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In this work, we study the electrodynamics of metamaterials that consist of resonant non-magnetic inclu-
sions embedded in an epsilon-near-zero �ENZ� host medium. It is shown that the inclusions can be designed in
such a way that both the effective permittivity and permeability of the composite structure are simultaneously
zero. Two different metamaterial configurations are studied and analyzed in detail. For a particular class of
problems, it is analytically proven that such matched zero-index metamaterials may help improving the trans-
mission through a waveguide bend, and that the scattering parameters may be completely independent of the
specific arrangement of the inclusions and of the granularity of the crystal. The proposed concepts are numeri-
cally demonstrated at microwaves with a metamaterial realistic realization based on an artificial plasma.
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I. INTRODUCTION

The design and characterization of metamaterials is an
important field of research today. These engineered complex
materials may open new and exciting possibilities in various
domains ranging from microwaves to optics, and may pro-
spectively allow overcoming the diffraction limit in a num-
ber of problems �see, e.g., Refs. 1–3�. Zero-index media are
an interesting class of metamaterials formed by structures
with index of refraction equal to zero �at the frequency of
interest�. At the infrared and optical frequencies, some low-
loss metals,4 certain semiconductors,5 and dielectrics such as
silicon carbide �SiC�6 may already have permittivity near
zero, and are examples of zero-index materials available in
nature. Otherwise, they may be in principle synthesized as
metamaterials. It has been suggested that zero-index materi-
als can be used to narrow the far-field pattern of an antenna
embedded in the medium, to transform curved wave fronts
into planar ones, and to design delay lines.7,8 Also recently,
we proposed using epsilon-near-zero �ENZ� materials to en-
hance the efficiency of some waveguiding devices and re-
duce the reflection coefficient at a junction or bend.9 In gen-
eral, unless both the permittivity and permeability are
simultaneously zero, a zero-index material is not matched to
free space and so the reflectance may be very high. A note-
worthy exception to this rule may occur if one physical di-
mension of the material is electrically small.9 However, that
restriction may be too severe for certain applications and so
it is important to investigate the possibility of designing
zero-index media matched with free space. These materials
have both � and � equal to zero, and their electrodynamics
was theoretically investigated in Ref. 7. In this paper we will
discuss how these structures can be designed as metamateri-
als at some frequency by embedding nonmagnetic inclusions
within an ENZ host medium, and study the transmission of
an electromagnetic wave through a block of such metamate-
rials. Notice that previous works10,11 have demonstrated the
emergence of artificial magnetism in metamaterials with
plasmonic inclusions embedded in a regular dielectric, and

explored that effect to design left-handed materials. How-
ever, here we aim at matched zero-index metamaterials.

This paper is organized as follows. In Sec. II we study the
homogenization problem and derive closed-form formulas
for the effective parameters of a metamaterial with an ENZ
host medium. In Sec. III we apply the results to two specific
configurations: a periodic medium formed by circular rods
and a periodic medium formed by nonuniform rings. In Sec.
IV, the response of a finite sized sample of the metamaterial
is investigated in a waveguide scenario. It is demonstrated
that when the permittivity and permeability of the material
are matched, the granularity of the structure is not seen by an
incoming wave. A metamaterial realization is proposed at
microwaves based on the concept of artificial plasma. In Sec.
V the conclusions are drawn.

II. THE HOMOGENIZATION PROBLEM

To begin with, we consider that a nonmagnetic material
with permittivity near zero is readily available. As discussed
before this may be the case at infrared and optical frequen-
cies; ahead it will be explained how such media can be emu-
lated at microwaves. We will use this material as our host
medium �with permittivity �h� and we will design the non-
magnetic inclusions in such a way that the effective perme-
ability of the structure is zero. For simplicity we consider a
two-dimensional �2D� problem: the inclusions are uniform
along the z direction and the electromagnetic fields are H
polarized �magnetic field is H=Hzûz with ûz being the unit
vector in the z direction, and � /�z=0�. The time variation is
assumed to be exp�−i�t�, where � is the angular frequency.
Thus, the electric field is given by E= ��Hz /−i���� ûz.

The geometry of the unit cell � of the periodic crystal is
shown in Fig. 1. The host medium is assumed connected
with permittivity near zero, �h��p��0, at the frequency of
interest �=�p, and the permittivity of the basic nonmagnetic
inclusion is �i �not necessarily uniform�. The boundary of the
inclusion is denoted by �D, and the area of the unit cell is
Acell. Since the materials are assumed to be nonmagnetic, we
have �=�0.
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In Ref. 9 we proved that the electrodynamics of a two-
dimensional medium with an ENZ component is very pecu-
liar. In particular, we derived a fundamental property that
establishes that in order that the electric field can be finite in
the ENZ medium ��=�h�, it is necessary that �Hz=0 in the
ENZ material, and consequently the magnetic field must be
constant in the material:

Hz = Hz
ext = const. in the ENZ host medium. �1�

We will use this fundamental property ahead. The objective
next is to homogenize the metamaterial around the frequency
�=�p. First, we will study the permeability problem. By
definition, the effective permeability �along z� of the periodic
medium is given by,

�ef f = �0
�Hz�
Hbulk

, �2�

where �0�Hz� is the average induction field �over the unit
cell�, Hbulk= �Hz�−mz /Acell is the “macroscopic” magnetic
field, and mz is the magnetic dipole moment of the inclusion
�per unit of length�. We follow the classic homogenization
approach of defining the effective parameters of a periodic
medium from the properties of the corresponding electro-
magnetic Floquet-Bloch modes, i.e., solutions �E ,H� such
that �E ,H�e−ik.r is periodic where k= �kx ,ky ,0� is the wave
vector.

A formal description of the nature of the Floquet modes at
�=�p is presented in Appendix A. The main result is that
besides the usual set of k-periodic modes, the electromag-
netic crystal supports a set of generalized nonperiodic Flo-
quet modes with electric field of the form E=

xi

a Ep0+Ep1,
where xi is the coordinate along a generic direction of space,
Ep0 is a longitudinal periodic mode �see Appendix A�, Ep1 is
a periodic function, and a is a characteristic dimension of the
crystal �e.g., the lattice constant�. The emergence of such
generalized modes, which to our best knowledge is over-
looked in the literature, can be easily understood from a
mathematical point of view as a degeneracy phenomenon at

k=0. Indeed, consider a one-dimensional �1D� wave ��x�
=Ap0�x ;k�eikx propagating in a one-dimensional reciprocal
medium with k=k��� the Floquet constant, where Ap0 is the
periodic amplitude of the wave. Let us also suppose that at
some frequency �=�p the propagation constant vanishes,
k��p�=0, as well as the group velocity. Since the medium is
reciprocal, as �→�p the two modes that propagate along the
positive and negative x axis become more and more similar,
and eventually at �=�p they collapse into the same mode.
To lift this degeneracy a new nonperiodic generalized mode
proportional to ��

�k emerges at �=�p. Note that ��
�k can be

written as � ��
�k �k=0= ixAp0�x ;0�+Ap1�x� where Ap1 is some pe-

riodic function. In 2D and three-dimensional �3D� problems
a similar phenomenon occurs and as a consequence general-
ized Floquet modes may emerge at the point k=0.

The magnetic properties of a metamaterial are intrinsi-
cally related with the generalized Floquet modes. Before we
present the details, it is important to note that even though
the electric field, E=

xi

a Ep0+Ep1, associated with a general-
ized Floquet mode is nonperiodic, the corresponding mag-
netic field is always periodic. This follows from the fact that
Ep0 is longitudinal, i.e., ��Ep0=0 �see Appendix A�. In
particular, the existence of generalized Floquet modes is
completely consistent and compatible with the fundamental
property mentioned earlier that implies that Hz=Hz

ext=const.
in the host medium at �=�p.

In order to calculate the effective permeability we need to
evaluate �2� for electromagnetic modes �E ,H� around k=0.
First we calculate the average induction field �0�Hz�. Apply-
ing Faraday’s law to the boundary �� of the unit cell, it is
readily found that:

V� �
.

��

E · dl = i��0�Hz�Acell, �3�

where V� is the electromotive force across the boundary of
the cell. In case �E ,H� is associated with a periodic mode, it
is clear from the definition that V�=0 and consequently that
the average induction field �0�Hz� also vanishes. Thus, peri-
odic Floquet modes cannot be used to calculate the effective
permeability using �2� �it can also be verified that Hbulk=0
for periodic modes�. Quite differently, for generalized modes
V� does not vanish because the electric field is not periodic.
Thus, as hinted before, the magnetic properties of the
metamaterial are defined by the generalized modes.

Next, we use the fact that �h=0 at the frequency of inter-
est, to find that the magnetic dipole moment �per unit of
length� of an inclusion with cross-section D �see Fig. 1� and
centered at position ri is given by:

mi =
− i�

2
�

D

�r − ri� � �� − �h�Eds

=
1

2
�

D

�r − ri� � ��Hz � ûz�ds

= ûz	−
1

2
�

�D

Hzn̂ · �r − ri�dl + �
D

Hzds
 . �4�

FIG. 1. Geometry of the unit cell � of the metamaterial crystal
�generic configuration�. The permittivity of the host medium is �h

and the permittivity of the nonmagnetic inclusion is �i. The perme-
ability of each material is �o.
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In the above, the third identity is a consequence of Green’s
formula, �D is the boundary of the inclusion, and n̂ is the
unit normal vector oriented to the exterior. Remembering
that Hz=Hz

ext=const. in the host medium, and noting that this
identity must also hold at the interface �D, we easily obtain
that:

mz = − Hz
extAD + �

D

Hzds , �5�

where AD is the area of the inclusion. In particular it is found
that the magnetic dipole moment is independent of ri. This
property is unusual and specific of the metamaterial under
study. Indeed, it is well known that except in the static limit
the magnetic dipole moment of an object depends on the
origin of the coordinate system.

Next, using again �1� and the definition of �Hz� it is clear
that �5� implies that:

mz = �− Hz
ext + �Hz��Acell. �6�

Substituting this formula in the definition of Hbulk we obtain
the important result,

Hbulk = Hz
ext, �7�

i.e., the �macroscopic� bulk magnetic field in the homog-
enized crystal is the same as the �microscopic� magnetic field
in the ENZ �exterior� host region. Finally, substituting �3�
and �7� into �2� we obtain that:

�ef f =
V�

i�AcellHz
ext . �8�

This shows that the effective permeability can be computed
by calculating V� and Hz

ext for a generalized Floquet mode.
In what follows we prove that this definition is self-
consistent, i.e., it is independent of the considered mode.
Moreover, we will explain how to formally obtain a closed
analytical expression for �ef f.

To this end, we note that the magnetic field inside the
inclusion is the solution of,

� · 	 1

�i
� Hz
 + �2�0Hz = 0, �9�

subject to the Dirichlet boundary condition Hz=Hz
ext at the

boundary �D �this is a consequence of �1��. The electric field
in the interior of the inclusion is Eint= ��Hz /−i��i�� ûz.
Note that the electromagnetic fields inside the inclusion can
be calculated without any knowledge of the electric field
distribution outside. In particular, one can calculate the fol-
lowing characteristic parameter:

Z̄int =
1

Acell

−
.

�D
Eint · dl

Hz
ext . �10�

We will refer to Z̄int as the internal impedance of the inclu-

sion �unities are � /m�. We stress that Z̄int only depends on
the geometry and electric properties of the inclusion. It is
completely independent of the specific geometry of the crys-

tal �apart from the normalization factor 1 /Acell�. In order to

relate the effective permeability of the crystal with Z̄int, we
apply Faraday’s law to the domain �-D �host medium�. Us-
ing �1� and �3� it is clear that,

V� −
.

�D
Eint · dl = i��0Ah,cellHz

ext, �11�

where Ah,cell is the area of the host region. Substituting �10�
and �11� into �8�, we finally obtain that:

�ef f =
Z̄eq

− i�
,

with

Z̄eq �
− 1

Acell

V�

Hz,ext
= − i��0

Ah,cell

Acell
+ Z̄int. �12�

The previous formula establishes that �ef f is univocally de-

termined by the internal impedance Z̄int. We will see in Sec.

III that for some canonical geometries Z̄int can be calculated
in closed-analytical form. Otherwise, it can always be nu-
merically calculated by solving the interior Dirichlet problem
�9�. It is also interesting to refer to that when the host me-
dium contains several nonconnected inclusions in the unit
cell the total internal impedance is the sum of the individual
internal impedances.

Now that the effective permeability of the metamaterial is
characterized, let us examine the effective permittivity prob-
lem �with electric field in the xoy plane�. To this end, we
evaluate the electric dipole moment pe of the inclusion in the
unit cell �per unit of length�. From the definition, we have
that,

pe � �
�

�� − �h�Eds =
1

− i�	��

� Hzds
 � ûz = 0,

�13�

where the first identity is a consequence of �h=0, while the
second identity follows from the periodicity of the magnetic
field. Equation �13� implies that the effective permittivity of
the periodic medium is zero at the plasma frequency of the
host medium. This result is somehow surprising because one
could intuitively expect that by loading a ENZ host with high
permittivity inclusions the effective permittivity could be
made positive. However, at least in the �h=0 lossless limit,
that is not case. A simple justification for this property is that
at �=�p the fields cannot support phase variations since the
magnetic field is necessarily constant in the host medium.
Consequently, the effective permittivity can never be positive
at �=�p, because otherwise the metamaterial would support
a propagating electromagnetic mode with nonvanishing
phase variation, which as discussed above is forbidden.

In summary, in this section we proved that at �=�p the
metamaterial under study is characterized by an effective
permittivity �ef f =0 and an effective permeability given by
�12�. In the lossless case, the effective permeability is always
a real number that can be either positive, negative, or zero.
An interesting consequence of our theory is that when

DESIGN OF MATCHED ZERO-INDEX METAMATERIALS… PHYSICAL REVIEW B 75, 075119 �2007�

075119-3



�ef f �0 at �=�p, there is a band gap for frequencies slightly
below �p, and there is right-handed propagation for frequen-
cies slightly above �p �note that if absorption is absent
�ef f and �ef f must increase with frequency12�. Conversely, if
�ef f �0 at �=�p, there is a band gap for frequencies slightly
above �p, and there is left-handed propagation for frequen-
cies slightly below �p. Finally, if �ef f =0 at �p the medium is
matched and in that case there is left/right-handed propaga-
tion for frequencies slightly below/above �p, respectively.

III. APPLICATION AND DISCUSSION
OF THE RESULTS

To shed some light on the results of the previous section
and to gain some intuitive insights, let us consider the par-
ticular case in which the cross section of the basic inclusion
is circular with radius R, and its permittivity is uniform
�i.e., �i=const.�. In this case, the solution of �9� is
Hz=Hz

extJ0�kir� /J0�kiR�, where ki=�
�i�0 and Jl is the
Bessel function of first kind and order l. The electric field
inside the cylinder is:

Eint = Hz,ext
ki

− i��i

J1�kir�
J0�kiR�

û	. �14�

Note that the electric field lines are azimuthal, and thus a
strong magnetic dipole moment may be induced. Using �10�
it is straightforward to find the internal impedance of the rod:

Z̄int =
2


Acell

kiR

i��i

J1�kiR�
J0�kiR�

. �15�

Substituting this formula into �12� we obtain the effective
permeability at the plasma frequency of the host medium,

�ef f = �0	Ah,cell

Acell
+

2
R2

Acell

1

kiR

J1�kiR�
J0�kiR�


, at � = �p,

�16�

where Ah,cell=Acell−
R2. The above formula is exact: the
only assumption is that the permittivity of host material van-
ishes at �=�p.

In this work, we are particularly interested in the design
of matched zero-index metamaterials with both �ef f =0 and
�ef f =0. The roots �kiR� of the equation �ef f =0 �with �ef f

given by �16�� occur near the zeros of the J0-Bessel function.
So the first root is around kiR�2.405. To illustrate the pos-
sibilities let us consider that the dielectric rods are arranged
in a square lattice, with lattice constant a. In Fig. 2 we plot
the value of kia=

�pa

c ni �which for a given �p only depends
on the index of refraction, ni, of the cylinders� necessary to
guarantee that �ef f =0 as a function of R /a. It is seen that the
required index of refraction ni increases very fast when R /a
approaches zero. The most favorable situation to design a
matched zero-index material is when R /a�0.5.

So far the discussion has been restricted to the case in
which �h��p�=0. For obvious reasons it is important to study
the dependence of the effective parameters with frequency.
Unfortunately, when �h�0 the problem cannot be solved
analytically as before. Next, we obtain approximate formulae

for the effective parameters using the local field approach. To
that end, we need to calculate the electric polarizability, �e,
and the magnetic polarizability, �m,zz, of the inclusion. For
the case of a circular rod, it is well known that the electric
polarizability �per unit of length; electric field in the x-y
plane� is,

�e =
�i − �h

ikh�i

RJ1�kiR�b1 �17�

with b1 given by

b1 = �−



4
	J1�kiR�H1

�1���khR�khR

−
�h

�i
kiRJ1��kiR�H1

�1��khR�
�−1

. �18�

In above we put kh=�
�h�0 and Hl
�1�=Jl+ iYl is the Hankel

function of order l. In case of dilute systems we have the
approximate result:

�e
−1 � �e0

−1 − i
kh

2

8
where �e0 =

�i − �h

�i + �h
2
R2. �19�

The Clausius-Mossotti formula13 for a square lattice yields
that:

�ef f � �h	1 +
1

Acell

1

Re��e
−1� − Cint,�


 where Cint,� �
1

2

1

Acell
.

�20�

On the other hand, the magnetic polarizability �per unit of
length� is,

�m,zz =
�i − �h

�i

R2J2�kiR�b0, �21�

FIG. 2. Plot of the �normalized� index of refraction of the rods
that guarantees �ef f =0, as a function of the normalized radius R /a.
The inset shows the geometry of the unit cell.
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b0 = �− i



2
	− J0�kiR�H1

�1��khR�khR

+
�h

�i
kiRJ1�kiR�H0

�1��khR�
�−1

�22�

and the effective permeability is:

�ef f � �0	1 +
1

Acell

1

Re��m,zz
−1 � − Cint,zz



� �0	1 +

1

Acell

1

Re��m,zz
−1 �
 . �23�

The second identity follows from the fact that the z-directed
component of the interaction constant, Cint,zz, vanishes in the
static limit.14 To illustrate the application of the proposed
homogenization formulas, let us suppose that R=0.4a, and
that the host medium follows a lossless Drude type model
with �h=�0�1−�p

2 /�2� and
�p

c a= 2

3 . Solving the equation

�ef f =0 we obtain the solution kia=7.38 at �=�p, and con-
sequently the required permittivity for the rods is �i
=12.4�0. In Fig. 3 we plot the effective permittivity �full
line� and the effective permeability �dashed line� as a func-
tion of frequency for this set of parameters. It is seen that the
local field theory is consistent with the theory derived previ-
ously, and that at �=�p both the effective permittivity and
permeability vanish. Moreover, it is seen that for � slightly
smaller than �p the medium is left handed, while for �
slightly larger than �p the medium is right handed, consis-
tently with the observation made in the final part of Sec. II.
This example shows that in order to ensure that both �ef f and
�ef f vanish, the required permittivity for the dielectric rods
may be large, especially if the electrical size �in free-space
units� of the unit cell is small. This is an inconvenience, and
so it is interesting to investigate other geometries for the
basic inclusion.

Let us consider the two-shell ring depicted in the inset of
Fig. 4. The inner shell is defined by 0�r�R1 and is filled

with the same plasmonic material as the host. The outer shell
R1�r�R2 is nonuniform and has permittivity �i=�i�	� �r
and 	 form a system of polar coordinates relative to the
center of the particle; the geometry of Fig. 4 corresponds to
the case in which the permittivity �i=�i�	� only assumes two
different values�. Within the approximation that the particle
is electrically small, the second term in the left-hand side of
�9� can be neglected and the solution of the equation at
�=�p subject to boundary condition Hz=Hz

ext at r=R2 is:

Hz �
Hz

ext ln	 r

R1

 − Hz

int ln	 r

R2



ln	R2

R1

 , R1 � r � R2, �24�

where Hz
int is the �unknown� magnetic field for r�R1 �which

is constant because the permittivity of this region vanishes at
the plasma frequency�. The corresponding electric field is:

Eint �
Hz

int − Hz
ext

ln	R2

R1



1

− i��i

1

r
û	, R1 � r � R2. �25�

To calculate the unknown Hz
int we apply Faraday’s law to the

contour r=R1: .r=R1
Eint ·dl=+ i��0Hz

intAh,in, where Ah,in

=
R1
2. Substituting these results into �10� it is found after

straightforward calculations that the internal impedance of
the ring can be written as follows:

Z̄int �
1

1

− i�Lin
− i�C

, �26�

Lin = �0
Ah,in

Acell
; C = ��

1

2

ln	R2

R1

Acell, �27�

FIG. 3. Plot of �ef f /�0 �solid line� and �ef f /�0 �dashed line� as
a function of � /�p. The metamaterial consists of a square array of
cylindrical rods with permittivity �i=12.4�0 and radius R=0.4a.
The rods are embedded in a host medium with a Drude permittivity
model such that �pa /c=2
 /3.

FIG. 4. �Color online� Effective permeability of a metamaterial
formed by ring inclusions as a function of �2 �assuming �h�0�. The
geometry of the basic inclusion is shown in the inset. The core of
the particle, 0�r�R1, is filled with the same material as the host
medium. Solid line: �1=−� �PEC material� and f1=0.9. Dashed
line: �1 /�0=−5.0 and f1=0.5.
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1

��

=
1

2

�

0

2
 1

�i�	�
d	 . �28�

Thus, Z̄int is the shunt association of the inductor Lin �H /m�
and of the capacitor C �F ·m�. The effective permeability of
the periodic medium is given by �12�:

�ef f �
1

− i��− i�Lext +
1

1

− i�Lin
− i�C� , �29�

where Lext=�0
Ah,ext

Acell
and Ah,ext=Acell−
R2

2. In order that the
effective permeability vanishes, it is necessary that,

k0
2 1

1

Ah,in
+

1

Ah,ext

=
2


ln	R2

R1



�0

��

, �30�

where k0= �
c . The above condition can always be fulfilled, no

matter how small the particle is, if the profile �i=�i�	� can
be chosen in such a way that �0 /�� �0+. If the particle is
made of a regular dielectric material this requires that
�i
�0, which is not very interesting. However, if low-loss
materials with negative permittivity are available, the condi-
tion can be satisfied with ��i� having the same magnitude as
�0, but still resulting in �0 /�� �0+. This situation is poten-
tially interesting at infrared and optical frequencies. More-
over, at microwaves, metals can exhibit high negative per-
mittivity, and therefore the use of a “swiss roll”/split-ring
configuration15 can be considered.

To examine these possibilities, next we consider two ex-
amples. We assume that the geometry of the basic inclusion
is as depicted in the inset of Fig. 4. The ring is formed by
two materials with permittivities �1 and �2 and filling frac-
tions f1 and f2, respectively, so that 1

��
=

f1

�1
+

f2

�2
. As referred

before the inner region, 0�r�R1, is filled with an ENZ
material. Consider the square lattice formed by an infinite set
of these rings embedded in the same ENZ host material as in
the previous example. The dimensions of the rings are R1
=0.3a and R2=0.4a, where a is the lattice constant. In the
first example, we suppose that �1=−5.0�0 and that f1= f2
=0.5. In Fig. 4 we plot the effective permeability of the
periodic medium as a function of �2 �dashed line�. It is seen
that the effective permeability vanishes around �2=3.7�0,
i.e., when the absolute value of the permittivity of the rings
is relatively close. Similar results are obtained even if the
electrical size of the rings is very small, and thus this topol-
ogy can be an interesting option to synthesize matched zero
index metamaterials when low-loss materials with negative
permittivity are available. In the second example, we analyze
a split-ring configuration that can be potentially useful at
microwaves. Now we suppose that �1=−�, i.e., part of the
ring is filled with a perfect electric conductor �PEC�, and that
f1=1− f2=0.9. The solid line in Fig. 4 shows the effective
permeability of the structure as a function of �2 �dashed
line�. It is seen that the permeability vanishes when the per-
mittivity of the dielectric gap is �2=2.7�0. Notice that this
value is much smaller than the permittivity required for a

dielectric rod with the same size. Thus, as could be expected,
the magnetic response of the split-ring particle is stronger
than that of a dielectric rod.

IV. METAMATERIAL BLOCK IN A WAVEGUIDE
SCENARIO

In the last part of this paper, we will investigate the trans-
mission of a wave through a finite sample of the metamate-
rial under study. We consider the setup shown in Fig. 5,
which consists of two parallel-plate waveguide sections. The
walls of the waveguide are made of perfect electric conduc-
tors �PEC�. The transition region between the waveguides is
filled with a metamaterial having an ENZ host with dielectric
inclusions. Let us consider that the fundamental transverse
electromagnetic �TEM� mode impinges on x=0 interface, as
depicted in Fig. 5. In Ref. 9, it was proven that if there are no
inclusions in the host medium and for �h���=0, the reflec-
tion coefficient at the input interface is exactly given by �in-
dependent of the geometry of the plasmonic transition re-
gion�:

� =
d1 − d2 + ik0�r,pAch

d1 + d2 − ik0�r,pAch
, �31�

where Ach is the area of the ENZ channel, and �r,p is the
relative permeability of the host. In the particular case in
which the cross section of the two parallel plate waveguides
is the same, d1=d2, the reflection coefficient can be made
arbitrarily small if the permeability �r,p of the ENZ material
can be adjusted so that it approaches zero. This may be use-
ful to improve the efficiency of waveguiding devices at junc-
tions and bends. Based on this idea, we will try to design a
metamaterial made of a nonmagnetic ENZ host loaded with
dielectric inclusions. The inclusions are designed in such a
way that the effective permeability is near zero. Let us then
consider that the ENZ host is loaded with Ni inclusions, as
illustrated in Fig. 5. For convenience we suppose that all the
inclusions are identical, and that the cross section of a ge-
neric inclusion is D, even though that assumption is not es-
sential. The theory developed in Ref. 9 can be easily gener-

FIG. 5. �Color online� Geometry of a generic two-dimensional
�2D� waveguide structure with an ENZ material section containing
some nonmagnetic inclusions with circular cross section. The wave-
guide walls in regions 1 and 2 are parallel to the x and x� directions,
respectively. The interfaces of the ENZ material channel are planar
and normal to the waveguide walls.
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alized to this geometry. Detailed calculations show that at
�=�p the reflection coefficient is given by,

� =

d1 − d2 + 	ik0Ah +
Ni

�0Hz
ext.

�D
Eint · dl


d1 + d2 − 	ik0Ah +
Ni

�0Hz
ext.

�D
Eint · dl
 , �32�

where Ah is the area of the host material �area of the channel,
Ach, minus the area of the inclusions�, �0=
�0 /�0 is the
free-space impedance, and Eint is defined as in Sec. II, i.e., it
is the electric field associated with the solution of the bound-
ary value problem defined by Eq. �9� with Hz=Hz

ext at �D. If
we regard the waveguide transition as a metamaterial as in
the first part of this paper, it is obvious that the area of the
corresponding unit cell is Acell=Ach /Ni. Thus, using �10� we
can rewrite �32� as follows:

� =

d1 − d2 + 	ik0Ah −
1

�0
AchZ̄int


d1 + d2 − 	ik0Ah +
1

�0
AchZ̄int
 . �33�

Using �12� and identifying Ah,cell=Ah /Ni, the formula simpli-
fies to:

� =

d1 − d2 + ik0Ach
�ef f

�0

d1 + d2 − ik0Ach
�ef f

�0

, �34�

where �ef f is defined consistently with the theory of Sec. II.
The above result is exact, at �=�p. This is remarkable be-
cause the geometry of the plasmonic channel and the inclu-
sions can be completely arbitrary. Moreover, comparing �34�
with �31� the formula is even more surprising: it is seen that
an ENZ channel filled with the discrete nonmagnetic dielec-
tric inclusions is equivalent to a channel filled with an ideal
continuous ENZ material with �r,p=�ef f /�0. That is, at the
plasma frequency and in the described waveguide scenario,
the incoming wave cannot distinguish if the channel is filled
with a continuous medium or with a metamaterial implemen-
tation of the medium. Note that �34� is valid for an arbitrary
number of inclusions �Ni�1� and the inclusions may be ar-
bitrarily positioned, i.e., they do not have to be arranged in a
regular lattice. This means that the electromagnetic fields do
not “see” the granularity of the metamaterial �i.e., its nonuni-
form nature� at the plasma frequency, �=�p. Possibly the
reason is that since the wave number in the host medium is
zero, the inclusions look always electrically small, indepen-
dently of their actual physical size. An important corollary of
these properties is that in opposition to the traditional theory,
a metamaterial with an ENZ host can be homogenized �at
least over some frequency band� even if the electrical size of
the inclusions is large. Indeed, the ENZ host forces the in-
clusions to behave as lumped elements characterized by a

certain internal impedance Z̄int, independently of its actual
electrical size in free-space unities.

To study the suggested possibilities and the effect of
losses in a realistic setup, let us consider the geometry de-
picted in Fig. 6, with a channel formed by two 90 degree
bends filled with a metamaterial. The distance between the
parallel plates is d. In the first example, we assume that the
inclusions have a circular cross section with radius R=0.4a.
It was seen in Sec. III that in order to have �ef f =0 it is
necessary that kia=7.38 at �=�p. Assuming that the inclu-
sions are arranged in a square lattice, the lattice constant is
given by a=d /
Ni /4 �we assume that Ni is multiple of 4
because the area of the channel is Ach=4d2�. Thus the per-
mittivity required for the rods is �i=12.4

Ni

4 �0, i.e., the per-
mittivity increases linearly with the number of inclusions.
The reason is that a single rod can induce a magnetic dipole
moment larger than that of many small rods with comparable
total area. Thus, the most interesting case is the one in which
the unit cell has a small number of inclusions. We will as-
sume that Ni=4, which corresponds to the geometry depicted
in Fig. 6. To study the effect of losses and frequency disper-
sion we consider that the rods are embedded in an ENZ host

that follows the Drude dispersion model �h=�0�1−
�p

2

���+i�� �,

where the plasma frequency is such that
�p

c d= 2
3
, and � is

the collision frequency �rad/s�. Note that at �=�p, we have
Re����0 and � /�0� + i� /�p. Using a finite-integration
technique commercial simulator CST Microwave Studio™
�Ref. 16�, we computed the transmission characteristic �S21
parameter� through the channel for different configurations.
The results are depicted in Fig. 7. Curve �a� shows the S21
parameter when the channel is empty, and demonstrates that
near �=�p the transmission is very low. When the channel is
filled with the ENZ material—curve �b�—the transmission
around �=�p slightly improves but is still residual. Quite
differently, when the four dielectric rods are inserted in ENZ
channel, the transmission around �=�p is greatly
improved—curves �c� and �d�—even in case of significant
losses � /�p=0.05. Note that the channel width is as large as
1.33�0 free-space wavelengths at the design frequency, and
thus the effect of losses can be considered somehow moder-
ate. When losses are negligible the wave completely tunnels
through the bend, as illustrated in curve �c�.

In the second example, we consider again the geometry
shown in Fig. 6, except that now the dielectric rods are re-

FIG. 6. �Color online� Geometry of parallel-plate waveguides
connected through a channel filled with a metamaterial with ENZ
host and dielectric inclusions.
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placed by split rings with geometry similar to that shown in
the inset of Fig. 4. In order to get �ef f =0 we choose �1
=−� �PEC material�, �2=2.7�0, and f1=1− f2=0.1, consis-
tently with the results obtained in Sec. III. The host material
is the same as in the previous example. The computed trans-
mission characteristic is shown in Fig. 8. Note that curves
�a�—empty channel—and �b�—channel filled with ENZ
host—are the same as in the previous example. The set of
three curves labeled with �c� show the transmission charac-
teristic when the ENZ channel is loaded with four split ring
resonators, assuming � /�p=0, 0.01, and 0.05, respectively.
Again it is seen that in case of small losses the channel is
completely matched to the input and output waveguides. Fi-
nally, curve �d� depicts the transmission characteristic when
the channel is loaded with split rings but the ENZ host is
replaced by air. As seen, no significant transmission is pos-
sible in those circumstances around �=�p.

To conclude this section, we discuss how the theoretical
concepts introduced in this paper can be demonstrated in a
practical setup at microwaves. At this frequency range ENZ
materials are not readily available in nature. However, it has
long been known �see, e.g., Ref. 17�, that parallel metallic
plates �normal to the z direction� can simulate a two-
dimensional artificial plasma when the electric field is paral-
lel to the plates. The effective permittivity of the parallel-
plate medium follows the Drude-type model �h /�0
=�d,r− �
 /k0s�2, where �d,r is the relative permittivity of the
dielectric between the plates, and s is the distance between
the plates. The region 0�z�s delimited by the metallic
plates behaves effectively as a 2D-plasmonic medium for
propagation along the xoy plane. We note that this concept
was used in Ref. 18 to demonstrate that a set of split-ring
resonators in a waveguide environment support subwave-
length left-handed propagation.

Based on this artificial plasma concept, how can we de-
sign a 3D configuration that emulates the 2D-waveguide sce-
nario depicted in Fig. 6? In order that the setup can be tested
experimentally it is interesting to study a configuration that
corresponds to a closed 3D-waveguide environment. But in
the configuration of Fig. 6 some regions are filled with air.
How can we overcome this obstacle?

First let us discuss how to design the ENZ artificial ma-
terial. We suppose that in the channel region the plates are
filled with air. Thus, in order that

�p

c d= 2
3
 it is necessary that

the distance between the plates is s=1.5d. The next impor-
tant issue is how to emulate the free-space regions in the
configuration of Fig. 6 �region 1 and region 2�. As referred
above, the permittivity of these regions must be that of free
space. But this can be easily achieved at �=�p, if the plates
are filled with a dielectric with permittivity 2.0�0 in those
regions. That is, around �=�p the artificial plasma �formed
by two parallel metallic plates� behaves as an ENZ material
in the channel region, and as free space in regions 1 and 2
because in these regions the dielectric spacer has higher per-
mittivity. We can design the dielectric inclusions using simi-
lar arguments. More specifically, to emulate a material with
permittivity �i in the environment shown in Fig. 6, we need
to load the artificial plasma with a material with corrected
permittivity �i+�0. Using these ideas we obtain the configu-
ration shown in Fig. 9, which simulates the behavior of the
2D structure shown in Fig. 6 around �=�p, except that we
consider that the inclusions are split-ring cylinders rather
than dielectric rods. All the walls are formed by PEC mate-
rials, and so the proposed geometry corresponds to a closed
metallic realistic waveguide environment. The split rings are
designed using the same parameters as in the second ex-
ample of this section. Thus, the permittivity of the dielectric
gap is now �2= �2.7+1��0. Using CST Microwave Studio™
�Ref. 16�, we computed the transmission characteristic of the
proposed configuration in different scenarios. The waveguide
is excited with the fundamental TE10 mode with electric
field in the xoy plane. This mode emulates the behavior of
the TEM mode in the configuration of Fig. 6 around �
��p. The TE10 mode can propagate for frequencies larger
than ��0.7�p �note that around �=0.7�p regions 1 and 2
behave as ENZ, while region 3 simulates a material with

FIG. 7. �Color online� Transmission characteristic �S21� as a
function of the normalized plasma frequency. �a� Unfilled bend. �b�
Bend is filled with ENZ material. �c� and �d� bends are filled with
an ENZ material �� /�p=0.01 and 0.05, respectively� loaded with
four dielectric rods.

FIG. 8. �Color online� Transmission characteristic �S21� as a
function of the normalized plasma frequency. �a� Unfilled bend. �b�
Bend is filled with ENZ material. �c� Bend is filled with an ENZ
material �� /�p=0,0.01,0.05, respectively� loaded with four rings.
�d� Bend is filled with four rings standing in air.
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negative permittivity�. In Fig. 10 we plot the S21 parameter
for the cases �a� the ring inclusions are removed and all
regions are loaded with a material with permittivity 2.0�0;
�b� the ring inclusions are removed, region 1 and 2 are
loaded with a dielectric with permittivity 2.0�0 and region 3
is filled with air; �c� the ring inclusions are considered, re-
gion 1 and 2 are loaded with a dielectric with permittivity
2.0�0 and region 3 is filled with air. Note that configuration
�a� is expected to emulate the behavior of an empty channel
in Fig. 6, configuration �b� is expected to emulate the behav-
ior of an ENZ unloaded channel, while configuration �c� is
expected to simulate an ENZ channel loaded with rings. In
fact, comparing curves �a�, �b�, and �c� in Fig. 10 with the
corresponding curves in Fig. 8, one sees that all curves have
a very similar frequency dependence around ���p. This
remarkable result demonstrates that metallic waveguides can
simulate the matched zero-index metamaterials under study.
Notice that in configuration �c� the wave completely tunnels
through the plasmonic channel, as predicted by our theory.
To conclude we note that when the frequency is far from �p

the agreement between Figs. 8 and 10 is not good, because in
the artificial plasma configuration the effective permittivity
of regions 1 and 2 is no longer close to that of free space.

V. CONCLUSIONS

In this work, the electrodynamics of metamaterials with
an ENZ host was studied. A general and rigorous homogeni-
zation approach to characterize these artificial materials was
derived. We obtained a closed-form expression for the effec-
tive permeability of the metamaterials, and proved that for
some canonical inclusion shapes the permeability can be cal-
culated in closed analytical form. The possibility of design-
ing matched zero-index materials was studied and demon-
strated numerically. In particular, we investigated the
response of a finite sized metamaterial block in a complex
waveguide scenario. It was shown that an incoming wave
cannot distinguish between a continuous medium and a
metamaterial with ENZ host, i.e., the wave cannot see the
granularity of the metamaterial. Also it was proved that un-
like other artificial media, the structures investigated here
can be homogenized over some frequency band even if the
size of the inclusions is large when compared with the wave-
length. To study the effect of losses and of frequency disper-
sion we calculated the transmission of an incoming wave
through a bend filled with a properly designed metamaterial.
We proved that the proposed metamaterial structures can be
realized in the microwave domain using the concept of arti-
ficial plasma.
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APPENDIX A

Here, we discuss the properties of the electromagnetic
Floquet-Bloch modes supported by the metamaterial studied
in Sec. II. We assume that at �=�p the permittivity of the
host vanishes: �h��p�=0.

To begin with, we note that the fundamental result �1�
implies that an electromagnetic mode associated with the
wave vector k= �kx ,ky ,0�, i.e., such that Hz�r�exp�−ik ·r� is
periodic, can only exist at the frequency �=�p if either
k=0 or if Hz

ext=0. In general, both cases imply that Hz=0 in
the whole crystal and that the electric field vanishes inside
the inclusions �it can be proven that a periodic mode with
Hz

ext�0 can occur only if the effective permeability van-
ishes�. However, the electric field in the host medium is dif-
ferent from zero. In fact, it can be easily verified that for
every k, it is possible to find a k-periodic field Ep0 such that
it satisfies ��Ep0=0 in the host medium and its tangential
component vanishes at the boundary of the inclusion �D.
Moreover, the polarization of the mode is longitudinal, i.e.,
the average electric field is directed along k. This set of
longitudinal modes is the perfect analog of the set of longi-
tudinal modes characteristic of cold plasma at the plasma

FIG. 9. �Color online� Geometry of the 3D rectangular metallic
waveguide that emulates the behavior of the 2D structure. The
H-plane width, s, is chosen so that region 3 behaves as an artificial
plasma. Both regions 1 and 2 are filled with a dielectric so that they
are operated in a region where their effective index of refraction is
unity.

FIG. 10. �Color online� Transmission characteristic �S21� as a
function of the normalized plasma frequency for a metamaterial
realization that emulates �a� an unfilled bend. �b� A bend filled with
ENZ material. �c� A bend filled with ENZ material loaded with ring
inclusions.
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frequency. Notice that the magnetic field associated with the
longitudinal modes is exactly zero. Note that Ep0 is not
unique because in the �h=0 limit the divergence of Ep0 is not
necessarily zero in the ENZ medium �nevertheless, a diver-
gence free solution always exists�.

In addition to the set of modes described above, the peri-
odic medium also supports a set of generalized Floquet
modes with electric field of the form E=

xi

a Ep0+Ep1, as de-
tailed in Sec. II. The mathematical argument that justifies the
emergence of these modes is also sketched in Sec. II.
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