident from Fig. 3�b� that the exciton com-
ponent indeed “responds” to the individual site energy fluc-
tuations. On the contrary, the photon component, as sug-
gested by Fig. 3�a�, is more reflective of a spatially smoothed
behavior of the disorder, responding, so to say, to whole
groups of neighboring sites. It is interesting that the resulting
spatial smoothing of the photon component occurs in a “self-
consistent” way as determined by the interplay of the
exciton-photon and exciton-disorder interactions.

The states at the bottom of the LP branch can be charac-
terized as strongly localized in the sense of kl�1, where k is
a typical wave vector of the parent polariton states in the
perfect system. This feature may be contrasted to the behav-
ior at somewhat higher energies and at higher k	kmin of
parent states, where the disorder-induced indeterminacy of
the k vector becomes small satisfying Eq. �3� so that k would
appear as a good quantum number. As is known,34 however,
the multiple scattering should still lead to spatial localization
of the eigenstates, now on the spatial scale l such that kl
�1. Panel �b� of Fig. 2 illustrates the spatial structure of
such a state with much larger l than in panel �a�. The inset to

FIG. 2. Examples of the spatial structure of the photon part
��p�2 of the polariton eigenstates in a 1D microcavity with disorder.
�a� Four states, shown by different lines, from the very bottom of
the LP polariton branch with energies within the range of
1.76–1.77 eV �see the spectrum in Fig. 1�. The inset shows one of
these states in more detail. Dots in the inset correspond to the sites
of the underlying lattice. �b� One state with a higher energy close to
1.82 eV. The inset shows part of the spatial structure of this state in
more detail. Dots correspond to the lattice sites and spatial oscilla-
tions of the wave function are clearly seen.

FIG. 3. Comparison of the spatial structure of the �a� photon
��p�2 and �b� exciton ��e�2 components of one of the localized
polariton eigenstates near the bottom of the LP branch. Wave func-
tions are shown by the thick lines with dots corresponding to the
lattice sites. Thin lines in the top parts of both panels display arbi-
trarily scaled diagonal disorder energies along with their base line
shown with dashes. The diagonal disorder shown in panel �b� is the
original uncorrelated site disorder of Eq. �11�, and the exciton com-
ponent ��e�2 is clearly seen to reflect these individual site energy
fluctuations. The photon component ��p�2, however, “responds” to
spatially smoothed energetic disorder, which is illustrated in panel
�a� with the diagonal disorder that is a result of box-averaging of the
original site disorder with the box size of seven lattice sites.
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panel �b� shows that the wave function in this case, within
the localization length, exhibits multiple oscillations with a
period on the order of 1 /k, which produces the black appear-
ance on the scale of whole panel �b�.

Having all the eigenstates of the system calculated, we are
now in a position to study the time evolution of an initial
polariton excitation, which we choose in the form of a wave
packet ��0� built out of the low-energy polariton states ��i

0�
of the perfect system,

��0� = 

i

Ai��i
0� = 


i

Bi��i� . �13�

Polaritons in the perfect system are ordinary plane waves and
we used a discretized analog of Eq. �9� for the amplitude

function Ai; the result is a Gaussian-shaped wave packet as
illustrated in Fig. 4 by the long-dashed lines for the photon
part of the polariton wave function. Amplitudes Bi in Eq.
�13� are, on the other hand, expansion coefficients of the
same initial excitation over the eigenstates ��i� of the system
with disorder. The time evolution of the initial excitation in
the perfect system is then given by

��0�t�� = 

i

Aie
−iEi

0t/���i
0� , �14�

while the evolution in the disordered system is given by

���t�� = 

i

Bie
−iEit/���i� , �15�

where Ei
0 and Ei are the respective eigenstate energies.

Of course, the evolution of the low-energy wave packet
�14� in the perfect microcavity takes place in accordance
with our continuum generic description in Eq. �8� �barring
small differences that may be caused by deviations from the
purely parabolic spectrum�. This is clearly seen in panels �b�
and �c� of Fig. 4 where the photon part of ��0�t�� at indicated
times t is displayed by the short-dash lines: mere broadening
of the wave packet with no momentum �k0=0� in panel �b�,
and both broadening and translational displacement �k0�0�
in panel �c�. On the time scale of panel �a�, the ��0�t�� state
has not practically evolved yet from ��0� and is not shown
on that panel.

The time evolution of exactly the same initial polariton
packets is drastically different in the disordered system; the
corresponding spatial patterns of the photon part of ���t��
are shown in Fig. 4 with solid lines. First of all, the initial
packet is quickly �faster than a fraction of ps� transformed
into a lumpy structure reflecting the multitude of the local-
ized polariton states within the spatial region of the initial
excitation. Note that in our illustration here we intentionally
chose the initial amplitude function �9� with the parameter
�1/2=5 �m large enough for the spatial size of the initial
excitation to be much larger than the size of the individual
localized polaritons at these energies �compare to Fig. 2�a�	.
It is important, however, that, while displaying some internal
dynamics �likely resulting from the overlap of various local-
ized states�, this lumpy structure does not propagate well
beyond the initial excitation region over longer times. This is
especially evident in comparison, when the broadening and
motion of the packets in the perfect system is apparent �pan-
els �b� and �c� of Fig. 4	. It needs to be emphasized here that
in real microcavities, the polariton, the radiative lifetime can
be much shorter than the times we used in panels �b� and �c�,
solely to better illustrate the principal differences in dynam-
ics. We have run simulations even over more extended peri-
ods of time ��100 ps� with the result that ���t�� remains
essentially localized within the same spatial region. Of
course, some details of ���t�� depend on the initial
excitation—see, e.g., a somewhat broader localization region
in Fig. 4�c� for the initial excitation with an initial momen-
tum corresponding to k0=104 cm−1, but the long-term local-
ization in the disordered system appears robust in all our
simulations. It would be interesting to extend the dynamical

FIG. 4. Examples of the the time evolution of spatially identical
wave packets built out of the polariton eigenstates of a perfect 1D
microcavity as in Eq. �9� with the parameter �1/2=5 �m. For panels
�a� and �b�, the initial packet has zero total momentum, k0=0; for
panel �c� the initial packet has a finite momentum determined by
k0=104 cm−1. Only the photon part ��p�2 of the polariton wave
function is displayed. The initial packets are shown by long-dashed
lines; results of the evolution after indicated times t are shown by
solid lines for the disordered system and by short-dashed lines for
the perfect microcavity �except in panel �a�, where the latter prac-
tically coincides with the initial packet	.
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studies with participation of higher energy states such as in
Fig. 2�b�. This is, however, beyond the scope of the present
paper.

IV. CONCLUDING REMARKS

The nature and dynamics of low-energy cavity polariton
states are important for various physical processes in micro-
cavities, particularly for the problem of condensation of po-
laritons into the lowest energy state�s�. As was demonstrated
in Ref. 30, low-energy polaritons in organic microcavities
should be especially susceptible to effects of scattering/
disorder in the exciton subsystem. The problem of disorder
effects on polaritons in organic microcavities appears quite
interesting as organic materials would typically feature both
strong exciton-photon coupling and substantial static and/or
dynamic exciton scattering. In this paper, we have continued
a line of study in Ref. 32 to look in some more detail at static
disorder effects on polaritons in a 1D model microcavity.
Our numerical analysis has brought further evidence that
low-energy polariton states in organic microcavities can be
strongly localized in the sense of l��, where l is the spatial
size of localized states and � the wavelength of parent polar-
iton waves. �We have also found indications of weaker local-
ization at higher polariton energies in the sense of l��.� Our
illustrations have included demonstrations of localization not
only via the spatial appearance of polariton eigenstates but
also via the time evolution of different low-energy wave
packets. It has to be noted that, even within the 1D frame-
work, there are other important processes whose effects re-
main to be studied. This particularly concerns inelastic scat-
tering as well as polarization relaxation when excitons
strongly interact with two photon polarization modes. In or-
ganic systems, both acoustic and optical phonons play im-
portant roles. On the one hand, the interaction with phonons
may further increase the localization of polariton eigenstates
�extra dynamic disorder� and speed up the relaxation into
such states. On the other hand, phonons may assist in the
hopping diffusion and lead to the dephasing affecting the
time evolution of the low-energy wave packets. A more
general/realistic model would also feature both diagonal and
off-diagonal �that is, exciton-photon coupling32,35� disorder
contributions. We are planning to address these issues sepa-
rately.

On the physical grounds,30 one should expect that low-
energy polaritons in 2D organic microcavities would also be
rendered strongly localized by disorder, as it would also fol-
low from the general ideas of the theory of localization.34

Further work on microscopic models of 2D polariton sys-
tems is required to quantify their localization regimes.

The strongly localized nature of low-energy polariton
states should affect many processes such as light scattering
and nonlinear phenomena as well as temperature-induced
diffusion of polaritons. Manifestations of the localized polar-
iton statistics �Frenkel excitons are paulions exhibiting prop-
erties intermediate between Fermi and Bose particles� in the
problem of condensation also appear interesting and impor-
tant. Since one can exercise an experimental control over the
degree of exciton-photon hybridization and disorder by
modifying the size of microcavity for various organic mate-
rials, it makes such systems a fertile ground for detailed ex-
perimental and theoretical research into their physics.

While we have specifically discussed exciton polaritons in
organic systems, it is clear that some aspects have a generic
character and could be applicable to other systems. This, for
instance, concerns inorganic semiconductor microcavities.
Both exciton-photon coupling and magnitudes of disorder
there, however, are much smaller, which would appear to
make localization effects relevant only at low temperatures.
It is interesting to note, however, that even relatively weak
disorder in inorganic microcavities has been theoretically
found35 to lead to prominent effects for polaritons in the
condensed state. The experimental findings18,36 of inhomoge-
neous spatial patterns of the stimulated emission in inorganic
cavities may be reflective of the disorder effects as was
brought out in simulations in Ref. 36. We will also mention
here an example of a very different kind of system that fea-
tures hybrid plasmon polariton modes forming in chains of
noncontacting noble metal nanoparticles due to the interac-
tion of photons with nanoparticles.37
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