
Exact topological quantum order in D=3 and beyond: Branyons and brane-net condensates

H. Bombin and M. A. Martin-Delgado
Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain

�Received 4 August 2006; revised manuscript received 19 October 2006; published 7 February 2007�

We construct an exactly solvable Hamiltonian acting on a three-dimensional lattice of spin-1
2 systems that

exhibits topological quantum order. The ground state is a string net and a membrane-net condensate. Excita-
tions appear in the form of quasiparticles and fluxes, as the boundaries of strings and membranes, respectively.
The degeneracy of the ground state depends on the homology of the 3-manifold. We generalize the system to
D�4, where different topological phases may occur. The whole construction is based on certain special
complexes that we call colexes.
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I. INTRODUCTION

Deviations from a standard theory in a certain field of
physics have always attracted attention in the search for new
physics. In condensed matter, the standard model is the Lan-
dau theory of quantum liquids �Fermi liquid� supplemented
with the spontaneous symmetry-breaking �SBB� mechanism
and the renormalization group scheme.1–3 The concept of
local order parameter plays a central role in detecting quan-
tum phases or orders within the Landau theory. Quite on the
contrary, topological orders cannot be described by means of
local order parameters or long-range interactions. Instead, a
new set of quantum numbers is needed for this new type of
phase, such as ground-state degeneracy, quasiparticle braid-
ing statistics, edge states,4–6 topological entropy,7,8 etc.

A consequence of the SBB is the existence of a ground-
state degeneracy. However, in a topological order, there ex-
ists a ground-state degeneracy with no breaking of any sym-
metry. This degeneracy has a topological origin. Thus,
topological orders deviate significantly from more standard
orders covered within the Landau symmetry-breaking theory.
The existence of topological orders seems to indicate that
nature is much richer than what the standard theory has pre-
dicted so far.

Emblematic examples of topological orders are fractional
quantum Hall �FQH� liquids. FQH systems contain many
different phases at T=0 which have the same symmetry.
Thus those phases cannot be distinguished by symmetries
and Landau’s SBB does not apply.4,9–11 Therefore we need to
resort to other types of quantum numbers to characterize
FQH liquids. For example, the ground-state degeneracy dg
depends on the genus g of the D=2 surface where the elec-
tron system is quantized; that is, dg=mg with the filling fac-
tor being �= 1

m .
There are several other examples of topological orders

such as short-range resonating valence bond models,12–15

quantum spin liquids,5,16–23 etc. Due to this topological order,
these states exhibit remarkable entanglement properties.24,25

Besides these physical realizations, there have been other
proposals for implementing topological orders with optical
lattices,26–28 with spin interactions in honeycomb lattices.29

In this paper, we shall be concerned with topological models
constructed with spins S= 1

2 located at the sites of certain
lattices with a coordination number, or valence, depending

on the dimension D of the space and the color properties,
which will be explained in Sec. II.

From the point of view of quantum information,30 a topo-
logical order is a different type of entanglement: it exhibits
nonlocal quantum correlations in quantum states. A topologi-
cal phase transition is a change between quantum states with
different topological orders. In dimensions D�4, we con-
struct exact examples of quantum lattice Hamiltonians exhib-
iting topological phase transitions in Sec. IV A. Here, we
find an example of topology-changing transition as certain
coupling constant is varied in D=4. This is rather remarkable
since the most usual situation is to have an isolated topologi-
cal point or phase surrounded by nontopological phases.24,25

In two dimensions, a large class of “doubled” topological
phases has been described and classified mathematically us-
ing the theory of tensor categories.47,48 The physical mecha-
nism underlying this large class of topological orders is
called string-net condensation. This mechanism is equivalent
to particle condensation in the emergence of ordered phases
in the Landau theory. A string net is a network of strings, and
it is a concept more general than a collection of strings,
either closed or open. In a string net, we may have a situation
in which a set of strings meet at a branching point or node,
something that is missing in ordinary strings which have two
ends at most �see Fig. 14�. More specifically, the ground state
of these theories is described by superpositions of states rep-
resenting string nets. The physical reason for this is the fact
that local energy constraints can cause the local microscopic
degrees of freedom present in the Hamiltonian to organize
into effective extended objects such as string nets.

A different field of applications for topological orders has
emerged with the theory of quantum information and
computation.31–34 Quantum computation, in a nutshell, is the
art of mastering quantum phases to encode and process in-
formation. However, phases of quantum states are very frag-
ile and decohere. A natural way to protect them from deco-
herence is to use topologically ordered quantum states which
have a nonlocal kind of entanglement. The nonlocality
means that the quantum entanglement is distributed among
many different particles in such a way that it cannot be de-
stroyed by local perturbations. This reduces decoherence sig-
nificantly. Moreover, the quantum information encoded in
the topological states can be manipulated by moving quasi-
particle excitations around one another producing braiding
effects that translate into universal quantum gates.31,35–39
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Nevertheless, there are also alternative schemes to do lots of
quantum information tasks by using only the entanglement
properties of the ground state.40–42

The situation for topological orders in D=3 is less under-
stood. This is due in part to the very intricate mathematical
structure of topology in three dimensions. While the classi-
fication of all different topologies is well established in two
dimensions, in D=3 the classification is much more difficult,
and only recently does it appear to be settled with the proof
of Thurston’s geometrization conjecture,43 a result that in-
cludes the Poincaré conjecture as a particular case.44–46 To-
pological orders have been investigated in three dimensions
with models that exhibit string-net condensation47 using
trivalent lattices that extend the case of trivalent lattices in
two dimensions. However, a problem arises when one wishes
to have an exactly solvable Hamiltonian describing this to-
pological phase since this type of magnetic flux operators
does not commute in three dimensions anymore. A solution
to this problem can be found by imposing additional con-
straints to the mechanism found in D=2, but this somehow
obscures the geometrical picture of the resulting exactly
solvable model. Alternatively, it is possible to use a three-
dimensional �3D� generalization of Kitaev’s toric code to
provide examples with a topological order based both on
string condensation and on membrane condensation.49 In the
theory of topological quantum error correcting codes, there
are also studies of toric codes in dimensions higher than
D=2.33,50,51

In this paper, we introduce a solvable model in D=3 that
exhibits a topological order. Here, we construct models in
which local operators of several kinds commute among each
other. This is achieved by requiring certain geometrical prop-
erties of the lattices, for which the models are defined. As a
result, we can study the whole spectrum of the models and,
in particular, their quantum topological properties. The
ground state can be described as a string-net condensate or,
alternatively, as a membrane-net condensate. A membrane-
net condensate is a generalization of a collection of mem-
branes, much like a string-net-condensate is a generalization
of the notion of strings. Thus, in a membrane-net, mem-
branes can meet at branching lines instead of at points. Ex-
citations come in two classes: there are quasiparticles that
appear as the end points of strings or certain type of fluxes
that appear as the boundaries of membranes. These fluxes are
extended objects. Interestingly enough, when a quasiparticle
winds around a closed flux, the system picks up a nontrivial
Abelian phase �see Fig. 17�, very similar to when one
anyon52,53 winds around another anyon, acquiring an Abelian
factor in the wave function of the system. We coin the name
branyons to refer to this quasiparticles that are anyons with
an extended structure. In fact, in our models they appear as
Abelian branyons.

Our constructions can be nicely generalized to higher di-
mensions, where different classes of topological orders are
possible. We can compute exactly the ground-state degenera-
cies in terms of the Betti numbers of the manifolds where the
lattice models are defined. This allows us to discriminate
between manifolds with different homological properties us-
ing quantum Hamiltonians. The generalized membranes are
called branes, and we also find a brane-net mechanism.

We call the lattices that we introduce in this paper
colexes. The motivation for their introduction is that they
produce quantum Hamiltonians with a richer topology than
others previously considered. For instance, in D=2 �see Ref.
40� we have constructed trivalent lattices on tori of genus g
for which the ground-state degeneracy is 2k, where k is given
by k=4−2�, ��=2−2g is the Euler characteristic�, which is
bigger by a factor of 2 than the degeneracy found in Kitaev’s
toric Hamiltonians. This factor of 2 is related to the appear-
ance of two independent colors for the strings in the model.

In this paper, we have found a complete theory and prop-
erties of colexes of any dimension. In particular, we have
found other instances of topological orders in D=3, where
much little is known about the classification of topological
orders as it is in D=2. The picture is even richer for D�4
because different topological orders emerge from the same
colex structure. We show how this is related to the fact that
we can obtain several complexes from a single colex.

In order to summarize the main contributions that we
present in this paper, we hereby advance a list of some of our
most relevant results.

�i� We introduce a different class of exactly solvable
models in D=3 and beyond based on a different type of
lattices that we call D colexes �or colexes for short�.

�ii� Our models present a different mechanism to generate
topological orders in D=3 based on the concept of
membrane-net condensation. Then, it is generalized to D
�3 in terms of brane-net condensations.

�iii� In the excitation spectrum of these models, there are
extended objects �not merely points� that exhibit nontrivial
braiding properties. We call them branyons, which stands for
brane anyons.

�iv� The ground-state degeneracy of our Hamiltonians
has a topological origin, and it is different from those of
other topological models. For instance, our models have
higher degeneracy than Kitaev’s toric codes.

�v� Colexes show a rich mathematical structure. The
computation of topological invariants is reduced to a combi-
natorial problem. From a physical point of view, their struc-
ture gives rise to a remarkable property, namely, that the
number of charges depends on the dimension of the space.

�vi� The topological structures exhibited by our models
have natural applications in quantum information theory,
where they can serve to construct topological quantum codes
for error correction �see Ref. 40�.

�vii� We have constructed families of Hamiltonians with
topology-changing quantum phase transitions �see Sec. IV�.

This paper is organized as follows. In Sec. II, we intro-
duce the models defined in three-dimensional lattices placed
on different manifolds. These lattices are constructed by
means of color complexes that we call colexes of dimension
3, or 3-colexes. In Sec. III, the notion of colexes is general-
ized to arbitrary dimensions. In Sec. IV, we extend the topo-
logical quantum Hamiltonians beyond D=3 dimensions. In
particular, we find instances of topology-changing phase
transitions. Section V is devoted to conclusions. In a set of
appendixes, we provide a full account of technical details
pertaining to particular aspects of our models.
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II. THE MODEL IN 3-MANIFOLDS

A. Topological order and homology

The model that we are going to study belongs to the cat-
egory of topologically ordered quantum systems. A system
with topological quantum order is a gapped system that
shows a dependency between the degeneracy of its ground
state and the topology of the space where it exists. Certainly,
such a dependency could manifest in many ways, typically
as a function of certain topological invariants of the space.

In the case at hand, these topological invariants turn out to
be the Betti numbers of the manifold. These in turn reflect
the Z2 homology42 of the manifold, and so we will now
introduce several concepts and we will illustrate them using
a well-known 3-manifold, the 3-torus.

Consider any 3-manifold M. For a 1-cycle, we under-
stand any closed nonoriented curve � in it, or several such
curves. In other words, it is a closed 1-manifold embedded in
M. Suppose that we can embed in M a 2-manifold in such
a way that its boundary is �. In that case, � is called a
1-boundary and is said to be homologous to zero. More gen-
erally, consider two nonoriented curves �1 and �2 with com-
mon end points, as in Fig. 1�a�. We can combine these two
curves into a single 1-cycle, and then we say that they are
homologous if the 1-cycle is a 1-boundary. In other words,
�1��2 if and only if �1+�2�0. This kind of equivalence
can also be applied to two 1-cycles, and thus two 1-cycles
are homologous if and only if their combination is a
1-boundary. Then, the idea is that any 1-cycle can be con-
structed, up to homology equivalence, by a combination of
certain basic 1-cycles. The number of 1-cycles needed to
form such a basis is a topological invariant, the first Betti
number h1 of the manifold M. For the 3-torus, h1=3. A
possible basis in this case is the one formed by the three
1-cycles that cross the torus in the three spatial directions, as
in Fig. 1�b�.

Similarly, we can think of 2-cycles as closed 2-manifolds
embedded in M. Then, when a 2-cycle is the boundary of
some embedded 3-manifold, it is called a 2-boundary and is
said to be homologous to zero. Two 2-manifolds with a com-
mon boundary can be sewn together to form a 2-cycle, and
they are homologous if this 2-cycle is a 2-boundary. As in
the case of 1-cycles, there exists a basis for 2-cycles up to
homology. Again, these can be exemplified in the case of a
3-torus �see Fig. 1�c��. The topological invariant that gives
the cardinality of such a basis is the second Betti number h2
and this equals h1.

Throughout the text, we sometimes use a more suggestive
language. Instead of curves, we talk about strings, closed or
open with end points. Similarly, we refer to embedded
2-manifolds as membranes, either closed or with a boundary.

B. System and Hamiltonian

Usually, when we think of a lattice, say, a three-
dimensional one, we first imagine or fix the space in which it
exists. However, it is also natural to construct the space from
the pieces that make up the lattice, say, its sites, links, and so
on. Consider, for example, a football made up of hexagons
and pentagons sewed together. In this case, the resulting to-
pological space is a sphere made from several polyhedra that
are attached, putting together vertices with vertices and sides
with sides. Any closed 2-manifold can be constructed by
sewing together polyhedra in this way. Such a construction is
called a 2-complex, and its constituents are called general
cells. Vertices are 0-cells, links are 1-cells, and the polyhedra
or faces are 2-cells.

One can use these ideas for spaces of arbitrary dimension.
In particular, we are now interested in three-dimensional
spaces, which by analogy can be constructed by gluing to-
gether polyhedral solids. Let M be a closed connected mani-
fold that has been constructed this way. Its polyhedral solids
are balls whose boundary surface is a polyhedron, i.e., a
sphere divided into faces, edges, and vertices �see Fig. 2�. It
is important that the gluing of polyhedral solids must be such
that this structure is respected; that is, faces are glued to
faces, edges to edges, and vertices to vertices. For brevity,
we will call polyhedral solids simply cells. Thus, we have a
3-manifold divided into vertices V, edges E, faces F, and
cells C. Such a structure in a 3-manifold is called a
3-complex.

In order to construct the topological quantum system that
we propose, we consider a 3-complex such that �i� the neigh-
borhood of every vertex is as the one in Fig. 3 and �ii� cells
are four colored in such a way that adjacent cells have dif-
ferent colors. The colors we shall use are red, green, blue,
and yellow �r ,g ,b ,y�. The main point of condition �i� is that
the coordination of the lattice is 4, the minimum number to
be able to construct interesting three-dimensional lattices.
This first condition says more because it also states that six
faces and four cells meet at each site in the most natural way.
Thus, condition �i� states which is the local appearance of
our lattice. As for condition �ii�, its nature is global. Note that
locally, at each site, it is immediately true. Moreover, we
observe that at least four colors will be necessary to color
any lattice satisfying �i� since at each site there are four dif-

FIG. 1. In �a�, the two curves are homologous because they form
the boundary of a deformed disk. In �b� and �c�, the 3-torus is
represented as a cube in which opposite sides must be identified. In
�b�, a basis for 1-cycles is shown and in �c�, a basis for 2-cycles.

FIG. 2. �a� A vertex, �b� an edge, �c� a face, and �d� a polyhedral
solid.
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ferent cells that meet. Condition �ii� is highly constraining, as
we will show throughout this section. For example, the com-
mutativity of the operators that sum up to give Hamiltonian
�4� is contained in this condition.

We should stress that the name color does not imply that
our lattices have to be colored with a new degree of freedom.
The quantum degrees of freedom are always spin 1

2 located at
the sites of the colexes. In fact, we could have used another
type of labeling in D=3 instead of using R,G,B,Y for 3+1
colors. The important point here is the fact that color is in-
troduced as a bookkeeping tool to keep track of the different
sites, links, faces, and cells in the 3D lattice. We could have
used another type of labeling, but we chose color because it
is more appealing and facilitates the illustration of colexes in
the figures.

From this point on, we will use assumptions �i� and �ii� to
color edges and faces, and finally, we will see that the whole
structure of the manifold is contained in the coloring of the
edges.

With a glance at Fig. 3, we see that the four cells meeting
at each vertex must have different colors. In the figure, we
also see that each edge lies in three cells of different colors.
Then each of the end points of the edge is in the corner of a
cell of a fourth color, so that we can say that it connects two
cells of the same color. We proceed to label edges with the
color of the cells they connect �see Fig. 4�b��. As a result, the
four edges that meet at a vertex all have different colors �see
Fig. 4�a��. Also, the edges lying on a r cell are not r edges.
However, much more is true. Consider r cell c and any ver-
tex v in its boundary. The red edge that ends in v does not lie
on cell c, so that the other three edges incident in v do. But
then, any connected collection of g, b, and y edges corre-
sponds exactly to the set of edges of some r-cells.

We label faces with two colors. If a face lies between a p
cell and a q cell, we say that it is a pq face �see Fig. 4�c��.

Then consider, for example, a ry cell. Since neither r nor y
edges can lie on its boundary, this must consist of a sequence
of alternating b and g edges. Conversely, any such path is the
boundary of some ry face. To check this, first note that ex-
actly one such path traverses any given g edge e. But e must
lie exactly on one ry face, the one that separates the r and the
y cell it lies on.

As promised, we have shown that the entire structure of
the manifold is contained in two combinatorial data: the
graph and the colors of its edges. We call the resulting struc-
ture a 3-colex, for color complex in a 3-manifold. The sim-
plest example of such a 3-colex with nontrivial homology is
displayed in Fig. 5. It corresponds to the projective space P3.
In Appendix A, we will give a procedure to construct a colex
of arbitrary dimension D, or D colex, starting with an arbi-
trary complex in a D manifold.

Although we shall be considering 3D manifolds with sev-
eral different topologies in order to see the relationship be-
tween the ground-state degeneracy with the homology of the
colex, we can also give now an example of a 3-colex in a
more familiar closed manifold such as the 3D torus in
condensed-matter systems. This is shown in Fig. 6. The vir-
tue of this 3-colex is that it can fill the whole infinite space in
case we want to take the thermodynamic limit along a family
of lattices having the same topological properties. Thus far,
we have only considered closed manifolds. Later, in Sec.
II G, we shall also provide another example of a colex lattice
with a boundary, so that our catalog of 3-colexes will be
complete.

We now associate a physical system with the 3-colex. To
this end, we place at each vertex �site� a spin-1

2 system. To
each cell c, we attach the cell operator

FIG. 3. The neighborhood of a vertex in a 3-colex. Four edges,
six faces, and four cells meet at each vertex.

FIG. 4. �Color online� Neighborhoods in a 3-colex of �a� a ver-
tex, �b� a g edge, �c� a by face, with the yellow side visible and the
blue one hidden, and �d� a b cell. Faces are colored according to the
color of the cell at their visible side.
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Bc
X
ª �

i�Ic

Xi, �1�

where Xi is the Pauli �1 matrix acting on site i and Ic is the
set of sites lying on the cell. Similarly, to each face f we
attach the face operator

Bf
Z
ª �

i�If

Zi, �2�

where Zi is the Pauli �3 matrix acting in site i and If is the set
of sites lying on the face. We have

∀c � C, f � F, �Bc
X,Bf

Z� = 0. �3�

To show this, consider any cell c and face f . The edges of c
come in three colors and the edges of f in two. Thus, they
have at least a common color, say, q. Given any shared ver-
tex, we consider its q-edge e. But e lies both on c and on f ,
and thus its other end point is also a shared vertex. There-
fore, c and f share an even number of vertices and �Bc

X ,Bf
Z�

=0.
The Hamiltonian that we propose is constructed by com-

bining cell and face operators:

H = − �
c�C

Bc
X − �

f�F

Bf
Z. �4�

Observe that color plays no role in the Hamiltonian; rather, it
is just a tool we introduce to analyze it. In Appendix C, we
calculate the degeneracy of the ground state. It is 2k with

k = 3h1, �5�

and therefore depends only on the manifold, which is a sign
of topological quantum order.

The ground states ��� are characterized by the conditions

∀c � C, Bc
X��� = ��� , �6�

∀ f � F, Bf
Z��� = ��� �7�

for cell and face operators. Those eigenstates ���� in which
any of the conditions is violated are excited states. There are
two kinds of excitations. If Bc

X����=−����, we say that there
is an excitation at cell c. Similarly, if Bf

Z����=−����, then the
face f is excited. Below, we will show that cell excitations
are related to quasiparticles and face excitations to certain
fluxes. For now, we are just interested in noting that excita-
tions have a local nature and thus the Hamiltonian �4� is
gapped. Then, since the ground-state degeneracy depends on
the topology, we have a topological quantum order.

In order to look at our models with a broader perspective,
let us briefly recall the notion of a lattice gauge theory �LGT�
in the Hamiltonian formalism �space=discrete; time
=continuous� to see if our lattice Hamiltonians given by Eq.
�4� and higher-dimensional extensions �Eq. �27� in Sec. IV�
do not fit directly into a standard LGT framework.

�a� In a LGT, the gauge degrees of freedom are located at
the edges �links� of the lattice, while the gauge symmetry
transformations are local operators defined at the sites �ver-
tices� of the lattice. This is not the case for our lattices that
we call D-colexes �or colexes for short� since our spin-1 /2
degrees of freedom are located at the site of the colexes.
Although this is not a big obstacle is defining a LGT in this
setting, it is related to the major difference that we will point
out next.

�b� The Hamiltonian in a LGT is constructed out of face
operators �magnetic part� and site operators �electric part�.
This is not the case for our Hamiltonians. For example, the
Hamiltonian in Eq. �4� has two contributions: one is made up
of face operators Bf

Z, which fall into the class of LGT terms,
and the other one is made up of cell operators Bc

X, which are
not pure face operators. In fact, the X part of H cannot be
written as a sum of single face or plaquette operators; in-

FIG. 5. �Color online� The projective space P3 can be obtained
starting with a solid sphere and identifying opposite points in its
surface. Here, we use such a representation to show a 3-colex in P3.

FIG. 6. �Color online� �a� The unit cell of a colex that can fill
either the infinite space or a three-dimensional torus. Forgetting
about colors, which are unphysical, its symmetries are those of the
cube, with a single r cell at its core. Here, colors have been given
both to cells and to links. A yellow cell was removed to show the
interior of the unit cell. �b� Eight unit cells put together. Recall that
color is not reflected in the Hamiltonian, so that all unit cells are
equal although they look different due to the coloring.
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stead, it can be written as a sum of products of face opera-
tors, which is something different from a standard LGT.

For models in higher dimensions such as in Eq. �27�, the
difference is even more notorious since it may also apply to
the Z part of our Hamiltonians.

It is true that our models have a certain degree of gauge
symmetry since we can define local operators acting on faces
�plaquettes� that commute with the Hamiltonian in Eq. �4�.
These operators would be analogous to the gauge transfor-
mations acting locally at the sites of a standard LGT. In our
case, each face operator Bf

Z commutes with H. However, we
see that our models go beyond the standard LGT.

In summary, in our models there are two main ingredi-
ents: one is the lattice structure we call colexes and the other
one is the choice of X and Z terms in the Hamiltonian. Play-
ing with these ingredients, we may find interesting physics in
different dimensions D.

We would like to mention that knowing the gauge group
in a LGT does not tell us everything about the physics of the
model. In this regard, we look at our Hamiltonians not only
as models in condensed-matter physics but also as models in
quantum information.

The best way to show this is with one explicit example
that we have introduced in Ref. 40. Here, we constructed two
Hamiltonians, say, H1 and H2, in D=2. This time, both X-
and Z-terms were face or plaquette terms for both Hamilto-
nians, as in a standard LGT. Also, both Hamiltonians were
defined in 2-colexes with the same coordination number 3
�trivalent lattices�. The difference was that for H1 the 2-colex
was a honeycomb lattice, while for H2 the 2-colex was a
mixed square-octagonal lattice.

The outcome of our study is that the quantum information
capabilities of each Hamiltonian are different. The technical
results can be found in Ref. 40. To be specific, H1 does not
allow us to implement the set of gates of the Clifford group,
while H2 does allow us to implement it. The benefit of this is
enormous since with H2 we can do a lot of interesting tasks
altogether: quantum distillation, quantum teleportation, and
quantum dense coding. In summary, the knowledge of the
gauge group �when it applies� does not fix the full physical
content of a given lattice Hamiltonian in certain aspects.

C. Strings and membranes

From this point on, we shall pursue a better understanding
of both the ground-state degeneracy and the excitations by
means of the introduction of string and membrane operators.
In this direction, an essential notion will be that of a shrunk
complex, both of the first and the second kind. The motiva-
tion after the construction of these complexes from the
colexes is that only at the shrunk complex level is it possible
to visualize neatly the strings and membranes that populate
the model. These new shrunk complexes are not colexes, but
their cells are associated with cells in the colex, and thus
have color labels.

1. Shrunk complex of the first kind

The shrunk complex of the first kind is associated with a
color, and it allows one to visualize strings of that particular

color. Consider, for example, the b-shrunk complex. The idea
is that we want to keep only the b edges, whereas the g, r,
and y edges get shrunk and disappear. To this end, we start
by placing a vertex at each b cell and by connecting them
through edges, which are in one to one correspondence with
the b edges. Then, we have to place the faces of the new
complex, and they correspond to the rg, ry, and gy faces. In
particular, consider a rg face. It has b and g edges, but after
the g edges are shrunk, only the b edges remain. Finally, we
need cells. They come from g, r and y cells. In particular,
consider a g cell. It has r, y, and b edges, but only the b
edges are retained. Similarly, it has gb, gr, and gy faces, but
we keep only the gb faces �see Figs. 7�c� and 8 for ex-
amples�.

Now consider any path, closed or not, in the b-shrunk
complex. We call such a path a b string. Recall that each
edge of a shrunk complex corresponds to a b edge in the
3-colex. Thus, at the colex level, a b string is a collection of
b edges that connect b cells �see Fig. 8�a��. Each b edge
contains two vertices. Then, to each b-string s, we can asso-
ciate an operator Bs

Z= � i�Is
Zi, where Is is the set of vertices

lying in the string.
As shown in Fig. 8�b�, the operator Bf

Z of a yr face cor-
responds to a closed b-string s. This string is the boundary of
the corresponding face in the b-shrunk complex. As an op-
erator, Bs

Z clearly commutes with the Hamiltonian and acts
trivially on the ground state �6�.

FIG. 7. �Color online� �a� A representation of the space S2	S1.
Each section of the solid tube is a sphere, and both ends of the tube
are identified. �b� A 3-colex in S2	S1. It consists of 24 vertices,
twelve edges of each color, four br faces, eight by faces, six rg
faces, four ry faces, four gy faces, two b cells, one r cell, three g
cells, and two y cells. �c� The r-shrunk complex of the previous
colex. The vertex corresponds to a r cell, and edges to r edges. An
example of a closed string is the edge marked with an s. It has
nontrivial homology. �d� The gy-shrunk complex of the previous
colex. Vertices correspond to b and r cells, edges to rb faces, face to
gy faces, and cells to g and y cells. An example of a closed mem-
brane is a combination of the faces marked with an m. This mem-
brane has nontrivial homology.
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In fact, any closed string gives rise to a string operator
that commutes with the Hamiltonian �4�. If the string is ho-
mologous to zero, the corresponding string operator acts
trivially on the ground state. In order to understand this,
consider a closed red string homologous to zero. It must be a
combination of boundaries of faces. Then, the string operator
is the product of the operators of these faces. Similarly, the
actions of two string operators derived from homologous
strings of the same color are identical on the ground state.
Therefore, it makes sense to label the string operators as S


p ,
where p is a color and 
 is a label denoting the homology of
the string.

2. Shrunk complex of the second kind

The shrunk complex of the second kind is associated with
two colors, and it allows the visualization of certain mem-
branes, as we explain now. Let us consider, for example, the
ry-shrunk complex. The idea is that we want to keep only the
ry faces, whereas the rest of the faces get shrunk and disap-
pear. This time, vertices correspond to b and g cells. Edges
come from bg faces. A bg face lies between a g and a b cell,
and the corresponding edge will connect the vertices coming
from these cells. We have already mentioned that the faces of
the ry-shrunk complex come from the ry faces in the colex,
but we have to explain how they are attached. Observe that
each ry face has a certain amount of adjacent gb faces. Here,
for adjacent objects, we only mean that their intersection is
not empty. In particular, there is a gb face at each of the
vertices of the ry face. Then, the face in the complex has in
its perimeter the edges coming from its adjacent gb faces.
Finally, we have to consider cells, which come from r and y

cells, and only keep their ry faces. So, in the boundary of a
cell coming from a r cell, we see vertices from adjacent b
and g cells, edges from adjacent bg faces, and faces from ry
faces in the boundary of the r cell �see Figs. 7�d� and 9�.

Now consider any membrane, that is, a connected collec-
tion of faces, closed or with a boundary, in the ry-shrunk
complex. We call such a membrane m an ry membrane �see
Figs. 7�d� and 9�a��. We can associate an operator Bm

X with it.
It is the product of the Bf

X operators of the corresponding ry
faces in the colex.

As shown in Fig. 9�b�, the operator Bc
X of an r-cell c

corresponds to a closed ry-membrane m. This membrane is
the boundary of the corresponding cell in the ry-shrunk com-
plex. As an operator, Bm

X clearly commutes with the Hamil-
tonian and acts trivially on the ground state �7�.

In complete analogy with strings, any closed membrane
gives rise to a membrane operator that commutes with the
Hamiltonian. If the membrane is homologous to zero, then
the corresponding membrane operator acts trivially on the
ground state. Similarly, the actions of two string operators
derived from homologous membranes of the same color are
identical on the ground state, and we label membrane opera-
tors as M


pq, where p and q are colors and 
 is a label de-
noting the homology of the membrane.

FIG. 8. �Color online� In this figure, the top represents part of a
colex, and the bottom the corresponding portion of the b-shrunk
complex. Vertices in the b-shrunk complex come from b-cells in the
colex, edges from b-edges, faces from ry-, rg-, and gy-faces, and
cells from r-, y-, and g-cells. �a� A b-string. In the colex, it is a
collection of b-edges linking b-cells. In the b-shrunk complex, the
path of edges can be clearly seen. �b� A ry-face corresponds to a
face in the b-shrunk complex, and thus its boundary can be viewed
as a b-string. FIG. 9. �Color online� In this figure, the top represents part of a

colex, and the bottom the corresponding portion of the ry-shrunk
complex. Vertices in the ry-shrunk complex come from g and b
cells in the colex, edges from gb faces, faces from ry faces, and
cells from r and y cells. �a� An ry membrane. In the colex, it is a
collection of ry faces linked by gb faces. In the ry-shrunk complex,
the brane can be clearly seen. �b� An r cell corresponds to a cell in
the ry-shrunk complex, and thus its boundary can be viewed as a ry
membrane.
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3. Commutation rules

We will now consider the commutation rules between
string and membrane operators. We first consider the case of
a membrane and a string with no common color in their
labels. As displayed in Fig. 9�a�, a rg-membrane is made up
of g and b edges. Then, for the same argument of Eq. �3�, we
have

∀
,�, �M

rg,S�

b� = 0, �8�

and analogously for any combination of three different col-
ors. More interesting is the case in which there is a shared
color. As displayed in Fig. 10, at each place where a p-string
crosses a pq-membrane, they have a site in common. Thus, if
the labels 
 and � are such that a � string crosses a 
 mem-
brane an odd number of times, we have

	M

pq,S�

p
 = 0. �9�

In another case, that is, if they cross an even number of
times, the operators commute.

D. Ground state

We have discussed above how the action of string or
membrane operators on the ground state depends only on
their homology. It is in this sense that homologous strings or
membranes give rise to equivalent operators. This equiva-
lence, however, can be extended to take color into account,
and we say that two membrane or string operators are
equivalent if they are equal up to combinations with cell and
face operators. Then, as we prove for general D in Appendix
B, we have the following interplay between homology and
color:

S

r S


g S

b S


y � 1, �10�

M

pqM


qoM

op � 1, �11�

where o, p, and q are distinct colors.
If we take all the r, g, and b strings for a given homology

basis of 1-cycles, we obtain a complete set of compatible
observables for the ground-state subspace: any other string
operator is equivalent to a combination of these strings, and
no membrane operator that acts nontrivially in the ground
state can commute with all of them. This is, in fact, why
number 3 appears in Eq. �5�. As an example, a string basis in
S2	S1 is displayed in Fig. 11�a�.

Similarly, if we take all the ry, gy, and by membranes for
a given homology basis of 2-cycles, we obtain a complete set
of compatible observables for the ground-state subspace: any
other membrane operator is equivalent to a combination of
these membranes, and no string operator that acts nontrivi-
ally in the ground state can commute with all of them. A
membrane basis in S2	S1 is displayed in Fig. 11�b�.

Observe that only those string operators that have non-
trivial homology, that is, which act in a global manner in the
system, are capable of acting nontrivially in the ground state
while living it invariant. This is the signature of a string
condensate, as introduced in Ref. 49. Then, it would be
tempting to let Sb be the set of all boundary strings and to try
to write a ground state as

�
s�Sb

Bs
Z� → �� �V�, �12�

where �→ �� �V� is the state with all spins pointing to the posi-
tive x direction. However, this fails. In fact, what we have is
a string-net condensate47 because, as indicated by Eq. �10�,
we can have branching points in which one string of each
color meet. This means that the ground state is a superposi-
tion of all possible nets of strings, as depicted in Fig. 12. The
correct way to write an example of a ground state is

�
f�F

�1 + Bf
Z�� → �� �V�

¬ �
string nets

Bs
Z� → �� �V�. �13�

We can state all of the above also in the case of mem-
branes, and thus we should speak of a membrane-net con-

FIG. 10. �Color online� When an r string s crosses an ry mem-
brane m, they meet at a vertex. In terms of string and membrane
operators, this means that Bm

X and Bs
Z act in a common site.

FIG. 11. �Color online� Here, we represent S2	S1 as in Fig. 7.
In �a�, a basis for nontrivial closed strings is shown. The other
possible such string is green, but it is a combination of these ones
�10�. �b� A membrane basis in S2	S1. We have chosen a gb, a gr,
and a gy membrane. There are three other nontrivial membranes, in
particular, a br, a by and a yr membrane, but they are combinations
of these ones �11�.
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densate. An example of this is shown in Fig. 13. Interestingly
enough, other topological orders in D=3 based on toric
codes do not exhibit a condensation of membrane-nets.49 It is
a membrane condensate because only membranes with non-
trivial homology can act nontrivially in the ground state. It is
also a net because, for example, as indicated by Eq. �11�, a
gr, a gb, and a br membrane can combine along a curve.
Then, if we let �↑ �� �V� denote the state with all spins up, the
following is an example of a ground state:

�
c�C

�1 + Bc
X��↑�� �V�

¬ �
membrane nets

Bm
X �↑�� �V�. �14�

E. Excitations

We now focus on excitations from the point of view of
string and membrane operators. We can have two kinds of
excitations, depending on whether a cell or a face condition
is violated. We start by considering excitations in r cells, for
example. Let ��� be a ground state and Sij

r an open string
operator connecting the cells i and j. The state Sij

r ��� is an
excited state. The excitations live precisely at cells i and j,
and we call them quasiparticles with an r-charge. Why
should color be considered a charge? We have the following
three constraints:

�
c�Cr

Bc
X = �

c�Cg

Bc
X = �

c�Cb

Bc
X = �

c�Cy

Bc
X, �15�

where Cp is the set of p cells. They imply that the number of
quasiparticles of each color must agree in their evenness or

oddness. Therefore, if we want to create quasiparticles of a
single color from the vacuum, we must create them in pairs,
and so such a creation can be performed with an open string
operator. Alternatively, four quasiparticles, one of each color,
can also be created locally �see Fig. 14�b��. For example, let
��� be a ground state and i any site. Then, the state Zi��� is a
state with four quasiparticle excitations, one at each of the
3-cells that meet at site i. Observe that Eq. �15� is in agree-
ment with Eq. �10�.

Now let ��� be a ground state and Mb
gy a membrane op-

erator which has a boundary �b. Recall that �b is a set of
edges in the gy-shrunk complex that corresponds to a set of
rb faces at the colex level. The state Mb

gy��� is an excited
state with excitations placed at the faces in �b. The excited
segments, as viewed in the gy-shrunk complex, form a
closed path. This introduces the idea of a gy flux in the
boundary of the membrane, as illustrated in Fig. 15, for a

FIG. 12. �Color online� The ground state of the system is a
string-net condensate. This picture represents in a 3-torus a typical
element of the summation �13�.

FIG. 13. �Color online� In a membrane net, different membranes
can connect along common boundaries. This is related to the pres-
ervation of flux, as shown in this figure.

FIG. 14. �Color online� There are two ways in which quasipar-
ticles can be created locally. We can create them either �a� by pairs
of the same color forming a string or �b� in groups, one of each
color forming a string net.
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membrane with a single face. However, we have to check
that this flux makes sense. Not only must it be conserved at
any vertex in the gy-shrunk graph, but the existence of fluxes
of other colors must also be considered. So take, for ex-
ample, r-cell c. We have two constraints for the faces of c,
analogous to those in Eq. �15� but in the subcolex that forms
the boundary of c:

�
f�Frb

c

Bf
Z = �

f�Frg
c

Bf
Z = �

f�Frb
c

Bf
Z, �16�

where Fpq
c is the set of pq faces of cell c. These constraints

guarantee that the gy flux is preserved at the corresponding
vertex in the gy-shrunk complex. Additionally, Eq. �16� im-
plies that a gy flux can split into a gb flux and a yb flux �see
Fig. 16�b��. This is, of course, in agreement with Eq. �11�.

Fluxes can be analyzed from a different point of view. Let
��� be a ground state and i any site. Then the state Xi��� is an
excited state. We can visualize it as small p fluxes winding
around the p edges incident at i, as shown in Fig. 16�c�.
Observe that the idea of a pq flux as something composed of
a p flux and a q flux is also suggested by the flux splitting
�16�. Any flux configuration is a combination of these mi-
crofluxes at sites. In particular, the total flux through any
closed surface must be null, and thus we cannot have, for
example, an isolated rg flux in a loop which is not homolo-
gous to zero.

F. Winding quasiparticles around fluxes

In the theory of a topological order in two dimensions, it
is known that quasiparticles show special statistics:52,53 when
a charge is carried around another one, sometimes the system
gets a global phase, a behavior which bosons and fermions
do not show. Which is the analogous situation in 3D? We can
carry a charged particle along a closed path, which winds
around a loop of flux, as in Fig. 17. If the system gets a
global phase, then it makes sense to introduce the notion of
branyons as the higher-dimensional generalization of the

usual anyons. Thus, in the system at hand, we have
0-branyons �quasiparticles� and 1-branyons �fluxes�. Higher-
dimensional branyons will appear when we consider systems
with D�4.

In order to see the effect of winding a color charge around
a color flux, we have to consider the closed string operator
associated with the charge path and the membrane giving
rise to the flux loop. If a p charge winds once around a pq
flux, the system will get a global −1 phase because
	Mpq ,Sp
=0. Observe that this reinforces the idea of a pq
flux as a composition of a p flux and a q flux. Other color
combinations, i.e., those in which the string and the mem-
brane do not share a color, give no phase.

FIG. 15. �Color online� The flux excitation created with the
membrane operator Bm

X of an ry membrane made up of a single ry
face.

FIG. 16. �Color online� �a� The border of a gy membrane is a gy
flux. �b� A gy flux can split into a gb flux and a by flux when it goes
across an r cell �16�. �c� The microfluxes at a given site, as ex-
plained in the text.

FIG. 17. �Color online� When a g charge winds around a loop of
a gy flux, the system gets a global −1 phase. This is because the
membrane operator giving rise to the flux and the string operator
associated with the winding anticommute.
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G. 3-manifolds with boundary

Up to this point, we have only considered systems con-
tained in closed 3-manifolds. This is rather unphysical since
such systems fill the whole space in which they exist,
whereas any system that we can manipulate must be confined
to a certain piece of space, and thus must have a boundary.

Fortunately, it is very easy to obtain manifolds with
boundary from closed ones. In particular, it is enough to
make holes. For example, by puncturing a 3-sphere, one ob-
tains the usual three-dimensional Euclidean space. Of course,
instead of erasing a single point, we can also remove open
subsets. For example, by erasing an open ball from the
3-sphere, we get a closed ball.

How do we perform such erasures of open subsets in the
case of 3-colexes? The most natural approach is to remove a
certain number of cells and also all the vertices and edges
that are not contained in any of the remaining cells. In doing
so, we will certainly change the degeneracy of the ground
state. For example, consider the 3-sphere, which gives no
degeneracy. If we remove a pair of r cells, the resulting space
is topologically equivalent to a thick spherical shell. In the
new colex, r strings that connect both missing r cells will
commute with the Hamiltonian, giving a twofold degeneracy.
In general, after such a removal of cells, the new manifold
will show several surfaces. We can attach a color to the sur-
faces, in particular, that of the cell that was removed to give
that portion of the surface. Then, at a red surface, for ex-
ample, r strings can have end points and bg, gy, and by
membranes can have borders, whereas they still commute
with the Hamiltonian. Figure 18 shows an example.

III. D COLEXES

In order to generalize the three-dimensional model to a
higher dimension D, first we have to construct the underlying

structure. That is, we want to define color complexes of ar-
bitrary dimension. This section is devoted to the definition
and basic properties of D colexes.

A. Definitions

First, we define color graphs or c graphs. A v-valent c
graph is a graph � satisfying the conditions that �i� v edges
meet at every vertex, �ii� edges are not loops, and �iii� edges
are v colored. We mean by v colored that labels from a color
set Q= 	q1 , . . . ,qv
 have been assigned to edges in such a
way that two edges meeting at a vertex have different colors.
This is a generalization of what we already saw in the D
=3 case, as in Fig. 4. A c graph �� with color set Q� is a c
subgraph of � if ����, Q��Q, and the colorings coincide
in common edges.

Now we introduce complexes. One can give to a D mani-
fold a combinatorial structure by means of what is called a D
complex. The idea is to divide the manifold in a hierarchy of
objects of increasing dimension: points, edges, faces, solid
spheres, etc. These objects are called n cells, n=0, . . . ,D.
0-cells are points, 1-cells are edges, and so on. The boundary
of an n cell is an n sphere and is made up of cells of dimen-
sion n��n. So, what we have is a D manifold constructed by
gluing together the higher-dimensional analogs of the poly-
hedral solids that we considered in D=3 �recall Fig. 2�.

A D colex is a complex in a D manifold which has �D
+1�-colored edges in such a way that �i� its underlying lattice
or graph is a �D+1�-valent c graph, �ii� the subgraph that lies
on the boundary of any n cell for n=2, . . . ,D is an n-valent c
subgraph, and �iii� any connected c subgraph with valence
v=2, . . . ,D lies on the boundary of one unique v cell. There-
fore, the point is that the c graph completely determines the
cell structure and thus the whole topology of the manifold.

Some c graphs yield a colex, but not all of them. We
define recursively this partially defined mapping from the
space of �D+1�-valent c graphs to the space of closed D
manifolds. First, any 2-valent c graph is a collection of loops.
So, as a topological graph, it naturally yields a 1-manifold,
namely, a collection of 1-spheres. Then, consider any
3-valent c graph. We construct a 2-complex starting with the
corresponding topological graph or 1-complex. The idea is to
list first all 2-valent c subgraphs, which are embeddings of S1

in the 1-complex. Then, for each of these subgraphs, we
attach a 2-cell, gluing its boundary to S1. The resulting space
is certainly a 2-manifold. It is enough to check a neighbor-
hood of any vertex, but the one to one correspondence be-
tween cells and connected c subgraphs makes this straight-
forward. Then, we consider a 4-valent c graph. If not all of
its 3-valent c subgraphs yield S2, we discard it. Otherwise,
we first proceed to attach 2-cells as we did for the 3-valent
graph. Then, we list all 3-valent c subgraphs, which by now
correspond to embeddings of S2 in a 2-complex. At each of
these spheres, we glue the surface of a solid sphere. The
process can be continued in an obvious way, and thus in
general a �D+1�-valent c graph yields a D colex if and only
if all its D-valent c subgraphs yield SD.

B. Examples

As a first example of a colex, consider the c graph com-
posed of only two vertices, for any valence v=D+1�2. An

FIG. 18. �Color online� An example of a red surface, located at
the boundary between the 3-colex and an erased big r cell. At a red
surface, r strings can have end points without quasiparticles, and
bg, gy, and by membranes can have borders without fluxes. These
quasiparticles and fluxes would live precisely in the red cell that is
missing. Note that a y cell was removed in the figure.
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example can be found in Fig. 19. This family of c graphs
yields the spheres SD. This can be visualized by viewing SD

as RD plus the point at infinity. We can place one vertex at
the origin and the other at infinity. Then, edges are straight
lines that leave the origin in different directions.

The projective space PD can also be described easily with
a colex, though less economically in terms of vertices. Recall
that PD can be constructed by identifying opposite points of
the boundary of a D-dimensional ball. The idea is to consider
a D cube and to construct a D-valent c graph with its vertices
and edges, coloring parallel edges with the same color. Then,
we add 2n−1 extra edges to connect opposite vertices, and we
give them a new color. The resulting c graph yields PD. See
Fig. 5 for an example of the case D=3.

In Appendix A, we give a procedure to construct colexes
from arbitrary complexes. This guarantees that we can con-
struct our topologically ordered physical system in any
closed manifold with D�2.

C. R-shrunk complex

This section is devoted to the construction of several new
complexes from a given colex. These constructions will be
essential to the understanding of the physical models to be
built. In particular, as we learned in the D=3 case, only at
the shrunk complex level will it be possible to visualize
neatly the branes that populate the system. Shrunk com-
plexes also provide us with several relations among the car-
dinalities of the sets Cn of n cells, which in turn will be
essential in calculating the degeneracy of the ground state.
These relations are based on the Euler characteristic of a
manifold, a topological invariant defined in a D complex as

� ª �
n=0

D

�− 1�n�Cn� . �17�

Before starting with the construction, it is useful to intro-
duce the notion of the Poincaré dual of a complex C in a D
manifold. The dual complex C* is obtained by transforming

the n cells of C in �D−n� cells and by inverting the relation
being-the-boundary-of. This means that if a certain �n−1�
cell c� is in the boundary of the n cell c in C, then c* is in the
boundary of c�* in C*.

We say that a cell is a R-cell if its c graph has as color set
R. Note that this notation is different from the one we used in
D=3, but it is more suitable for high D. What was before a
gy membrane will now be a 	r ,b
 brane, or more simply a br
brane, and so on.

Consider a D colex C with color set Q. We want to con-
struct its R-shrunk complex CR, where R is a nonempty
proper subset of Q, ��R�Q. What we seek is a new com-
plex in which only R-cells remain, whereas the rest of the
�R�-cells disappear. This construction is accomplished by a
partial Poincaré dualization of cells. We already saw ex-
amples of this construction in D=3. Due to the different
notation, what was called a gy-shrunk complex now will be
called a rb-shrunk complex.

The R-shrunk complex has two main sets of cells. The
first one corresponds to the cells in the set

S1 ª �
R�S�Q

CS, �18�

where CS is the set of S cells. Cells in S1 keep their dimen-
sion and the relation being-the-boundary-of among them.
The second cell set is

S2 ª �
R̄�S�Q

CS, �19�

where R̄ is the complement of R in Q,

R̄ ª Q − R . �20�

Cells in S2 get dualized. This means that an n cell in the
colex will be a �D−n� cell in the R-reduced complex. The
relation being-the-boundary-of is inverted among the cells in
S2. So, S2 provides us with cells of dimensions 0 , . . . , �R�
−1 and S1 with cells of dimensions �R� , . . . ,D. Up to dimen-
sion �R�−1, the construction is clear, but we have to explain
how to attach the cells in S1. To this end, we observe that the
intersection of an n-cell in S1 and an R cell is either empty or

a cell of dimension n�=n− �R̄�. The n cell gives rise to a cell
of dimension D−n= �R�−1−n�. Thus, the partial dualization
is, in fact, a complete dualization, as seen on the boundary of
any R cell, and the attachment of each R cell is then naturally
described by this dualization process, as shown in Fig. 20.
For the cells coming from S cells with R�S, the attachment
can be described recursively. The boundary of these cells is a
��S�−1�-colex, so we can obtain its R-shrunk complex and
use it as the new boundary for the cell. In fact, what we are
doing is a projection of the shrinking process in the boundary
of the cell. Figure 21 displays examples of shrunk complexes
for D=2.

The Euler characteristic for a R-shrunk complex is

� = �
R�S�Q

�− 1��S��CS� + �
R̄�S�Q

�− 1�D−�S��CS� . �21�

If we sum up all such equations for all different color com-
binations but for a fixed cardinality �R�=r, we get

FIG. 19. �Color online� A c graph that yields a 4-sphere. It is the
simplest possible 4-colex, with only two vertices.
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�D + 1

r

� = �

n=r

D

�− 1�n�n

r

�Cn� + �

n=0

r−1

�− 1�n� D − n

D − r + 1

�CD−n� .

�22�

The case r=0 is also included since it reduces to the defini-
tion of �. The right-hand side �rhs� in the cases r=s and r
=D−s+1 are equal except for the sign, so that we get

� = �− 1�D� . �23�

Of course, it is a well-known fact that � vanishes in mani-
folds of odd dimension. In these cases in which D=2k+1,
Eq. �22� for r=k+1 vanishes identically. So, in general, we
have �D /2� independent relations. They tell us that the cardi-
nalities �C0� , . . . , �C�D/2�� depend on the cardinalities
�C�D/2+1�� , . . . , �CD�, which shows quantitatively the fact that

colexes are much more “rigid” than more general complexes.

IV. THE MODEL IN D-MANIFOLDS

A. System and Hamiltonian

We now associate a physical system with a D-colex struc-
ture in a D-manifold, D�2. To this end, we place at each
vertex �site� a spin-1

2 system. To each n-cell c, we can attach
the cell operators

Bc
�
ª �

i�Ic

�i, � = X,Z , �24�

where Xi and Zi are the Pauli �1 and �3 matrices acting on
the spin in the vertex i and Ic is the set of vertices lying on
cell c. In order to generalize the Hamiltonian �4�, we need
sets of cells such that their X and Z operators commute.
However, we have the following result. For every n-cell cn
and m-cell cm with n+m�D+1,

�Bcn

X ,Bcm

Z � = 0. �25�

This is a consequence of the fact that cn and cm have colexes
with at least one color in common because they have respec-
tively p+1 and �q+1� colors. Then, their intersection is a
colex of valence of at least 1, and thus contains an even
number of sites.

From this point on, we choose fixed integers p ,q
� 	1, . . . ,D−1
 with

p + q = D . �26�

The Hamiltonians that we propose are

Hp,q = − �
c�Cp+1

Bc
Z − �

c�Cq+1

Bc
X. �27�

Again, color plays no role in the Hamiltonian. It is an exactly
solvable system, and the ground state corresponds to a quan-
tum error correcting code with cell operators as stabilizers.54

We give a detailed calculation of the degeneracy in Appendix
C. The degeneracy is 2k with

k = �D

p

hp = �D

q

hq, �28�

where hp=hq is the pth Betty number of the manifold. The
ground states ��� are characterized by the conditions

∀c � Cp+1, Bc
Z��� = ��� , �29�

∀c � Cq+1, Bc
X��� = ��� . �30�

Those eigenstates ���� for which some of these conditions
are violated are excited states. As in the D=3 case, excita-
tions have a local nature and we have a gapped system.

For D�4, different combinations of the parameters �p ,q�
are possible. Each of these combinations gives rise to differ-
ent topological orders, thus making transitions between them
possible. For example, in D=4, the Hamiltonian

H = H1,3 + 
H2,2 �31�

exhibits a topological phase transition as 
 is varied.

FIG. 20. �Color online� A bry cell belonging to some D colex
with D�3. We show superimposed in black thick line the structure
of its dual boundary, which plays an important role when construct-
ing the bry-shrunk complex.

FIG. 21. �Color online� This figure shows the two possible kinds
of shrunk complex in a 2-colex. The shrunk complexes appear su-
perimposed in black thick line to the original colex. In �a�, the
y-shrunk complex is shown, and in �b� the by-shrunk complex.
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The Hamiltonian in Eq. �31� is not exactly solvable, while
H�1,3� and H�2,2� are exactly solvable separately, by con-
struction. The reason is that the sets of face operators Bf

Z and
cell operators Bc

X of type �1,3� do not commute with the
corresponding sets of operators of type �2,2�.

The Hamiltonian H does not have an exact topological
order for arbitrary values of the coupling constant 
; only at
the weak coupling 
�1 or strong coupling 
�1 does it
show a topological order of a different type. As the coupling
is varied, we connect two different topological phases, but
the whole line in 
 is not necessarily topological.

Now that we have seen this mechanism for producing
topological quantum phase transitions with colexes in the
simplest case, we can extend it to arbitrary dimensions D
�4 by introducing the following set of Hamiltonians:

HD = �
p,q:p+q=D


p,qHp,q, �32�

where the Hamiltonians Hp,q are given by Eq. �27�. As the
coupling constants 
p,q are varied and meet the topological
points characterized by 
p,q=0, ∀p, q�pt, qt, 
pt,qt

=1, we
find again examples of topology-changing phase transitions.

B. Branes

In analogy with the string and membranes that appeared
in the D=3 case, here we have to consider p branes. We
mean by a p brane an embedded p manifold, closed or with
a boundary. A p brane is homologous to zero when it is the
boundary of a p+1 brane. Then, two p branes are homolo-
gous if the p brane obtained by their combination is homolo-
gous to zero.

Let Q be the set of colors of the D colex. Then, for any
nonempty set R�Q, a R brane is a collection of R cells. It
can be truly visualized as a �R�-brane in the R-shrunk com-

plex. There, we also see that its boundary corresponds to R̄
cells. Let b be an R brane and Cb its set of R cells. Then, we
can attach to b operators Bb

�
ª�c�Cb

Bc
� for �=X ,Z. Suppose,

in particular, that �R�= p and let b be a closed R brane. Then,
Bb

Z commutes with the Hamiltonian. If this were not the case,

there would exist a �q+1� cell, particularly an R̄ cell c, such
that 	Bb

Z ,Bc
X
=0. However, in that case, in the R-shrunk com-

plex, the p brane would have a boundary at the cell coming
from c. Similarly, closed q-brane X operators also commute
with the Hamiltonian.

The operator Bc
Z of a �p+1� cell c with color set R� 	r
,

r�Q−R, is a closed R-brane. As the R-shrunk complex re-
veals, it corresponds to the boundary of c. Bc

Z acts trivially in
ground states �29�, and the same holds true for any closed
p-brane homologous to zero since it is a combination of such
operators Bc

Z. This is not the case for closed p branes, which
are not homologous to zero, and thus they act nontrivially in
the ground state.

1. Equivalent branes

It is natural to introduce an equivalence among those op-
erators of the form �v�VZv

iv, where V is the set of vertices of
the colex and iv� 	0,1
. We say that two such operators O1

and O2 are equivalent, O1�O2, if O1O2 is a combination of
�p+1� cell operators Bc

Z. This induces an equivalence among
p branes since they have such an operator attached. In fact,
two R branes, b and b�, with �R�= p, are equivalent if and
only if they are homologous. Observe that two equivalent p
brane Z operators produce the same result when applied to a
ground state. This motivates the introduction of the notation
P


R, �R�= p, for any operator Bb
Z, with b a R brane with ho-

mology labeled by 
.
Likewise, we can introduce an equivalence among those

operators of the form �v�VXv
iv, just as we have done for Z

operators. This induces an equivalence relation among q
branes, and we use the notation Q�

R, �R�=q, for any q-brane
operator Bb

X, with b an R brane with homology labeled by �.
In Appendix B, we show that for any color set R�Q with

�R�= p−1,

�
r�Q−R

P

rR � 0, �33�

where rR is a shorthand for 	r
�R. Similarly, if �R�=q−1,

�
r�Q−R

Q

rR � 0. �34�

These relations generalize Eqs. �10� and �11�. They give the
interplay between homology and color, and show that for
each homology class only � D

p
� color combinations are inde-

pendent, those which can be formed without using one of the
D+1 colors. This is why a combinatorial number appears in
the degeneracy of the ground state. The other factor, hp, fol-
lows from the fact that a homology basis for p-branes has hp
elements. By using the theory of quantum stabilizer codes,54

one can see that by selecting a basis for p-branes with labels

=1, . . . ,hp and a color r, we can form a complete set of
observables 	P


R

,R�r.

2. Commutation rules

In general, for suitable color sets R ,S, we have

R � S � � ⇒ �P

R,Q�

S� = 0. �35�

This follows from the same reasoning used in Eq. �25�. We
now explore the situation when R and S have no color in
common. Consider a basis 	p

 for closed p-branes. Consider
also a basis for q-branes 	q�
, chosen so that p
 and q� cross
once if 
=� and do not cross in other cases. Then,

R � S = � ⇒ P

RQ�

S = �− 1��
,�Q

S P�

R. �36�

This can be reasoned without resorting to the geometrical
picture. Suppose that �P


R ,Q

S �=0 and let R=R�� 	r
, Q−R

−S= 	q
. From Eq. �33�, we have ��r�P

R�r� ,Q


S �=0. Then,
Eq. �35� implies �P


Rq ,Q

S �=0, and thus we have a homologi-

cally nontrivial q-brane X operator that commutes with all
the p-brane Z operators. This being impossible, the assump-
tion is necessarily false.

C. Excitations

There are two kinds of excitations, depending on whether
a �p+1�-cell or a �q+1�-cell condition is violated. We label
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excitations with the color set of the cell they live in. Al-
though we focus on the violation of �q+1� cells, the situation
is analogous for �p+1� cells.

Let ��� be a ground state and b an R brane, R�Q, �R�
= p. We first observe that b has a boundary in the R-shrunk

complex at the cell corresponding to the R̄ cell c if and only
if

	Pb
R,Bc

X
 = 0. �37�

However, Bb
Z��� has R̄ excitation exactly at those cells ful-

filling Eq. �37�. This means that the excitation produced by
the p brane b has the form of a p−1-brane, precisely the
boundary of b, �b.

Consider the particular case p=1. The excitations living at
D-cells are, as in the D=3 case, quasiparticles �anyons� with
color charge. In a connected manifold, we have D constraints
generalizing Eq. �15�. They have the form

�
c�CR

Bc
X = �

c�CS

Bc
X, �38�

where �R�= �S�=D and CR is the set of R cells. These relations
imply that the number of particles of each color must agree
in their parity. Therefore, from the vacuum, we can create
pairs of particles of a single color or groups of D+1 par-
ticles, one of each color. This is completely analogous to D
=3.

Now suppose that p�1. We have seen that excitations
can be created as the boundary of a p brane. If, in particular,

it is an R brane, then excitations live in R̄ cells. It is natural
to interpret these excitations as some kind of

�p−1�-dimensional flux, an R̄ branyon. Then, it must be con-
served. In fact, for each �q+2� cell c, we have the constraint

�
c�CR

c

Bc
X = �

c�CS
c

Bc
X, �39�

where �R�= �S�=q+1 and CR
c is the set of R cells lying on cell

c. This is a generalization of Eq. �16� and is in agreement
with Eq. �33�.

Finally, as in the three-dimensional case, we can wind
branyons around each other and sometimes get a global
phase. Let �R�=q+1 and �S�= p+1. Then, when a R branyon
winds around a S branyon, the system gets a global minus
sign if and only if �R�S�=1, following the commutation
rules �36�.

V. CONCLUSIONS

In this paper, we have explored topological orders in D
=3 by means of models for quantum lattice Hamiltonians
constructed with spins S= 1

2 located at lattice sites. These
models are exactly solvable, and this is a feature that allows
us to explore the quantum properties of the whole spectrum.
The ground state is found to be in a string-net condensate or,
alternatively, in a membrane-net condensate. This type of
membrane-net condensation is an interesting feature of our
models that does not appear in 3D toric codes. In dimensions
higher than D=3, we have also extended the construction of

our models and found brane-net condensation. As for excita-
tions, they are either quasiparticles or a certain type of ex-
tended fluxes. These excitations show unusual braiding sta-
tistical properties similar to anyons in D=2, and we call
them branyons since they involve extended objects associ-
ated with branes.

Another interesting result is the possibility of having a
topology-changing transition between two topologically or-
dered phases that we find with our models in D=4. We may
wonder whether it is possible to have a similar topology-
changing process in dimension D=3 as in Eq. �31�. One
obvious way to achieve this is by using the construction in
D=4 and flattening it into D=3, thereby reducing the dimen-
sionality of the interaction but at the expense of losing the
locality of the interaction.

A fully or completely topological order does not exist in
D=3 dimensions, unlike in D=2. That is to say, a topologi-
cal order that can discriminate among all the possible topolo-
gies in three-dimensional manifolds does not exist. We may
introduce the notion of a topologically complete class of
quantum Hamiltonians when they have the property that
their ground-state degeneracy �and similarly for excitations�
is different, depending on the topology of the manifold
where the lattice is defined. From this perspective, we have
found a class of topological orders based on the construction
of certain lattices called colexes that can distinguish between
3D-manifolds with different homology properties. Homology
is a topological invariant, but not enough to account for the
whole set of topologically inequivalent manifolds in D=3.
For instance, the famous Poincaré sphere is an example of a
3D-manifold that has the same homology as a 3-sphere.
Poincaré was able to prove that the fundamental group �or
first homotopy group� of this new sphere has the order 120.
As the standard 3-sphere has a trivial fundamental group, it
is different. Since then, many other examples of homology
spheres that are different topological structures have been
constructed. In this regard, we could envisage the possibility
of finding a quantum lattice Hamiltonian, possibly with a
non-Abelian lattice gauge theory, that could distinguish be-
tween any topology in three dimensions by means of its
ground-state degeneracy. This would amount to solving the
Poincaré conjecture with quantum mechanics.

From the viewpoint of quantum information, the topologi-
cally ordered ground states that we have constructed provide
us with an example of topological quantum memory: a res-
ervoir of states that are intrinsically robust against decoher-
ence due to the encoding of information in the topology of
the system.
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APPENDIX A: HOW TO CONSTRUCT D COLEXES

We present a procedure to construct colexes in arbitrarily
closed manifolds. The idea is to start with an arbitrary com-
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plex and inflate its cells until a colex is obtained. We now
explain the process in detail. It is illustrated in Fig. 22.

First, we have to state what we mean by inflating an n
cell, 0�n�D. The idea is to keep the boundaries of the cell
untouched but to inflate all other points in order to obtain a
D-cell. For each �n+ l� cell that belongs to the boundary of
the inflated cell, we must introduce an �n+ l−1� cell. The
inflation of cells of the same dimension can be performed in
any order, and all the cells must be inflated. Inflation starts
with �n−1� cells, then continues with �n−2� cells, and so on,
until 0-cells are inflated in the end.

We can prove that this procedure gives a D colex by an
inductive argument. We will need some facts. First, we ob-
serve that the D cells of a D colex can be labeled with the
unique color, which its subcolex does not contain. Con-
versely, if we can color the D cells of a D colex with D+1
colors in such a way that neighboring cells have different
colors, then we can color edges according to the D cells they
connect. Note also that for each cell in the original D com-
plex, the inflated one has a D cell. This means that we can
label inflated D cells with the dimension of the cell in the
original complex.

Finally, we proceed with the proof. The case D=1 is
trivial. We suppose that the procedure works for D mani-
folds, and we check it for �D+1� manifolds. To this end,
consider the boundary of any inflated �D+1� cell which
comes from the inflation of a 0-cell. Imagine all the inflation
processes projected into this �fixed� D sphere. In the begin-
ning, we can see a complex in this sphere. Its vertices corre-
spond to edges that cross the surface, edges to faces that
cross it, and so on. As the inflation proceeds in the original
complex, the projected complex is also inflated. When
1-cells are inflated, the projected complex has become a D
colex because of the induction hypothesis. Thus, it can be
properly colored. Moreover, we can perform the coloring on
its D cells using the labels attached to the corresponding
�D+1� cells in the inflated �D+1� complex. From this color-
ing, we deduce a coloring for the edges of the D colex. In
fact, all this is true for each of the subgraphs on the surfaces
of �D+1� cells obtained by inflation of 0-cells. Finally, we
give a different color to the edges that are not contained in
these surfaces. Checking that this coloring gives the desired
properties that make the complex a colex is now easy.

APPENDIX B: BRANE COMBINATION

Consider a D colex with color set Q. Let bR be a closed R
brane, ��R�Q. It is the purpose of this section to show

that for any r�R, there exists a family of closed �R� branes
bS homologous to BR such that

BbR

� = �
S

BbS

� . �B1�

The sum extends over all S� r̄ªQ− 	r
 with �S � = �R�.
We first consider the case R= 	r
. Then, bR is a string. It

consists of r edges that link R̄ cells. BbR

� acts nontrivially in

an even number of vertices per R̄ cell. Thus, we can gather
them together in pairs and connect them through a path
which only contains edges with colors in Q−R. Then, for
each s�Q−R, the set of all s edges we have used forms a
string bS, S=s. Then, certainly, Eq. �B1� holds true and each
string bS is closed because the rhs commutes with operators

from S̄ cells, and so does the left-hand side �lhs�.
Now consider the case �R � �1. Let r̃ªR− 	r
. Consider

the restriction of BbR

� to any r̄-cell c, denoted as Bb
�. This

operator corresponds to a closed r̃ brane b in the �D−1�
colex that forms the boundary of c. Since this colex is a
sphere, b is a boundary and thus Bb

� is a combination of �R�
cells. As we did for strings, we can do this for every r̄ cell,
gather cells together by color and form the required closed
�R� branes.

APPENDIX C: DEGENERACY OF THE GROUND STATE

In the theory of quantum error correcting codes, the
ground state of the Hamiltonian �27� is called a stabilizer
code.54 Thus, the theory of stabilizer codes naturally fits in
the study of degeneracy, but we will avoid using its language
although this makes the exposition less direct.

The ground state of the Hamiltonian �27� is the intersec-
tion of subspaces of eigenvalue 1 of �p+1�-cell and
�q+1�-cell operators, as expressed in Eqs. �29� and �30�. This
subspace has an associated projector, which in turn will be
the product of the projectors onto each of the subspaces of
eigenvalue 1:

�
c�Cp+1

1

2
�1 + Bc

Z� �
c�Cq+1

1

2
�1 + Bc

X� . �C1�

Each of these projectors reduces the dimension of the space
by half, but not all of them are independent because certain
relations among cell operators exist. For �p+1� cells, these
relations have the form

�
c�Cp+1

�Bc
Z�ic = 1, �C2�

where ic=0,1. Analogous relations exist for �q+1� cells:

�
c�Cq+1

�Bc
X�ic = 1. �C3�

If the number of spins is n and the number of independent
projectors is l, then the degeneracy of the ground state will
be 2k, with k=n− l. Suppose that the number of independent
relations of type �C2� is l1 and that for relations �C3� is l2.
Then, we have l= �Cp+1�− l1+ �Cq+1�− l2. Our starting point is
then the equation

FIG. 22. �Color online� This figure explains a process that con-
verts an arbitrary 2-complex on a surface into a 2-colex. In �a�,
green color is given to all the 2-cells of the 2-complex. In �b�,
1-cells are inflated to give blue 2-cells. Finally, in �c�, 0-cells are
inflated to give red 2-cells, and 1-cells are accordingly colored.
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k = �C0� − �Cp+1� − �Cq+1� + I�D,p + 1� + I�D,q + 1� ,

�C4�

where n= �C0� is the number of sites and I�D ,s� is the num-
ber of independent relations among s cells in a D colex.

I�D ,s� only depends on the cardinalities of cell sets �Ci�
and the Betty numbers of the manifold hi, as we will show by
calculating its value recursively. First, we note that

I�D,D� = dh0 �C5�

because the unique independent relations in this case are
those in Eq. �38�, for each connected component. For s�D,
a relation between cells has the general form

�
�S�=s

�
c�DS

Bc
� = 1, �C6�

where DS�CS. Let r�Q be a color. If we only consider
those relations that include color sets R� r̄, we effectively
reduce the problem by one dimension. By gathering together
all such relations that appear in r̄ cells, we get a total count
of

Ir̄�D,s� = I��D − 1,s��h0=hD=�Cr̄�,hi�0,D=0. �C7�

Since the rhs of Eq. �C6� commutes with any cell operator,
the relation has the form

�
�S�=s

BbS

� = 1, �C8�

where bS is a closed S-brane bS. Then, consider any such
relation in which a R-brane bR appears with r�R. If we have
at hand all the relations of the form �B1�, we can use them to
eliminate the term bR in Eq. �C8�. This can be done for every
such R, until a relation containing only colors in r̄ is ob-
tained. Therefore, our next task is to count how many of the
relations �B1� are independent for each R.

Suppose then that we have a relation of the form �B1� that
follows from other t relations of the same form �but not from
a subset of them�:

BbR,i

� = �
S

BbS,i

� , i = 1, . . . ,t . �C9�

Then, for the lhs of the relations, the following is true:

BbR
= �

i=1

t

BbR,i
. �C10�

Since all the branes that appear in Eq. �B1� are R branes, the
equation can be interpreted in terms of Z2 chains of �R� cells

in the R-shrunk complex. It states that bR=bR,1+ ¯ +bR,t.
The argument can be reversed; any such dependence be-
tween �R� cycles in the R-shrunk complex corresponds to a
dependence among relations of the form �B1�.

Therefore, counting the number of independent relations
of the form �B1� for a given R amounts to counting the
number of independent Z2 chains of closed �R� cycles in the
R-shrunk complex. For �R�=s, this number is

S�D,s� = �
i=0

n−s

�− 1�ihs+i + �
i=1

n−s

�− 1�i�Cs+i� . �C11�

This follows by recursion. S�D ,D�=h0 and S�D ,s�=hD−s

+ ��Cs+1�−S�D ,s+1��.
We have to consider all the possible sets R in which r is

contained:

Ir�D,s� = �
R�r

�R�=s

S��D,s��R-shrunk. �C12�

Then,

I�D,s� = Ir̄�D,s� + Ir�D,s� , �C13�

which can be solved and gives

I�D,s� = � D

s − 1

�

i=0

D−s

�− 1�ihs+i + �
i=0

D−s−1 � s + i

s − 1

�− 1�i�Cs+i+1� .

�C14�

Now recall Eq. �22�. We can sum up these equations for r
=0, . . . ,s with an alternating sign �−1�r. Using the fact that

�
i=0

a �b + 1

i

�− 1�i = �− 1�a�b

a

 , �C15�

we get

�D

s

� = �− 1�sC0 + �

i=0

s−1 �D − i − 1

D − s

�− 1�i�CD−i�

+ �
i=r+1

D �i − 1

s

�− 1�i�Ci� . �C16�

By gathering together Eqs. �C4�, �C14�, and �C16�, we fi-
nally obtain Eq. �28�.
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