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We describe a mean field technique for quantum string �or dimer� models. Unlike traditional mean field
approaches, the method is general enough to include string condensed phases in addition to the usual symmetry
breaking phases. Thus, it can be used to study phases and phase transitions beyond Landau’s symmetry
breaking paradigm. We demonstrate the technique with a simple example: the spin-1 XXZ model on the
kagomé lattice. The mean field calculation predicts a number of phases and phase transitions, including a z
=2 deconfined quantum critical point.
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I. INTRODUCTION

Recently, several frustrated spin systems have been dis-
covered with the unusual property that their collective exci-
tations are described by Maxwell’s equations.1–6 These light-
like collective modes can be traced to the highly entangled
nature of the ground state. In these systems, the low-energy
degrees of freedom are not individual spins, but rather string-
like loops of spins. The ground state is a coherent superpo-
sition of many such stringlike configurations—a “string con-
densate.” It is this “string condensation” in the ground state
that is responsible for the emergent photon—just as particle
condensation is responsible for the phonon modes in a
superfluid.3,7–9

While this qualitative picture is relatively clear, quantita-
tive results on string condensation and artificial light are
lacking. The above models have only been analyzed in lim-
iting and unrealistic cases. We do not know of any realistic
systems with emergent photons. The problem is that we are
missing a good mean field approach for exotic states. Current
mean field theory approaches can only be applied to symme-
try breaking states with local order parameters. They are use-
less for understanding string condensed states which are
highly entangled and have nothing to do with symmetry
breaking.

In this paper, we address this problem. We describe a
mean field approach that can be applied to both symmetry
breaking and string condensed states. We hope that this tech-
nique can be used to identify conditions under which string
condensation may occur and to help further the experimental
search for emergent photons and new states of matter.

In practice, our approach can be thought of as a mean
field technique for quantum string �or dimer� models. This
technique can be used to estimate the phase diagram of string
�or dimer� models, to find the low-energy dynamics of the
different phases, and to analyze the phase transitions. It can
be applied to any quantum spin system with the property that
its low-energy degrees of freedom are strings or dimers. This
includes all the frustrated spin systems cited above.

We demonstrate the technique with a simple example: a
spin-1 XXZ model on the kagomé lattice:3

H = J1�
I

�SI
z�2 + J2�

�IJ�
SI

zSJ
z − Jxy�

�IJ�
�SI

xSJ
x + SI

ySJ
y� . �1�

Here I and J label the sites of the kagomé lattice and ��IJ�

sums over all nearest neighbor sites. This model provides a

good testing ground for the method since the low-energy
dynamics of H is described by a string model in the regime
J2�Jxy� �J1−J2�.

The mean field calculation predicts a number of interest-
ing phases including string condensed phases with emergent
photons. The string condensed phases are ultimately de-
stroyed once instanton fluctuations are included, but several
phases and phase transitions remain—including a deconfined
quantum critical point.

The mean field phase diagram for Eq. �1� is shown in Fig.

1�a�. Here, J=
9Jxy

2

J2
+

24Jxy
3

J2
2 +3�J1−J2� and g=

3Jxy
3

J2
2 . For large

positive J /g, the system is in a paramagnetic phase with no
broken symmetries, while for large negative J /g, the system
is in a plaquette ordered phase with broken lattice and spin
symmetries. The critical point is in the universality class of

FIG. 1. �Color online� The mean field phase diagram for �a� the
XXZ model �1� and �b� the XXZ model with additional next nearest
neighbor interactions. The solid circles denote spins with �Sz��0.
The sign of �Sz� alternates around each plaquette in the plaquette
ordered phase and along each stripe in the stripe ordered phase.
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the three-dimensional �3D� XY model. This is similar to, but
slightly different from, the phase diagram obtained in Ref.
10. In that paper, the authors also predict a plaquette phase at
large negative J /g, but their candidate phase is a resonating
plaquette phase which has different symmetries from the fro-
zen plaquette phase shown above.

We also study the model �1� with an additional second
nearest neighbor interaction J3���ij��Si

zSj
z, J3 /g=0.17. We find

a different phase diagram �Fig. 1�b��. For large positive J /g,
the system is in a paramagnetic phase, while for large nega-
tive J /g, the system is in a stripe ordered phase with broken
rotational and spin symmetry. The mean field calculation
predicts that the phase transition is a deconfined quantum
critical point described by a U�1� gauge theory with dynami-
cal exponent z=2. However, we cannot rule out the possibil-
ity of a first-order phase transition—for either of the two
models.

The paper is organized as follows. In Sec. II, we describe
the string picture for the kagomé model �1�. In Sec. III, we
present the mean field approach and derive the mean field
phase diagram for Eq. �1�. In Sec. IV, we derive the low-
energy dynamics in each of the phases, and in Sec. V, we
analyze the phase transitions in the model. The details of the
mean field calculation are presented in the Appendix.

II. STRING PICTURE

A. Effective string model

We will study the XXZ model �1� in the regime
J2�Jxy� �J1−J2�. In that case, the low-energy dynamics of
H is described by a string model—a close cousin of a quan-
tum dimer model.3 To see this, note that the Hamiltonian can
be rewritten as

H =
J2

2 �
�

�Stot,�
z �2 + �J1 − J2��

I
�SI

z�2 − Jxy�
�IJ�

�SI
xSJ

x + SI
ySJ

y� ,

�2�

where Stot,�
z =�I��SI

z and � runs over the triangles in the
kagomé lattice �see Fig. 2�.

Suppose that Jxy =J1−J2=0. In that case, H has an exten-
sive ground state degeneracy: every state satisfying Stot,�

z =0
for all triangles � is a ground state. To describe these ground
states, it is useful to view the sites I of the kagomé lattice as
the links of a honeycomb lattice—whose vertices we will
label by i. One ground state is the state with SI

z=0 for all
links I of the honeycomb lattice. Another ground state can be
obtained by alternately increasing and decreasing SI

z along a
closed loop on the honeycomb lattice. In general, all the
ground states are of this form: they consist of collections of
closed loops of alternating SI

z= ±1 superimposed on a back-
ground of SI

z=0 �see Fig. 2�.
These states can be thought of as configurations of ori-

ented strings on the honeycomb lattice. To do this precisely,
we pick an A and B sublattice of the honeycomb lattice. For
any link I= �ij�, we say that I contains an oriented string
pointing from i�A to j�B if SI

z= +1 and from j to i if
SI

z=−1. We say the link is empty if SI
z=0 �see Fig. 3�. Then

the ground states described above are in exact correspon-
dence with configurations of oriented closed strings on the
honeycomb lattice.

Now consider the case where Jxy and J1−J2 are small but
nonzero. These terms will split the extensive degeneracy de-
scribed above. The splitting can be described in degenerate
perturbation theory by a low-energy effective string Hamil-
tonian Hef f. Working to third order in Jxy /J2 and assuming
Jxy� �J1−J2� we find

Hef f =
J

3�
ij

nij −
g

2�
p

�Bp + H.c.� , �3�

where J=
9Jxy

2

J2
+

24Jxy
3

J2
2 +3�J1−J2� and g=

3Jxy
3

J2
2 . Here, the two op-

erators nij and Bp are operators that act on oriented string
states. The operator nij is the string occupation number on the
link ij. That is, for any string state �X�, nij �X�= �X� if there is
a string on �ij� with orientation i→ j and nij �X�=0 otherwise.
The operator Bp acts on the six links along the boundary of
the plaquette p. Its action is given by

FIG. 2. �Color online� When J1−J2=Jxy =0, the kagomé XXZ
model �1� has an extensive ground state degeneracy. All states sat-
isfying Stot,�

z =�I��SI
z=0 are ground states. If we view the sites of

the kagomé lattice as links of a honeycomb lattice, then the ground
states are collections of closed loops of alternating Sz= ±1 on the
honeycomb lattice.

FIG. 3. �Color online� The low-energy effective string Hamil-
tonian �3� is made up of two terms: an operator nij which is the
string occupation number on the link ij and an operator Bp which
creates �or moves� strings along the boundary of the plaquette p.
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where a=0 denotes the empty link and a= +1 �−1� denotes
the link with a string oriented clockwise �counterclockwise�
with respect to p �see Fig. 3�. If any of a , . . . , f = +1, Bp
annihilates the state: Bp �a ,b ,c ,d ,e , f�=0. One can think of
Bp as being analogous to the dimer flip operators in quantum
dimer models.

In the remainder of the paper, we will focus entirely on
this low-energy effective string model �3�. While our discus-
sion will focus on strings, we would like to emphasize that
the results tell us about the physics of the simple spin model
�1�.

B. Possible phases

The two terms in the Hamiltonian �3� have a simple
physical interpretation in string language. The first term
J /3�ijnij is a string tension which penalizes strings for being
long. The second term g /2�p�Bp+H.c . � is a string kinetic
energy term. It makes the strings fluctuate and gives them
dynamics.

We are interested in the phase diagram of this model. We
will focus on the case g�0 for simplicity. There are three
basic regimes to consider: J /g�1, �J � /g�1, and −J /g�1.

When J /g�1, the string tension term dominates. In this
regime, the physics of Eq. �3� is clear. We expect the ground
state to be the vacuum state with a few small strings; the
system is in a “small string” phase. On the other hand, when
�J � /g�1, the string kinetic energy dominates. In this re-
gime, the behavior of Eq. �3� is less straightforward. One
plausible scenario is that the kinetic energy term favors a
ground state which is a superposition of many large
strings—a “string condensed” state �see Fig. 4�. However, it
is also possible that the energetics favors a string crystal
phase, or even a small string phase. In the final regime, when
−J /g�1, the negative string tension favors “fully packed”
string states—states where every point on the honeycomb
lattice is contained in a string. Again, the physics is not clear.
It is possible that the system enters a fully packed string
crystal phase—but it could equally well realize a fully
packed string liquid state.

Clearly, even the qualitative phase diagram for the string
model �3� is not obvious. There are many potentially com-
peting phases with very different properties. We would like
to have a method for determining which of these phases are
actually realized and for what parameters. It would be par-
ticularly useful to know in what region the string condensed
phase occurs, if at all—since this phase may contain gapless
photonlike modes. The mean field technique described below
accomplishes this task.

III. MEAN FIELD APPROACH

In this section, we describe a mean field technique for
quantitatively computing the phase diagram for the string
model �3�. As we will see later, it can also be used to derive
a low-energy effective Lagrangian for each of the phases and
to analyze the phase transitions. We would like to mention
that similar approaches have been used to study lattice gauge
theory.11,12

A. Variational states

Our approach is variational—we define a large class of
variational string wave functions and then minimize their
energy �H�. Let us begin by describing the variational wave
functions. The wave functions � have a large number of
variational parameters 	zij
 indexed by the oriented links ij of
the honeycomb lattice. For each set of 	zij
, the correspond-
ing wave function �	z
 is defined by

�	z
�X� = �
ij

zij
nij, �4�

where nij is the occupation number of the oriented link ij in
the oriented string configuration X. We can see that zij and zji
are string fugacities on the link �ij� for the two different
string orientations.

The above variational wave function �4� can accommo-
date many different kinds of states—including both string
crystals and string liquids. If zij is periodic, �	z
 is a symme-
try breaking string crystal state; if zij is constant for all ij,
then �	z
 is a string liquid state. The variational states �	z

can even access the two types of string liquids described in
the previous section—small string states and string con-
densed states—and can capture the distinction between them.

To see this, consider a string liquid state with zij=�.
The properties of the state �� can be deduced from the
properties of the classical loop gas with statistical weight
P�X�= ����X��2=�2L�X� �here L�X� is the total length of all
the loops in X�. This loop gas is the classical O�2� loop gas
on the honeycomb lattice and has been solved exactly. It is
known that the loop gas has two phases separated by a phase
transition at �c=2−1/4�0.84.13 When ���c, the classical
loop gas is in a “small loop” phase, where the typical loop
size is some finite length scale �. On the other hand, when
���c, the loop gas enters a phase with large loops of arbi-
trarily large size. Intuitively, this means that the states ��

with ���c should be regarded as small string states, while
the states with ���c should be regarded as string condensed
states.

FIG. 4. One possible phase diagram for the string model �3�.
The string orientations have been omitted for clarity.
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In the same way it is not hard to see that the wave func-
tions �	z
 can even accommodate simultaneous symmetry
breaking order and string condensation. Consider, for ex-
ample, the case where zij is large and nearly constant, but has
a small periodic position dependence. In that case, �	z
 will
exhibit both translational symmetry breaking and string con-
densation.

B. Defining string condensed states

In the preceding section, we relied on an intuitive picture
of string condensed states. Here we make our language more
precise—formally defining which variational states �	z
 we
regard as string condensed.

To state our definition, we place the wave function �	z
 on
a thermodynamically large cylinder and consider the classi-
cal loop gas associated with ��	z
�2. We define a quantity �s

by

�s = �W2� − �W�2, �5�

where the expectation values are taken with respect to the
classical loop gas and W is the winding number; e.g., W
counts the number of times the loops wind around the cylin-
der. Our definition is that the state �	z
 is string condensed if
�s�0 and not string condensed if �s=0 in the thermody-
namic limit. Thus, �s can be thought of as a �nonlocal� order
parameter for string condensation.

The motivation for this definition is twofold. First, it cap-
tures our intuitive picture of string condensation: states with
large fluctuating loops �such as ��, ���c� have �s�0
while other states �such as ��, ���c� have �s=0. Second, it
agrees with the expected low-energy physics of string con-
densed states. We will see that states with �s�0 generically
have a gapless linearly dispersing photonlike mode �neglect-
ing instanton effects�, while other states are gapped.

In addition to clarifying our discussion of string conden-
sation, �s can be used in numerical simulations to distinguish
string condensed �	z
 from normal �	z
. As a demonstration,
we have computed �s numerically for the liquid states,
zij=�, and found that the transition from small string states
to string condensed states occurs at �c�0.82 �Fig. 5�. In
this particular case, this computation was unnecessary,
since the transition point was already known analytically:
�c=2−1/4�0.84. However, in more complicated cases �such
as states with nonuniform zij�, such a numerical calculation
would be necessary.

Finally, we would like to mention a physical interpreta-
tion of �s which will prove useful later. This interpretation is
based on the duality between the classical O�2� loop gas and
the classical �2D� XY model.13 This duality maps the small
loop phase of the classical loop gas onto the disordered
phase of the XY model, the large loop phase onto the �alge-
braically� ordered phase of the XY model, and the transition
at �=�c onto the Kosterlitz-Thouless transition. Under this
duality, the quantity �s corresponds to the superfluid stiffness
in the dual XY model. This means that our previous defini-
tion of string condensed states can be rephrased as follows:
�	z
 is string condensed if and only if the XY model dual to
the loop gas ��	z


2 � is in the ordered phase.

C. Mean field phase diagram

The mean field phase diagram can be obtained by mini-
mizing the ground state energy �H� over all states �	z
 and
then identifying the quantum phase associated with the mini-
mum energy �	z
. Energy expectation values can be obtained
in a number of ways—we compute them numerically using a
variational Monte Carlo method.

We have applied this technique to Eq. �3�, using the en-
ergy minimization procedure described in Appendix A. We
find the mean field phase diagram shown in Fig. 6�a�. We
find that when J /g�0.27, the system is in a small string
liquid phase. When −0.43�J /g�0.27, the system is in a
string condensed liquid phase. When J /g�−0.43, the system
enters a phase with simultaneous string condensation and
plaquette order. We have not executed systematic numerics
beyond this point, but we believe that when J /g becomes
sufficiently large and negative, the string condensation is de-
stroyed and the system enters a phase with plaquette order
and no string condensation �see Appendix B for details on
how these results were obtained�.

As we will show later, the true phase diagram is different
from the mean field phase diagram due to instanton effects.

FIG. 5. Monte Carlo results for �s as a function of �, obtained
on 6	6, 9	9, and 12	12 lattices. In the thermodynamic limit, �s

vanishes for the small string states and then jumps to a finite non-
zero value for the string condensed states. We estimate the critical
point �c0.82 as the value of � where the three finite-size curves
intersect.

FIG. 6. �a� The phase diagram obtained from the mean field
approach. �b� The phase diagram after instanton effects have been
included. The string condensed phases are destroyed and only two
phases remain.
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Once these are taken into account, the two string condensed
phases are destroyed and only the small string and plaquette
ordered phases remain �Fig. 6�b��. This is similar to, but
slightly different from, the phase diagram obtained in Ref.
10. In that paper, the authors predict a resonating plaquette
phase �Fig. 7�b�� at large negative J /g, while our mean field
phase diagram predicts a frozen plaquette phase �Fig. 7�a��.
The two phases have the same translational symmetry group,
but different symmetries under spatial and spin rotations.

We have also computed the mean field phase diagram
from the model �1� with an additional next nearest
neighbor interaction J3���ij��Si

zSj
z, J3 /g=0.17. We find that the

phase diagram shown in Fig. 8�a�. When J /g�−0.11, the
system is in a small string liquid phase, while when
−1.83�J /g�−0.11, the system is in a string condensed
liquid phase. When J /g�−1.83, the system enters a phase
with simultaneous string condensation and stripe order
�Fig. 9�. Instanton effects ultimately destroy the two string
condensed phases, leaving only the small string phase and
the stripe ordered phase �Fig. 8�b��. However, as we will see
in Sec. V, an interesting deconfined quantum critical point
remains—the transition between the small string and stripe
ordered phases.

IV. LOW-ENERGY DYNAMICS

What are the low-energy dynamics in each phase? From
the general string picture, we expect �oriented� string con-
densed phases to be described by compact U�1� gauge
theory. Therefore, we expect that the two string condensed
phases have a gapless photonlike mode �neglecting instanton
effects�, while the other phases are gapped. But we would

like to understand this more quantitatively. We use the mean
field method to accomplish this task. We construct a low-
energy effective Lagrangian that describes the dynamics of
the string collective modes.

The idea is based on the coherent state approach �or dy-
namical variational approach�. Suppose that for some value
of J and g, the variational ground state is �	z̄
. It is useful to
label this state—once it has been properly normalized—as
�	z̄ij
�. While �	z̄ij
� is not the exact ground state, our approach
is based on the assumption that a good approximation to the
ground state can be obtained by taking linear combinations
of states �	z̄ij+
zij
� for small 
zij. We also assume that low-
energy excitations can be represented by such states. With
this assumption, we can use �	z̄ij+
zij
� as coherent states and
use the coherent state path integral to calculate the low-
energy dynamics. In general, the Lagrangian for the coherent
state path integral is given by

L�
z,
ż� = �	z̄ + 
z�t�
��i
d

dt
− H��	z̄ + 
z�t�
� , �6�

where the first piece �z̄+
z � i d
dt � z̄+
z� is the Berry phase

term and the second piece �z̄+
z �H � z̄+
z� is the usual
Hamiltonian evolution term.

We will focus on the simplest case, where the ground state
is a string liquid: z̄ij=� for all ij. It is convenient to param-
etrize the fluctuations by z̄ij+
zij=�eEij+iAij where Eij and Aij
are arbitrary real numbers. Substituting this into Eq. �6� and
expanding to quadratic order in E and A gives a Lagrangian

L = �
ij,kl

�bij,klEijȦkl − cij,klEijEkl − dij,klAijAkl� . �7�

Here, the constants bij,kl, cij,kl, and dij,kl are given by the
correlation functions

bij,kl = − 2��nijnkl� − �nij��nkl�� ,

cij,kl = 2��nijHnkl� + �Hnijnkl� − 2�H��nijnkl�� ,

dij,kl = 2��nijHnkl� − �Hnijnkl�� , �8�

evaluated for the string liquid state ��.

FIG. 7. �Color online� The mean field calculation predicts �a�
frozen plaquette order for J /g�−0.43. Previous work �Ref. 10� has
suggested �b� resonating plaquette order. The two orders are shown
above: the thickness of the bonds indicates the size of zij ·zji while
the arrows indicate the relative size of zij and zji.

FIG. 8. �a�. The mean field phase diagram for the XXZ model
with a small second nearest neighbor interaction J3���ij��Si

zSj
z, J3 /g

=0.17. �b�. The phase diagram after instanton effects have been
included.

FIG. 9. �Color online� The addition of a second nearest neighbor
interaction leads to a stripe ordered phase, depicted above. The
thickness of the bonds indicates the size of zij ·zji while the arrows
indicate the relative size of zij and zji.
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A. Gauge structure

One might expect that by analogy with the harmonic os-
cillator action, one could quantize Eq. �7� using states of the
form �	Aij
� as a complete orthonormal basis. However, this
is not quite correct. The problem is with our starting point:
the coherent states �	zij
� are not all distinct. The loop struc-
ture of the string states means that �	zij
�= �	z̃ij
� if 	z
 and 	z̃

differ by a transformation of the form z̃ij=ei��i−�j�zij.

In terms of our parametrization zij=�eEij+iAij, this means

that �	Aij
�= �	Ãij
� if Ãij=Aij+�i−�j. Thus, the �	Aij
� are a
many-to-one labeling of states. To obtain a true orthonormal
basis, we need to treat each equivalence class of 	Aij
 as a
single state.

This many-to-one labeling is identical to the U�1� gauge
structure in U�1� lattice gauge theory. Thus the above action
�7� should be regarded as a U�1� gauge theory.

B. Band structure

To solve Eq. �7�, we need to find the normal modes. The
unit cell contains three links with two possible orientations,
so there are six bands. Three of these bands correspond to
symmetric configurations Eij=Eij, Aij=Aij and three corre-
spond to antisymmetric configurations Eij=−Eij, Aij=−Aij.
The symmetric bands are generically gapped, so we will fo-
cus primarily on the antisymmetric bands.

Two of the antisymmetric bands are exactly flat with
�k=0 for all k. These bands correspond to pure gauge
fluctuations—modes of the form Aij=�i−�j. They are exactly
flat because pure gauge fluctuations do not change the physi-
cal state at all. These modes do not correspond to physical
degrees of freedom.

The only physical low-energy degree of freedom is given
by the third antisymmetric band. This band corresponds to
transverse modes of A and E. In the limit k→0, it is given by

Ak,rs =
1

�3Na2
�n · �s − r��Akeik·r,

Ek,rs =
1

�3Na2
�n · �s − r��Ekeik·r. �9�

Here n�k is a unit vector, a is the lattice spacing, and N is
the number of plaquettes in the lattice.

Substituting these expressions into the Lagrangian �7�, we
find

L = �
k

�bkEk
*Ȧk − ck�Ek�2 − dk�Ak�2� , �10�

where

bk =
1

3Na2 �
rs,r�s�

brs,r�s��n · �s − r���n · �s� − r���eik·�r�−r�

and ck and dk are defined similarly. The dispersion can now
be easily obtained: �k

2=
4ckdk

bk
2 .

C. Gapless photon mode

The above Lagrangian �10� is a U�1� lattice gauge theory.
Therefore, one might expect that the system always contains
a gapless photon mode.

This is not the case. We will now show that the photon
mode is gapped in certain phases. Specifically, we will show
that the mode is gapped in the small string phase and gapless
in the string condensed phase. This is exactly what we expect
physically based on the general string condensation picture.
What is perhaps surprising is that this confinement and de-
confinement physics can be captured without including the
compactness of the U�1� gauge field.

To analyze the low-energy excitations, we need to con-
sider the limit k→0. In that limit, dkdk2a2 for some con-
stant d. One way to see this is to use the original definition of
the Lagrangian L. According to that definition, dk is propor-
tional to

dk  ��eiAk,rs�H��eiAk,rs� − ���H��� .

But it is not hard to see that

��eiAk,rs�H��eiAk,rs� − ���H���  �
p

�cos�Fp� − 1� ,

where Fp=A12+A23+A34+A45+A56+A61 is the flux through
the plaquette p. Since for small k, cos�Fp�−1k2a2, we con-
clude that dkdk2a2 for some constant d.

Because dk→0 as k→0, there are potentially gapless ex-
citations at k=0. The presence or absence of a gap depends
on the behavior of bk and ck at small k. To understand this
behavior, we make use of the duality between the classical
loop gas and the XY model.13 Under this duality, the quantity
nrs−nsr corresponds to the boson current �s−r� · j�r�
�j�r�=���r��. This means that bk can be identified with the
current-current correlator, bk��n · jk��n · j−k��.

There are two regimes to consider. In the string condensed
phase ���c, the XY model is in the ordered phase. In this
case, the current-current correlator is of the form

�jk
�j−k

� �  �s
k�k� − k2
��

k2 . �11�

This means that bk approaches a nonzero constant value
b�s as k→0.

On the other hand, in the small string phase ���c, the
XY model is in the disordered phase. In this case, the current-
current correlator is of the form

�jk
�j−k

� � 
k�k� − k2
��

k2 + 1/�2 , �12�

where � is the correlation length. This means that bkk2�2 as
k→0. In a similar way, we can derive the behavior of ck as
k→0. Note that

crs,tu − drs,tu = 4��H
rs
tu� − �H��
rs
tu�� . �13�

The Fourier transform of the left-hand side is ck−dk. The
Fourier transform of the right-hand side can be expanded in
terms of current operators as
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��
q

j−q
� jq

�j−k
� jk

�� − ��
q

j−q
� jq

���j−k
� jk

�� + ¯ . �14�

By Wick’s theorem, this expression is of the same order as
bk

2. It follows that as k→0, ckdkdk2a2 in the small string
phase and ck approaches a nonzero constant value c�s

2 in
the string condensed phase.

Putting our expressions for bk, ck, and dk together, we can
compute the dispersion relation �k as k→0. We find that in
the small string phase, the k→0 excitations are gapped:

�k
�ckdk

bk
 da2

�2 . On the other hand, in the string condensed

phase, the excitations are gapless: �k a�cd
b �k�. This gapless

mode is the artificial photon that we expected in the string
condensed state. The photon propagates with a “speed of
light” v a�cd

b .
We can apply the same arguments to the other phases in

the mean field phase diagram. A similar calculation predicts
gapped excitations in the plaquette ordered phase and a gap-
less photon mode in the phase with simultaneous plaquette
order and string condensation.

Clearly, the presence or absence of a gap is directly re-
lated to the behavior of the string-string correlations at small
momenta or large distances. Only in the string condensed
phase, where the string-string correlations decay algebra-
ically, is a gapless photon mode present. Indeed, this connec-
tion can be made rigorous using a single-mode approxima-
tion argument similar to that of Ref. 14. One can prove a
“Goldstone theorem” for �oriented� string condensation
which asserts that any string state with algebraic string-string
correlations �
rs
tu�1/ �r− t�� with ��2+d �where d is the
spatial dimension� has a gapless photon mode.

D. Instanton effect

To fully understand the low-energy physics of the string
condensed phase, we need to go back to a real space descrip-
tion. We restrict our attention to low-energy, long-
wavelength fluctuations of the form �9�. For slowly varying
modes like these, the Lagrangian �10� can be written in real
space as

L = b�
ij

EijȦij − c�
ij

Eij
2 − d�

p
Fp

2, �15�

where Fp=A12+A23+A34+A45+A56+A61 is the flux through
the plaquette p. Notice this is precisely the Lagrangian for
U�1� lattice gauge theory. It gives rise to lightlike collective
excitations with a speed of light v a�cd

b .
This is exactly what we claimed earlier. However, in the

preceding discussion, we neglected an important effect. The
above lattice gauge theory is actually a compact U�1� gauge
theory: Aij and Aij+2� represent the same state. Therefore,
the magnetic energy term should be changed from Fp

2 to
−cos�Fp�. This has dramatic consequences for the low-
energy physics. Due to the nonperturbative instanton effect,
compact U�1� gauge theory is always confining in 2+1
dimensions. The photon mode obtains a finite gap of order

�� v2

a2e0
2 e−K/e0

2
where e0

2�c /db2 is the dimensionless
gauge coupling and K is a dimensionless constant of order
1.15

Physically, this means that fluctuations, in particular in-
stanton fluctuations, modify the mean field phase diagram
derived earlier. The instanton fluctuations prevent the strings
from obtaining an infinite correlation length, and thus desta-
bilize the string condensed phase. By similar reasoning, we
expect the fluctuations to destroy the phase with simulta-
neous string condensation and resonating plaquette order.
Thus, once we take instanton fluctuations into account, all
that remains are two phases: the small string phase and the
plaquette phase �Fig. 6�b��.

While the instanton fluctuations dramatically alter our
phase diagram in 2+1 dimensions, we expect that a similar
mean field analysis in 3+1 dimensions to be much more
stable. In 3+1 dimensions, the only effect of quantum fluc-
tuations �such as monopole fluctuations� is to modify the
position of the string condensation phase transition. There-
fore, our mean field analysis may be most useful in this
context. The example described in this paper may be viewed
as a warm-up for such a three-dimensional calculation.

V. NATURE OF THE PHASE TRANSITIONS

It is natural to wonder what the mean field approach can
tell us about the phase transitions. In this section, we discuss
this issue, focusing on phase transitions between the string
condensed phase and adjoining phases.

Within mean field theory, there are three basic types of
transitions that can occur between a string condensed phase
and a neighboring phase: �i� confinement-deconfinement
transitions, �ii� transitions resulting from an instability of a
k�0 photon mode �Fig. 10�b��, and �iii� transitions resulting
from an instability at k=0 �Fig. 10�a��. Examples of all three
of these transitions can be found in the simple spin-1 XXZ
model. The third type of transition is particularly interesting
since it is described by a z=2 deconfined quantum critical
point.

A. Confinement-deconfinement transition

An example of a confinement-deconfinement transition is
given by the critical point separating the small string and
string condensed phases. According to mean field theory, this
transition is described by a singularity in the variational
ground state ��. When J /g is large and positive, the ener-
getics favor a small string state with ���c. On the other
hand, when J /g is smaller, the energetics favor a string con-
densed state with ���c. The critical point occurs when the
energetically favored � tunes through the critical value �c.

FIG. 10. Three types of phase transitions between string con-
densed phases and other phases are allowed within mean field
theory. Two are shown above. The first �a� occurs when the photon
mode at k=0 becomes unstable. The second �b� occurs when a
photon mode at some k�0 becomes unstable.
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The behavior of the low-energy excitations near the criti-
cal point can be derived from the effective Lagrangian �10�.
First, consider approaching the critical point from the small
string side. On the small string side, the dispersion is linear
in k for k�a /�2 and levels off to a gap proportional to a2 /�2

when k�a /�2. As we approach the critical point, the linear
dispersion extends to longer and longer length scales and the
gap goes to zero—resulting in a gapless photon mode.

The behavior on the string condensed side of the critical
point is even simpler. In that case, there is no length scale
other than the lattice spacing a. For all k�1/a, the disper-
sion is linear in k. As we approach the transition, both
b ��s� and c ��s

2� approach finite nonzero values. Thus,
the transition occurs at a finite photon velocity v and a gauge
coupling e0

21.
This mean field picture may capture some of the qualita-

tive features of the small-string–string-condensed phase tran-
sitions, but it is almost certainly incorrect when it comes to a
quantitative description. A major source of suspicion is that
the mean field phase transition originates from a singularity
in the variational wave function �� itself, not from the fluc-
tuations about this state. As a result, the mean field expo-
nents for the �2+1�-dimensional system come from critical
points in 2+0 dimensions. It seems unlikely that this is the
correct quantitative description of the critical point.

This issue is not specific to two dimensions. If the mean
field technique is applied to a small-string–string-condensed
phase transition in 3+1 dimensions, one finds that the mean
field exponents come from a critical point in 3+0 dimen-
sions �the 3D XY model�. Again, this seems incorrect.

The problem is that when we derived the Lagrangian �15�,
we neglected higher-order fluctuations, in particular the in-
stanton �or monopole� fluctuations of the U�1� gauge field.
These fluctuations can completely change the mean field
phase transition. To include them we have to treat the U�1�
gauge field as a compact gauge field, replacing the Fp

2 term in
Eq. �15� by −cos�Fp�.

Taking these fluctuations into account gives a more accu-
rate picture of the small-string–string-condensed critical
point. In 2+1 dimensions, instanton fluctuations destroy the
string condensed phase altogether and there is no phase tran-
sition at all. On the other hand, in 3+1 dimensions, mono-
pole fluctuations give a completely different mechanism for a
small-string–string-condensed phase transition—namely,
monopole condensation. This monopole mediated transition
�which is known to be weakly first order16,17� will likely
preempt the �unphysical� mean field critical point.

B. Transition via instability at kÅ0

The S=1 XXZ model also contains an example of a tran-
sition resulting from an instability of a k�0 photon mode
�Fig. 10�b��. This example occurs at the critical point sepa-
rating the string condensed state from the state with simulta-
neous plaquette order and string condensation. In the mean
field picture, this transition occurs when the mode at
k= ±Q becomes unstable �Figs. 11 and 12�. The critical point
is described by tuning one of the coefficients cQ in �10�
through 0 �Fig. 15�. When cQ�0, the ground state is a string

condensed liquid state. When cQ�0, nonzero E±Q is ener-
getically favorable and the ground state acquires plaquette
order �in addition to the string condensation�.

Again, we need to include fluctuations to obtain the cor-
rect physics. Instanton fluctuations gap the photon modes,
destroying the string condensation on both sides of the tran-
sition. The result is that the transition is actually a simple
symmetry breaking transition—between a small string state
and a plaquette crystal state �Fig. 6�b��.

To obtain the critical theory, note that due to the instanton
fluctuations, the only low-lying modes are those with
k� ±Q. These modes can be parametrized as

Ers = ��r�E+Q,rs + �*�r�E−Q,rs, �16�

Ars = ��r�A+Q,rs + �*�r�A−Q,rs, �17�

where ��r� and ��r� vary slowly on the scale of the lattice
spacing. Substituting these expressions into the Lagrangian
�7� and integrating out the � field gives an action of the form

L =
�

2
���t��2 − v2��x��2� − A���2, �18�

where AcQ.
This is still not quite the correct critical theory. To get the

full theory, we need to take fluctuations in � into account by

FIG. 11. The dispersion �k of the photonlike mode for different
values of J /g. As J /g approaches the critical point �J /g�c=−0.43,
the energy of the k=Q photon goes to 0. Thus, this critical point is
an example of the class of phase transitions depicted in Fig. 10�b�.

FIG. 12. The Brillouin zone for the honeycomb lattice. The
instability to plaquette order occurs at modes �B1� with wave vec-
tors k= ±Q.
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including higher-order terms. Following the analysis preced-
ing �B2�, we include the most general terms consistent with
the lattice symmetries:

L =
�

2
���t��2 − v2��x��2� − A���2 − B���4 − C��6 + H . c . � .

�19�

The result is the critical theory for a Z6 symmetry breaking
transition—not surprising, given the symmetries of the two
phases. At the transition, the �6 term is irrelevant and the
critical point is in the universality class of the 3D XY model.

We would like to mention that there is another possibility
that we cannot rule out: the phase transition could be first
order. Because we implemented the restricted minimization
procedure described in Appendix A, we cannot resolve this
question. However, in principle, the mean field technique can
address this issue. One simply needs to use a more general
minimization procedure.

C. Transition via instability at k=0

The third type of transition—where a photon mode at
k=0 becomes unstable �Fig. 10�a��—does not occur in the
nearest neighbor XXZ spin model �1�. However, with an ad-
ditional second nearest neighbor interaction J3���ij��Si

zSj
z, such

a transition does occur.
With the addition of the second nearest neighbor term, the

mean field phase diagram changes to the one shown in Fig.
8�a�. The phase adjacent to the string condensed phase is not
plaquette ordered, but instead is stripe ordered �Fig. 9� with
simultaneous string condensation. The transition occurs
when the k=0 mode,

Ers = n · �s − r� ,

Ars = 0, �20�

becomes unstable �Fig. 13�. The mean field critical theory is

described by tuning the coefficient c=limk→0ck through 0 in
the effective Lagrangian �10�.

It is useful to rewrite this theory in real space. Since we
are only interested in the low-lying modes with k small, we
can make the approximation bk�b, ck�c+ek2, dk�dk2.
Going to a real space, a continuum description gives a La-
grangian of the form

L = b�EȦ − c�E2 − d��� 	 A�2 − e��� 	 E�2, �21�

where b�, c�, d�, and e� are the renormalized continuum co-
efficients corresponding to b, c, d, and e. The transition is
described by tuning c� through 0. The critical theory is thus
a Rokhsar-Kivelson type theory described by a U�1� gauge
theory with dynamical exponent z=2.

The above is the mean field critical theory. In principle,
we need to consider fluctuations to get the full critical theory.
In particular, we need to include instanton fluctuations, re-
placing the ��	A�2 term with cos��	A�. We also need to
include higher-order terms in E and A �which are particularly
important in the stripe �c��0� phase�. The most general
terms consistent with the lattice symmetry are given by

L� = − f�E4 − g���E · n1��E · n2��E · n3��2 + ¯ , �22�

where n1, n2, and n3 are unit vectors along the three lattice
directions.

These fluctuations have an important effect on both
phases. The instantons destroy the string condensation on
both sides of transition. The result is that the transition is
actually a simple Z6 symmetry breaking transition between a
small string phase and a stripe phase �Fig. 8�b��. The higher-
order terms L� are also important—determining the ultimate
form of the ordering in the stripe phase.

However, at the critical point, both the instantons and the
higher-order terms L�, are irrelevant for e� sufficiently small.
The critical theory is therefore described by the simple mean
field Lagrangian �21�. This result follows from the analysis
in Ref. 18. In that paper, the authors analyzed the z=2 criti-
cal point �21� in the context of a quantum dimer model on
the honeycomb lattice. They found that the instanton fluctua-
tions were irrelevant for e� sufficiently small. Moreover, they
found only one relevant higher-order term—a cubic term
�E ·n1��E ·n2��E ·n3�. The same analysis can be applied in
our case, but the cubic term is not allowed because of the
symmetry E→−E.

Thus, the z=2 critical point �21� is potentially stable �just
as in the previous section, we cannot rule out the possibility
of a first-order phase transition�. This is an example of a
deconfined quantum critical point. While the two adjoining
phases differ by simple Z6 symmetry breaking, the phase
transition is not captured by a Landau-Ginzburg-Wilson ac-
tion. Instead, the critical theory is described by gauge fluc-
tuations which become deconfined only at the critical point.

This deconfinement is physically reasonable—the critical
point connects a liquid state of small strings to a phase with
an ordered state made up of infinitely long strings. Thus it is
natural that the transition point is described by a liquid state
of long strings. From this picture, one might expect the same
phenomenon to occur in �3+1�D spin models. In that case,

FIG. 13. The dispersion �k of the photonlike mode for different
values of J /g and J3 /g=0.17. As J /g approaches the critical point
�J /g�c=−1.83, the velocity of the photon at k=0 goes to 0. Thus,
this critical point is an example of the class of phase transitions
depicted in Fig. 10�a�.
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one would expect an entire deconfined phase between a
small string phase and a striped phase.

VI. CONCLUSION

In this paper, we have described a mean field technique
for quantum string �or dimer� models. The technique can be
used to estimate phase diagrams, to analyze the low-energy
dynamics in each of the phases, and to understand the critical
points separating them.

The mean field theory developed here is more powerful
than traditional mean field approaches in that it is applicable
to both string condensed phases and the usual symmetry
breaking phases. Thus it can be used to study phases and
phase transitions beyond Landau’s symmetry breaking para-
digm. One particularly interesting application is to frustrated
spin systems with emergent photonlike excitations.

We have demonstrated the approach with a simple ex-
ample: the XXZ model �1� in the limit J1�Jxy� �J1−J2�. In
that limit, the low-energy physics of the XXZ model is de-
scribed by a quantum string model which can be studied
using the mean field theory. We find that the model is in a
paramagnetic phase for large positive J /g and in a plaquette
ordered phase for large negative J /g, and that the phase tran-
sition is in the 3D XY universality class. We have also ap-
plied the mean field approach to the XXZ model �1� with an
additional next nearest neighbor coupling J3���ij��Si

zSj
z. The

mean field theory predicts that the model is in a paramag-
netic phase for large positive J /g and in a stripe ordered
phase for large negative J /g, and that the phase transition is
a z=2 deconfined quantum critical point �21�.

Given these results, it would be interesting to study the
XXZ model �1� numerically. A quantum Monte Carlo study
could potentially access the z=2 deconfined quantum critical
point. In addition, it could resolve the discrepancy between
the resonating plaquette phase predicted by Ref. 10 and the
frozen plaquette phase that appears to be favored by the
mean field approach �Fig. 7�.

A natural direction for future research would be to apply
the mean field approach to a �3+1�-dimensional spin model.
Indeed, the mean field method may be most useful in this
context. While string condensed phases with emergent pho-
tons are always unstable in 2+1 dimensions, there is no such
problem in 3+1 dimensions. Thus, the mean field method
can be used to find entire phases with string condensation
and emergent photons, in addition to deconfined quantum
critical points.
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APPENDIX A: MINIMIZING THE ENERGY

In general, the mean field phase diagram should be com-
puted by minimizing the ground state energy �H� over all

choices for �	z
 and then identifying the quantum phase as-
sociated with the minimum energy �	z
. Ideally, the minimi-
zation of �H� should be done in an unbiased fashion and
include all possible 	z
. However, to simplify our numerics,
we have executed a more restricted minimization. In this
appendix, we describe this minimization procedure.

In the restricted minimization procedure, we only mini-
mize �H� over the string liquid states, zij=�. We then check
to make sure that the minimal zij=� state is stable to infini-
tesimal perturbations �→�+
zij.

To do this, we parametrize the perturbations by �+
zij
=�eEij+iAij where Eij and Aij are real—as in Sec. IV. Expand-
ing the energy to quadratic order in E and A, one finds

�H� = �
ij,kl

�cij,klEijEkl + dij,klAijAkl� , �A1�

where the constants cij,kl and dij,kl are given by the equal-time
correlation functions �8�.

To check for stability, one needs to check whether the
matrices cij,kl and dij,kl are positive definite. This can be ac-
complished most easily by going to Fourier space, where
cij,kl and dij,kl are diagonal. If all of the resulting eigenvalues
are positive, then the state �� is stable. Otherwise, it is un-
stable.

If it is stable, we assume that it is the true lowest-energy
state. If it is unstable—say, in the direction
�→�eEij+iAij—we conclude that the system enters a new
�symmetry breaking� phase with an ordering given by
�eEij+iAij. In effect, by restricting attention to local instabili-
ties, we assume that the phase transitions out of the liquid
phases are second order or weakly first order.

This restricted minimization procedure is less powerful
and less reliable then a general minimization of �H� over all
�	z
. Its only advantage is that it is technically simpler to
implement.

APPENDIX B: CALCULATION OF THE MEAN FIELD
PHASE DIAGRAM

In the following, we describe in detail how the mean field
phase diagram for Eq. �3� was obtained. We begin with the
transition at J /g=0.27. The transition at J /g=0.27 was ob-
tained by calculating the optimal �minimal energy� � for
different values of J /g. Plotting � as a function of J /g, we
find that when J /g is reduced below 0.27, the minimum en-
ergy � becomes larger than �c=2−1/4=0.8409. . . �see Fig.
14�. Thus, at this point, the variational ground state enters the
string condensed phase.

The string condensed �liquid� phase persists for −0.43
�J /g�0.27. When J /g�−0.43, we find that the liquid be-
comes unstable �see Fig. 15�. In fact, two modes become
unstable simultaneously. The two unstable modes are of the
form

Ers = E±Q,sr =
1

�3Na2
�n · �s − r�e±iQ·r,

Ars = 0, �B1�

where ±Q are the two wave vectors shown in Fig. 12 and
n�Q.
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Because two modes become unstable simultaneously,
there is an ambiguity in the way the system orders. The
system could potentially order in any �real� linear combina-
tion of the two modes: Ers=�E+Q,rs+�*E−Q,rs.

A purely quadratic analysis cannot distinguish between
this continuum of possible orderings. However, we expect
that higher-order terms will pick out a particular ordering.
Indeed, let us consider the energy as a function of the com-
plex parameter �, �H�=H���. The symmetry of the lattice
requires that H���=H�−��=H��*� and H���=H���� where �
is a third root of unity. The most general form for H satisfy-
ing these constraints is

H��� = A���2 + B���4 + C��6 + ��*�6� + ¯ �B2�

to sixth order in �. The first two terms are not sensitive to the
phase of � and therefore tell us nothing about which linear
combination is favored. However, the third term does pick
out a phase. The phase depends on whether C is positive or
negative. If C is positive, imaginary � is favored. This cor-
responds to a “frozen plaquette” phase—where a third of the
plaquettes are typically occupied by strings and the intersti-
tial bonds are likely to be empty �Fig. 7�a��. On the other
hand, if C is negative, real � is favored. This corresponds to
a “resonating plaquette” phase where a third of the plaquettes
resonate between two different configurations, while the in-
terstitial bonds are typically occupied �Fig. 7�b��.

While it is difficult to determine which of these two pos-
sibilities occurs using the restricted minimization procedure,
one can make a determination by implementing a general
minimization of �H� over all �	z
. We have implemented this
on a 3	3 lattice, and the result is that the frozen plaquette
phase is favored. Based on this result, we believe that C is
positive and the instability at J /g=−0.43 results in frozen
plaquette order. However, a more complete numerical study
is necessary to even make a definitive mean field prediction.

When J /g is decreased below −0.43, the system acquires
�frozen� plaquette order. However, the ordering is weak near
the transition point and a finite amount of ordering is neces-
sary to destroy string condensation. This means that the
string condensation persists for a finite interval below
−0.43—the system enters into a phase with simultaneous
plaquette order and string condensation.

We have not executed systematic numerics beyond −0.43.
However, small lattice results suggest that plaquette order
strengthens as J /g decreases. This suggests that when J /g
becomes sufficiently large and negative, the plaquette order
becomes sufficiently strong that string condensation can no
longer coexist and is destroyed. The system then enters a
phase with the same plaquette order but no string condensa-
tion.

The phase diagram for the model �1� with next nearest
neighbor coupling J3���ij��Si

zSj
z was computed using the same

technique. We will not repeat the details here because of their
similarity to those described above.
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