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We derive an effective field theory for the competition between superconductivity �SC� and charge density
waves �CDWs� by employing the SO�3� pseudospin representation of the SC and CDW order parameters. One
important feature in the effective nonlinear � model is the emergence of a Berry phase even at half filling,
originating from the competition between SC and CDWs, i.e., the pseudospin symmetry. A-well known conflict
between the previous studies of Oshikawa �Phys. Rev. Lett. 84, 1535 �2000�� and Lee and Shankar �Phys. Rev.
Lett. 65, 1490 �1990�� is resolved by the appearance of the Berry phase. The Berry phase contribution allows
a deconfined quantum critical point of fractionalized charge excitations with e instead of 2e in the SC-CDW
quantum transition at half filling. Furthermore, we investigate the stability of the deconfined quantum criticality
against quenched randomness by performing a renormalization group analysis of an effective vortex action. We
argue that, although randomness results in a weak disorder fixed point differing from the original deconfined
quantum critical point, deconfinement of the fractionalized charge excitations still survives at the disorder fixed
point owing to a nonzero fixed point value of the vortex charge.

DOI: 10.1103/PhysRevB.75.075105 PACS number�s�: 74.20.Fg, 71.30.�h, 71.10.Hf

I. INTRODUCTION

Recently, it was proposed that, when there exist two com-
peting orders characterized by different patterns of symmetry
breaking, the two order parameters can acquire some topo-
logical Berry phases to allow a continuous quantum phase
transition between the two states, although forbidden in the
Landau-Ginzburg-Wilson �LGW� theoretical framework
without fine tuning of couplings admitting multicritical
points.1,2 In particular, the quantum critical point in this
quantum phase transition is quite exotic in the respect that
elementary excitations are fractionalized; it is thus called a
deconfined quantum critical point.3,4

One deconfined quantum critical point was demonstrated
in the competition between antiferromagnetic �AF� and val-
ance bond solid �VBS� orders.3,4 Tanaka and Hu considered
an SO�5� superspin representation including both the AF and
VBS order parameters, and derived an effective nonlinear �
model for the SO�5� superspin variable from the spinon rep-
resentation of the Heisenberg Hamiltonian.1 One crucial fea-
ture in their effective field theory is the presence of a Berry
phase for the superspin field. They demonstrated that the
competition between AF and VBS orders is well described
by the SO�5� nonlinear � model with a topological Berry
phase term.

In the present paper we consider another concrete ex-
ample, the competition between superconductivity �SC� and
charge density waves �CDWs�, as a simplified version of the
competition between AF and VBS. Introducing an SO�3�
pseudospin representation to include both the SC and CDW
order parameters, we derive an effective nonlinear � model
in terms of the O�3� pseudospin variable from the attractive
Hubbard model. Interestingly, a Berry phase term naturally
appears in this � model, allowing a deconfined quantum
critical point of fractionalized charge excitations with e in-
stead of 2e as a result of the competition between SC and
CDWs. Furthermore, we examine the stability of the decon-
fined quantum criticality against quenched randomness gen-

erating two kinds of random potentials, a random mass term
and a random fugacity one in the effective vortex action �Eq.
�16��. Performing a renormalization group �RG� analysis of
the vortex action �Eq. �16�� in the London approximation
�Eq. �17��, we argue that deconfinement of the fractionalized
excitations still survives although the presence of disorder
leads to a new quantum critical point with finite disorder
strength. We find that the stability of the deconfined quantum
criticality originates from the existence of the charged criti-
cal point.

Before going further, it is valuable to address several im-
portant differences between the present work and previous
studies. Earlier studies5 revealed that the half-filled negative-
U Hubbard model on a two-dimensional �2D� square lattice
is mathematically equivalent to the positive-U Hubbard
model, using the particle-hole transformation. This equiva-
lence maps the XY ordered antiferromagnetic phase of the
spin system that results for positive U to the superfluid phase
of the negative-U problem. Likewise, the Ising antiferromag-
net �for positive U� maps to a CDW phase �for negative U�.
However, in these earlier studies5 the role of the Berry phase
was not investigated clearly; thus the LGW-forbidden con-
tinuous transition and deconfined quantum critical points
were not found in the context of SC-CDW transitions.

It is interesting to understand the origin of the Berry phase
in the negative-U Hubbard model and the positive-U one.
The positive-U Hubbard model reduces to the antiferromag-
netic Heisenberg model in the large-U limit. In the negative-
U Hubbard model the low-energy effective action can be
mapped onto an effective model of hard-core lattice bosons
with a hopping amplitude of order t2 /U and a repulsive near-
est neighbor interaction of the same order in the strong cou-
pling limit U→−�.6 One can show that this hard-core boson
model is equivalent to the antiferromagnetic Heisenberg
model, associated with charge degrees of freedom to form a
pseudospin.5,7 The Berry phase in the negative-U Hubbard
model originates from the pseudospin �charge� SU�2�
symmetry5 while in the positive-U Hubbard model it comes
from the spin SU�2� symmetry. It should be noted that this

PHYSICAL REVIEW B 75, 075105 �2007�

1098-0121/2007/75�7�/075105�8� ©2007 The American Physical Society075105-1

http://dx.doi.org/10.1103/PhysRevB.75.075105


topological phase appears even at half filling. On the other
hand, it was not allowed at half filling in recent studies.8,9

The Berry phase resulting from the chemical potential in the
boson Hubbard-type model8,9 is different from the present
one because the presence of the chemical potential reduces
the SU�2� pseudospin symmetry to the U�1� one. This is the
reason why there exists only the Berry phase coming from
the chemical potential in the boson Hubbard-type model
while our effective action has both Berry phases resulting
from the SU�2� pseudospin symmetry and the chemical po-
tential. In other words, the competition between SC and
CDWs results in a nontrivial Berry phase term even at half
filling. Thus, the chemical potential plays the role of an ad-
ditional Berry phase in the present effective theory. Further-
more, the appearance of the Berry phase at half filling allows
other possible disordered phases corresponding to valence
bond orders in the pseudospin language. This resolves the
well-known conflict between the two previous studies10,11

that Ref. 11 does not admit a dimerized order while Ref. 10
claims this phase is certainly possible. The emergence of a
Berry phase at half filling clearly reveals how the dimerized
order appears.

We would like to mention that the present quantum tran-
sition occurs between the XY ordered phase and the Ising
antiferromagnetic one if one maps our negative-U problem
to the positive-U one. This XY-Ising antiferromagnetic tran-
sition allows the SO�3� pseudospin description for the com-
petition of SC and CDW fluctuations in the context of the
negative-U Hubbard model. On the other hand, the AF-VBS
quantum transition requires the SO�5� superspin description
for the competition of AF and VBS fluctuations.1

II. EFFECTIVE FIELD THEORY

A. Derivation of the O(3) nonlinear � model from the
attractive Hubbard model

We consider the attractive Hubbard Hamiltonian

H = − t�
ij�

ci�
† eiAijcj� −

3u

2 �
i

ci↑
† ci↑ci↓

† ci↓ − �
i�

vici�
† ci�.

�1�

Here t is the hopping integral of electrons, and u the strength
of on-site Coulomb repulsions. Aij is an external �static� elec-
tromagnetic field, and vi a quenched random potential.

The local interaction term can be decomposed into pairing
and density channels in the following way:

−
3u

2 �
i

ci↑
† ci↑ci↓

† ci↓ = −
u

2�
i

ci↑
† ci↓

† ci↓ci↑

−
u

2�
i
��

�

ci�
† ci� − 1�2

−
u

2���

ci�
† ci� − 1� .

Performing the Hubbard-Stratonovich transformation for the
pairing and density interaction channels, we find an effective

Lagrangian in the Nambu-spinor representation

Z =� D��i,�i
†,�i

R,�i
I,�i�exp�−� d�L� ,

L = �
i

�i
†���I − ��3��i − t�

	ij

��i

†�3eiAij�3� j + H.c.�

− �
i

��i
R�i

†�1�i + �i
I�i

†�2�i + �i�i
†�3�i�

+
1

2u
�

i

��i
R2 + �i

I2 + �i
2� − �

i
vi��i

†�3�i + 1� . �2�

Here �i is the Nambu spinor, given by �i= � ci↑
ci↓

† �. �i
R and �i

I

are the real and imaginary parts of the superconducting order
parameter, respectively, and �i the effective density potential.
� is the electron chemical potential which differs from its
bare value �b as �=�b+u /2.

Introducing a pseudospin vector 	� i���i
R ,�i

I ,�i�, one
can express Eq. �2� in a compact form as

Z =� D��i,�i
†,	� i�exp�−� d�L� ,

L = �
i

�i
†���i − t�

	ij

��i

†�3eiAij�3� j + H.c.� − �
i

�i
†�	� i · ����i

+
1

4u
�

i

tr�	� i · �� − �� + vi��3�2 − �
i

vi, �3�

where we used the shift of �i→�i−�−vi. Integrating over

the pseudospin field 	� i, Eq. �3� recovers the Hubbard model
Eq. �1�.

In this paper we consider only phase fluctuations in 	� i,
assuming amplitude fluctuations frozen, thus setting it as

	� i=mn� i with an amplitude m. Since our starting point is a
nonzero amplitude of the pseudospin field, we utilize a
strong coupling approach decomposing the directional fluc-
tuating field n� i into two complex boson fields, the so-called
CP1 representation,12

n� i · �� = Ui�
3Ui

†,

Ui = �z↑ − z↓
†

z↓ z↑
† � , �4�

where Ui is an SU�2� matrix field in terms of a complex
boson field zi� with pseudospin �. Using the CP1 represen-
tation in Eq. �3� and performing the gauge transformation


i = Ui
†�i, �5�

Eq. �3� reads

Z =� D�
i,
i
†,Ui�exp�−� d�L� ,
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L = �
i


i
†���I − m�3 + Ui

†��Ui�
i − t�
	ij


�
i
†Ui

†�3eiAij�3Ujij

+ H.c.� +
1

4u
�

i

tr�m�3 − �� + vi�Ui
†�3Ui�2 − �

i
vi. �6�

Since Eq. �6� is quadratic for the spinor field 
i, one can
formally integrate out the spinor field to obtain

Sef f = − tr ln���I − m�3 + Ui
†��Ui − tijUi

†�3eiAij�3Uj�

+� d��−
m

2u
�

i

�� + vi�tr�Ui
†�3Ui�3�

+ �
i
�vi

2 + �2 + m2 + �vi

2u
− vi� . �7�

Expanding the logarithmic term for Ui
†��Ui and Ui

†�3eiAij�3Uj,
we obtain

Sef f � �
i

tr�G0�Ui
†��Ui��

+
1

2�
i

trj�G0tijUi
†�3eiAij�3UjG0tjiUj

†�3e−iAij�3Ui�

+� d��−
m

2u
�

i

�� + vi�tr�Ui
†�3Ui�3�

+ �
i
�vi

2 + �2 + m2 + �vi

2u
− vi� , �8�

where G0=−���I−m�3�−1 is the single-particle propagator.
The first term leads to a Berry phase while the second results
in an exchange interaction term. The resulting effective ac-
tion is obtained to be without the electromagnetic field Aij,

Sef f = iS�
i

�„�Si����… + �
0

�

d�Hef f ,

Hef f = − J�
ij

�Si
xSj

x + Si
ySj

y� + V�
ij

Si
zSj

z − �
i

�� + vi�Si
z,

�9�

where the effective exchange coupling strength is given by
J=V=2t2 /m.13,14 It is interesting that the effective Hamil-
tonian for the competition between SC and CDW is obtained
to be the Heisenberg model in terms of the O�3� pseudospin
variable. One important message in this effective action is
that the Berry phase term iS�i�(�Si����) should be taken into
account for the SC-CDW transition even at half filling. Fur-
thermore, the chemical potential plays the same role as an
external magnetic field, and the disorder potential as a ran-
dom magnetic field.

If we consider half filling without disorder, i.e., �=vi=0,
the XY order of 	Si

±
�0 and 	Si
z
=0 is expected in the case

of JV, identified with SC. On the other hand, the Ising
order of 	Si

z
�0 and 	Si
±
=0 arises in the case of VJ, cor-

responding to a CDW because of the Berry phase, as will be
discussed below. One important question in this paper is how
the SC-CDW transition appears in the presence of disorder.

It is easy to show that the Heisenberg model with ferro-
magnetic XY couplings is the same as that with antiferro-
magnetic ones. Performing the Haldane mapping of the an-
tiferromagnetic Heisenberg model14 with a magnetic field in
the z direction, we obtain the O�3� nonlinear � model

S� = iS�
i

�− 1�i�„�ni����… +
1

g
�

0

c�

dx0� ddx���0nz�2

+ ��0nx − i�� + v�ny�2 + ��0ny + i�� + v�nx�2 + ��xn�2� ,

�10�

where c is the velocity of spin waves, and g is the coupling
strength between spin wave excitations. As Tanaka and Hu
derived an effective SO�5� nonlinear � action of the super-
spin field for the AF-VBS transition, we derived an effective
SO�3� nonlinear � action of the pseudospin field for the SC-
CDW transition. Furthermore, this effective � action in-
cludes not only doping contributions but also disorder ef-
fects. On the other hand, in the SO�5� superspin � model it is
not clear how the doping effect modifies the effective action
because a chemical potential term breaks the relativistic in-
variance. In this case it is not clear even how to obtain the
topological term. In the following we discuss how this �
action describes the competition between SC and CDWs in
the presence of quenched disorder by focusing on the role of
the Berry phase.

Without loss of generality we use the parametrization

n� i = „sin�u�i�cos �i,sin�u�i�sin �i,cos�u�i�… , �11�

where u is an additional timelike parameter for the Berry
phase term.14 We note that ni

+=sin �ie
i�i corresponds to the

pairing potential �i=�i
R+ i�i

I. Inserting Eq. �11� into Eq.
�10� and performing the integration over u in the Berry phase
term, we obtain the following expression for the nonlinear �
model:

Sef f = iS�
i

�− 1�i�
0

c�

dx0�1 − cos �i��̇i

+ �
0

c�

dx0� ddx
1

g
�sin2 ������2 + �����2�

+ �
0

c�

dx0� ddx
1

g
�− �� + v�2 sin2 �

+ 4i�� + v��̇ sin2 �� + SI,

SI = I�
0

c�

dx0� ddx cos2 � , �12�

where we introduced the action SI favoring the XY order.
This procedure is quite parallel to that in the SO�5� �
model.1 The chemical potential favors the XY order without
the “easy plane” anisotropy term. The easy plane anisotropy
allows us to set �i=� /2. In this case Eq. �12� reads

COMPETITION BETWEEN SUPERCONDUCTIVITY AND… PHYSICAL REVIEW B 75, 075105 �2007�

075105-3



SXY = i��
i
��− 1�i +

8

g
�� + vi��qi

+ �
0

c�

dx0� ddx� 1

2u�

�̇2 +
��

2
��x��2� . �13�

Here qi= �1/2���0
c�dx0�̇i is an integer representing an instan-

ton number, here a vortex charge, and the pseudospin value
S=1/2 is used. Anisotropy in time and spatial fluctuations of
the � fields are introduced by u� and ��. The effective field
theory for the SC-CDW transition is given by the quantum
XY model with Berry phase in the easy plane limit of Eq.
�10�. It is clear that the topological phase appears even at half
filling as a result of the competition between SC and CDWs.
The chemical potential plays the role of an additional Berry
phase in the phase field �.

B. Effective vortex action with both external and random
dual magnetic flux

To take into account the Berry phase contribution, we
resort to a duality transformation, and obtain the dual vortex
action

Sv = − tv�
nm

�n
†eic̄nm+icnm�m + V���n�� +

1

2ev
2�

�

�� � c��
2

−
4

gev
2�

�

vi�� � c�i. �14�

Here �n is the vortex field residing in the �2+1�D dual lat-
tice n of the original lattice �= �� , i�, and cnm the vortex
gauge field. V���n�� is the effective vortex potential. ev is a
coupling constant of the vortex field to the vortex gauge
field. c̄nm is the background gauge potential for the vortex
field, resulting from the Berry phase contribution and satis-
fying at half filling

�� � c̄�i = �− 1�i� .

The randomness vi plays the role of a dual random magnetic
field in vortices.

In the mean-field approximation ignoring the vortex
gauge fluctuations cnm, one finds that the vortex problem
coincides with the well-known Hofstadter one. If one con-
siders a dual magnetic flux f = p /q with relatively prime in-
tegers p ,q �here, p=1 and q=2�, the dual vortex action has
q-fold degenerate minima in the magnetic Brillouin zone.
Low-energy fluctuations near the q-fold degenerate vacua are
assigned to be �l with l=0, . . . ,q−1. Balents et al. con-
structed an effective LGW free-energy functional in terms of
low-energy vortex fields 
l, given by linear combinations of
�l.

8 Constraints for the effective potential of 
l are the sym-
metry properties associated with lattice translations and rota-
tions in the presence of the dual magnetic field. In the
present q=2 case �corresponding to a � flux phase� there are
two degenerate vortex ground states at momentum �0,0� and
�� ,��. Introducing the linear-combined vortex fields of 
0

=�0+ i�1 and 
1=�0− i�1 where �0 and �1 are the low-
energy vortex fluctuations around the two degenerate ground

states, respectively, and considering the symmetry properties
mentioned above, one can find an effective low-energy ac-
tion. However, one important difference from the previous
study8 due to the contribution of the random Berry phase
should be taken into account carefully. A cautious person
may doubt if it is meaningful to consider the magnetic Bril-
louin zone in the presence of randomness. Actually, this is a
correct question. In this paper we assume the existence of the
magnetic Brillouin zone since we are interested in the limit
of weak randomness.

Based on symmetry properties of the square lattice under
� flux, we write down the effective action for low-energy
vortices with randomness

Sef f =� d�d2r����� − ic��
0�2 + ���� − ic��
1�2 + m2��
0�2

+ �
1�2� + u4��
0�2 + �
1�2�2 + v4�
0�2�
1�2 − v2�
0
*
1

+ H.c.� +
1

2ev
2 �� � c�2� −� d�d2rv�� � c��. �15�

In the effective vortex potential m2 is the vortex mass, u4 the
local interaction, v4 the cubic anisotropy, and v2 breaks the
U�1� phase transformation 
0�1�→ei�0�1�
0�1� in the presence
of a random Berry phase for vortices. There are two impor-
tant differences between the cases with and without disorder.
In the absence of disorder the v2 term is given by
−v8��
0

*
1�4+H.c.� owing to the fourfold symmetry.3,8

However, the presence of weak disorder implies that lattice
translations and rotations are no longer symmetries. This re-
duces the fourth power to the first one. Furthermore, we es-
timate that v2 is a random variable depending on disorder.
One can regard v2 as an instanton fugacity.3,4 Thus, the esti-
mation of the random variable v2 means that disorder makes
the instanton fugacity random. As another contribution of
disorder v is a dual random magnetic field in the last term.
This term generates different kinds of random potentials, as
will be seen later.

Based on the effective vortex potential Eq. �15�, one can
perform a mean-field analysis in the absence of disorder
�v=0�.15 Condensation of vortices occurs in the case of
m2�0 and u4�0. The signs of v4 and v8 determine the
ground state. For v4�0, both vortices have a nonzero
vacuum expectation value �	
0
�= �	
1
��0, and their rela-
tive phase is determined by the sign of v8. In the case of
v8�0 the resulting vortex state corresponds to a columnar
dimer order, breaking both the rotational and translational
symmetries. In the case of v8�0 the resulting phase exhibits
a plaquette pattern, breaking the rotational symmetries. On
the other hand, if v4�0, the ground states are given by either
�	
0
��0, �	
1
�=0 or �	
0
�=0, �	
1
��0, and the sign of
v8 is irrelevant. In this case an ordinary charge density wave
order at wave vector �� ,�� is obtained, breaking the trans-
lational symmetries. This mean-field analysis coincides with
that in Ref. 3.

At the critical point m2=0 the eighth-order term is cer-
tainly irrelevant owing to its high order. Furthermore, the
cubic anisotropy term �v4� is well known to be irrelevant in
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the case of q�qc=4, ignoring vortex gauge fluctuations.16

As a result, the Heisenberg fixed point �v4
*=0 and u4

*�0�
appears in the limit of zero vortex charge �ev→0�. Allowing
the vortex gauge fields at the Heisenberg fixed point, the
Heisenberg fixed point becomes unstable, and a new fixed
point with a nonzero vortex charge appears as long as the
cubic anisotropy v4 is assumed to be irrelevant.17,18 This
charged fixed point seems to be qualitatively the same as that
obtained in the absence of the dual magnetic field, i.e., the
q=1 case. However, one important difference is that the dual
flux quantum �corresponding to the electromagnetic charge
of the original boson� experienced by the vortex field 
0�1� is
halved due to the two flavors of vortices.8 This implies that
the boson excitations dual to the vortices carry an electro-
magnetic charge e instead of 2e. These fractionalized excita-
tions are confined to appear as the usual Cooper pair excita-
tions with charge 2e away from the quantum critical point,
resulting from the eighth-order term to break the U�1� gauge
symmetry.4 However, as mentioned above, this v8 term be-
comes irrelevant at the critical point, indicating that the
charge-fractionalized excitations are deconfined to appear as
elementary excitations. Thus, the SC-CDW transition at half
filling occurs via a deconfined quantum critical point like the
AF-VBS transition.3 This conclusion does not depend on
whether the cubic anisotropy is relevant or not at the charged
critical point. Even if v4 is relevant at the isotropic charged
fixed point and causes a new anisotropic charged fixed point,
the eighth-order term associated with charge fractionalization
will be irrelevant.

III. ROLE OF DISORDER IN THE DECONFINED
QUANTUM CRITICAL POINT

Now we investigate the role of disorder in the deconfined
quantum critical point. In order to take into account the ran-
dom potentials by disorder, we use the replica trick to aver-
age over disorder. The random magnetic field v and the ran-
dom fugacity v2 in the vortex action Eq. �15� would cause

− �
k,k�=1

N � d�d�1� d2r
I

2
�� � ck���� � ck���1

,

− �
k,k�=1

N � d�d�1� d2r
R

2
�
0k

* 
1k + H.c.��

��
0k�
*


1k� + H.c.��1

for Gaussian random potentials satisfying

	v�r�
 = 0, 	v�r�v�r1�
 = I��r − r1� ,

	v2�r�
 = 0, 	v2�r�v2�r1�
 = R��r − r1�

with the strength I and R of the random potentials, respec-
tively. Here k ,k�=1, . . . ,N denote replica indices, and the
limit N→0 is taken at the final stage of calculations. How-
ever, inclusion of only this correlation term is argued to be
not enough for disorder effects. Because the gauge-field
propagator has off-diagonal components in replica indices,

the vortex gauge interaction of the order I2ev
4 generates a

quartic term including the couplings of different replicas of
vortices even if this term is absent initially.17 The resulting
disordered vortex action is obtained as

ZR =� D
0kD
1kDck�e−SR,

SR = Sv + Sd + Sf ,

Sv = �
k=1

N � d�d2r����� − ick��
0k�2 + ���� − ick��
1k�2

+ m2��
0k�2 + �
1k�2� + u4��
0k�2 + �
1k�2�2

+ v4�
0k�2�
1k�2 +
1

2ev
2 �� � ck�2� ,

Sd = − �
k,k�=1

N � d�d�1� d2r
R

2
�
0k

* 
1k + H.c.��

��
0k�
*


1k� + H.c.��1

− �
k,k�=1

N

�
q,q�=0

1 � d�d�1� d2r
W

2
�
qk��2�
q�k��1

�2,

Sf = − �
k,k�=1

N � d�d�1� d2r
I

2
�� � ck���� � ck���1

�16�

with W�0. The last term induced by disorder in Sd has the
same form as the term resulting from a random mass term.
The correlation term Sf between random magnetic fluxes is
ignored in this paper. In the small-I limit this term was
shown to be exactly marginal at one-loop level.17

The question is what happens at the deconfined charged
critical point when randomness is turned on. It is not an easy
task to take into account all of the terms on an equal footing
in the RG analysis. To investigate the role of the two
disorder-induced terms of Sd at the deconfined charged criti-
cal point, one can consider two approximate ways. One is
first to examine the random mass term, denoted by the cou-
pling strength W, at the deconfined charged critical point,
and then to see what happens if the random fugacity �R� is
turned on at a weak disorder fixed point. The other is first to
investigate the effect of the random fugacity term on the
deconfined charged critical point, and then to examine the
random mass term. In this paper we follow the second ap-
proach because our main interest is to see the fate of the
deconfined quantum criticality against randomness. It should
be noted that the existence of the deconfined quantum criti-
cality is determined by the fugacity term.4

To examine the role of the random fugacity term in the
charged critical point, we consider a phase-only action ignor-
ing amplitude fluctuations of vortices.19 This so-called Lon-
don approximation was also utilized in Refs. 3, 4, and 8. The
effective vortex action is obtained to be
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SR = �
k=1

N � d�d2r��
q=0

1
�

2
����qk − ck��2 +

1

2ev
2 �� � ck�2�

− �
k,k�=1

N � d�d�1� d2r
R

2
cos ��0k − �1k��

�cos ��0k� − �1k���1
, �17�

where � is the stiffness parameter proportional to the con-
densation probability of vortices at the mean-field level. The
parameter R is also renormalized by the condensation am-
plitude of the vortices.

To see whether the random cosine term is relevant or not
at the charged fixed point, it is necessary to check the exis-
tence of the charged critical point without the disorder-
induced term. Considering R=0 in Eq. �17�, we obtain the
RG equations for the stiffness � and the vortex charge ev

2,

d�

dl
= � − �ev

2� ,
dev

2

dl
= ev

2 − 2�ev
4, �18�

where � and � are positive numerical constants,20 and l is the
usual scaling parameter. The last term −�ev

2� in the first
equation originates from the self-energy correction of the
vortex field owing to gauge fluctuations while the term −�ev

4

in the second equation results from that of the gauge field
due to screening of the vortex charge. In these RG equations
there exist two fixed points; one is the neutral �XY� fixed
point of ev

*2=0 and �*=0 and the other, the charged �IXY�
fixed point of ev

*2=1/ �2�� and �*=0. The neutral fixed point
is unstable against a nonzero charge ev

2�0, and the RG flows
in the parameter space of �� ,ev

2� converge into the charged
fixed point owing to 1−�ev

*2=1−� / �2���0.4

Next we examine the role of the random fugacity term
ignoring vortex gauge fluctuations, i.e., ev

2 =0. The random
fugacity term can be rewritten in the following way:

R

2
cos��0k − �1k�� cos��0k� − �1k���1

=
R

4
cos���0k − �1k�� + ��0k� − �1k���1

�

+
R

4
cos���0k − �1k�� − ��0k� − �1k���1

� . �19�

In this expression we can see that the last term is the most
relevant term owing to its sign. Thus, it is reasonable to
consider the following action for the RG analysis:

SR � �
k=1

N � d�d2r��

2
����0k�2 +

�

2
����1k�2�

− �
k,k�=1

N � d�d�1� d2r
R

4
cos���0k − �1k��

− ��0k� − �1k���1
� .

This action was well studied in the context of Anderson lo-
calization in one-dimensional systems when the flavor num-

ber of bosons is 1.21 In Ref. 4 we derived RG equations for
the two-flavor sine-Gordon action. Similarly, one can easily
obtain the following RG equations for the stiffness � and the
random parameter R:

d�

dl
= � + �R22

�
,

dR

dl
= �4 − �

2

�
�R , �20�

with positive numerical constants � and �. In our consider-
ation their precise values are not important. The effect of two
flavors appears as the factor 2 in the 1/� terms. One impor-
tant difference between the present �2+1�D study and the
previous �1+1�D one21 is that the bare scaling dimensions of
� and R are given by 1 and 4 in �2+1�D while by 0 and 3 in
�1+1�D, respectively. This difference results in the fact that
there exist no stable fixed points in �2+1�D while in
�1+1�D there is a line of fixed points describing the
Kosterliz-Thouless transition.17,21 Both the phase stiffness �
and the parameter R become larger and larger at low energy.
This implies that depth of the random cosine potential in Eq.
�17� becomes deeper and deeper, making the phase differ-
ence �0−�1 pinned at one ground position of the cosine po-
tential. This is the signal of confinement between fractional-
ized excitations �0 and �1.4

Combining Eq. �18� with Eq. �20�, we obtain the RG
equations for the stiffness �, the vortex charge ev

2, and the
random parameter R:

d�

dl
= � − �ev

2� + �R22

�
,

dev
2

dl
= ev

2 − 2�ev
4,

dR

dl
= �4 − �

2

�
�R . �21�

These RG equations tell us that the nonzero fixed point value
of the vortex charge �ev

2*=1/2�� in the second RG equation
makes the stiffness parameter � vanish ��*=0� in the first RG
equation, causing the random parameter to be irrelevant, i.e.,
R*=0 in the third RG equation. This solution is self-
consistent with the first RG equation. This result means that,
as long as the stable charged fixed point exists, the random
fugacity term is irrelevant at the charged critical point. As a
result, we find only one stable fixed point of ev

2*=1/2�,
�*=0, and R*=0. The deconfined quantum criticality is
stable against the random fugacity term.

Now we consider the random mass term at this decon-
fined charged critical point. At the tree level one can easily
check that the random mass term is relevant at the charged
critical point, indicating instability of the charged fixed point
against disorder. One-loop RG analysis shows that a weak
disorder fixed point appears if the cubic anisotropy is
irrelevant.17,18 One important point is that the fixed point
value of a vortex charge is nonzero at the weak disorder
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fixed point, given by the value ev
2*=1/2� of the charged

critical point.17,18 Furthermore, the fixed point value of the
phase stiffness would still be zero at the random charged
critical point because the vortex condensation should occur
at �*=0. Based on this discussion, we expect that the random
fugacity term would still be zero at the weak disorder fixed
point. This implies that, although the dimerized or CDW
phases may be unstable owing to disorder, turning into
glassy phases, deconfinement of fractionalized charge exci-
tations is expected to survive at the disorder critical point.
However, we admit that, because we did not treat the two
disorder-induced terms of Sd in Eq. �16� on an equal footing,
the present result is not fully justified.

IV. SUMMARY AND DISCUSSION

In summary, we showed that the competition between su-
perconductivity and charge density waves results in a non-
trivial Berry phase for the SC and CDW order parameters
even at half filling, allowing a deconfined quantum critical
point of fractionalized charge excitations with e instead of
2e. We considered the stability of the deconfined quantum
criticality against quenched randomness generating two
kinds of random potentials, a random mass term and a ran-
dom fugacity one in the vortex action. Within the London
approximation we showed that the random fugacity term is
irrelevant at the charged critical point. Then we discussed the
effect of the random mass term on this fixed point, and found
that the charged critical point becomes unstable, and a weak
disorder fixed point with a nonzero vortex charge appears.
We argued that, since the random fugacity term would still
be irrelevant at this disorder fixed point owing to the finite
fixed point value of the vortex charge, deconfinement of frac-
tionalized excitations survives in the weak disorder limit.

A cautious person may question the relevance of this
LGW-forbidden quantum transition because there has been
no clear indication in actual physical systems so far. One
way to justify this quantum transition is to find its one-
dimensional analog. Considering spin fluctuations associated
with the AF-VBS transition, its critical field theory is well
known to be an effective O�4� nonlinear � model with a

topological � term as an SU�2� level-1 Wess-Zumino-Witten
theory.2 This effective field theory can be derived from some
microscopic models such as the bond-alternating spin chain22

and the Peierls-Hubbard model23 via non-Abelian bosoniza-
tion. We believe that this procedure can be applied to charge
fluctuations associated with competition between SC and
CDWs. Actually, Carr and Tsvelik investigated the continu-
ous SC-CDW transition in a quasi-one-dimensional system.24

They considered an effective model of spin-gapped chains
weakly coupled by Josephson and Coulomb interactions.
They obtained an effective field theory for SC and CDW
fluctuations in the framework of the non-Abelian bosoniza-
tion with weak interchain-interactions. They found its phase
diagram to show SC and CDW phases, separated by a line of
critical points which exhibits an approximate SU�2� �charge�
symmetry. They proposed that the critical line would shrink
to a point in two dimensions, identified with the quantum
critical point in the SC-CDW quantum transition. Further-
more, they discussed the relevance of their theory by consid-
ering the experimental system of Sr2Ca12Cu24O41 built up
from alternating layers of weakly coupled CuO2 chains and
Cu2O3 two-leg ladders. One important difference is that the
effective field theory in Ref. 24 does not include a topologi-
cal � term while our field theory does allow the � term. In
this respect the correspondence between the present descrip-
tion and the previous theory24 is not complete. A further
investigation for the one-dimensional system is necessary
near future.

Important future work in this direction is to introduce spin
degrees of freedom associated with an antiferromagnetic or-
der. Then the resulting effective nonlinear � model would
posses an SO�4��SU�2� � SU�2� symmetry, where the
former SU�2� is associated with spin, and the latter SU�2�
pseudospin. A topological term would appear in this SO�4� �
model. The competition between antiferromagnetism, super-
conductivity, and density waves remains to be solved.
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