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Ab initio GW electron-electron interaction effects in quantum transport
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We present an ab initio approach to electronic transport in nanoscale systems which includes electronic
correlations through the GW approximation. With respect to Landauer approaches based on density-functional
theory (DFT), we introduce a physical quasiparticle electronic structure into a nonequilibrium Green’s function
theory framework. We use an equilibrium non-self-consistent G'W? self-energy considering both full non-
Hermiticity and dynamical effects. The method is applied to a real system, a gold monoatomic chain. With
respect to DFT results, the conductance profile is modified and reduced by the introduction of diffusion and
loss-of-coherence effects. The linear response conductance characteristics appear to be in agreement with

experimental results.
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Electronics at the nanoscale—namely, nanoelectronics—
represents the next years’ technological challenge. It is
boosted not only by the need for shorter integration scales,
but also by the expectation that unusual quantum effects' are
going to be observed due to quantum phenomena effects.
Beside the experimental efforts to synthesize nanoelectronic
devices, quantum transport theory? has the formidable task of
understanding and modeling the mechanisms behind these
phenomena and to predict them from a first-principles
approach.

In the last years, a combination of ab initio density-
functional theory (DFT) calculations together with the de-
scription of transport properties in a Landauer-Biittiker (LB)
framework? has demonstrated its ability to describe small-
bias coherent transport in nanojunctions.>” These ap-
proaches were successful in accounting for the contact resis-
tance and conductance degrading mechanisms induced by
impurities, defects, and noncommensurability patterns in the
conductor region. The major objections raised to such
method are that (i) the Kohn-Sham (KS) electronic structure
is in principle unphysical, to be considered only as an ap-
proximation to the quasiparticle (QP) electronic structure;
(ii) noncoherent and dissipative effects due to electron-
phonon (e-ph) and electron-electron (e-e) scattering can be
taken into account only approximatively in the LB formal-
ism; (iii) nonlinear response and far-from-equilibrium finite-
bias transport are not accessible, since DFT cannot be
applied to open systems and is not a nonequilibrium
theory (although recent works® have demonstrated that
time-dependent DFT can tackle the problem).

Nonequilibrium Green’s function (NEGF) theory”?® is in
principle a correct approach to address the above objections.
The critical point within this theory is the choice of good
approximations to the self-energy 3" and coherently to
the scattering functions X=~. This ensures that both
the renormalization of the QP energies and the electron
diffusion mechanisms due, e.g., to e-ph or e-e interactions
will be properly taken into account. The first works studying
the role of the e-ph coupling®!® and of short-range e-e
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correlations'"!? or the renormalization of the QP energies'?

have recently appeared in the literature or, we are aware, are
going to appear.'* The role of correlations, apart from being
central in explaining, e.g., Coulomb blockade and Kondo
effects, could also be crucial in bridging the gap between
experimentally observed and LB-predicted conductances,
which in some cases are orders of magnitude off.%!215

In this work, we introduce electronic correlations in the
calculation of transport by an ab initio approach based on
Hedin’s GW approximation'®!” (GWA) in the framework of
NEGE. In our scheme, the GW self-energy is built at equi-
librium and the Green’s function is calculated by direct so-
lution of the Dyson equation. For the lead/conductor/lead
geometry, the GW self-energy is summed to the lead’s self-
energies; the electronic conductance is calculated through the
Meir-Wingreen formula,'® a NEGF Landauer-like expression
derived for interacting conductors. We apply this scheme to a
realistic system, a gold monoatomic unidimensional chain,?
and we study the effects induced on transport properties by
the different components of the GW self-energy, the Hermit-
ian and the non-Hermitian parts, and the dynamical depen-
dence. Our results show that the conductance profile is con-
siderably modified by the real part of the GW correction. The
imaginary part introduces a suppression of the conductance,
which is negligible close to the Fermi energy, but that in-
creases with the energy. Finally, the full dynamical depen-
dence of the GW self-energy introduces further structures far
from the Fermi energy, which have to be ascribed to satellite
excitations of the system. The GW smooth drop on the con-
ductance characteristics as a function of the bias at very low
voltage compares favorably with the trend experimentally
measured in gold nanowires.?

With respect to the Hartree-Fock (HF) approach, which
already renormalizes the energies for the e-e classical repul-
sion and exchange, the GWA introduces the important con-
tribution due to correlations and to e-e scattering diffusion
mechanisms responsible for loss of coherence in transport.
Indeed, by direct inspection of the diagrammatic representa-
tion of the two-particle Green’s function G, (see Fig. 1 and
Refs. 7 and 18), one can see that the G5' describes an
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FIG. 1. Two-particle Green’s function in the self-consistent
Hartree-Fock (a) and in the non-self-consistent GOW? approxima-
tion (b). Thin line: non-self-consistent G°. Double line:
self-consistent G. Wiggly line: RPA non-self-consistent W?.

uncorrelated propagation and that collisional terms are miss-
ing. This implies that the HF scattering functions = and 2~
are exactly zero. On the other hand, even a non-self-
consistent G°W? approximation introduces a collisional term
[the last diagram in Fig. 1(b)] which gives rise to nonzero
3=~ and in turn to e-e scattering mechanisms and incoher-
ent, dissipative effects in transport. As is shown by the cor-
responding G, Feynman diagram, the G°W? approximation is
not a conserving approximation in the Baym-Kadanoff
sense,’ leading to, e.g., nonconservation of the number of
particles. However, the relative deviation from the exact den-
sity brought by the G°W" approximation has been evaluated
by Schindlmayr et al.'® to be only of the order of 0.05% for
the range of metallic densities (rf‘”=3.01) of interest here.

Our starting point is a standard DFT-LDA calculation
based on plane waves (PW’s) and norm-conserving pseudo-
potentials for an infinite monoatomic chain of gold atoms
using periodic boundary conditions.?! The KS electronic
structure is calculated both at the relaxed atomic distance
(4.72 bohrs) and in a stretched geometry (5.32 bohrs), so as
to simulate the experimental situation described in Ref. 20
[conductance measures of a gold monoatomic chain pulled
up from a gold surface by an scanning tunneling microscope
(STM) tip] and also the calculations reported in Ref. 9. From
the DFT KS eigenfunctions, we obtain an orthonormal set of
maximally localized Wannier functions (MLWF’s),?? which
are used as a basis set in the calculation of quantum trans-
port. The following step is a converged”®> GW plane-wave
calculation of both the QP energies and the self-energy ma-
trix elements for the six bands around the Fermi energy,
corresponding to the gold sd manifold. The self-energy in the
G°W? approximation at equilibrium is given by

Sowlw) = if dw'e‘i‘”’0+G0(w— o W), (1)

—o0

where G is the Green’s function built on the noninteracting
KS electronic structure and W' is the dynamically screened
interaction given by the random phase approximation (RPA)
polarizability PRPA=—iG°G°. Since for transport we need a
fine-grid fully dynamical dependence of the self-energy, we
calculate the frequency integral of Eq. (1) in three different
ways: (i) by approximating the dynamical dependence of
W(w") through a plasmon-pole (PP) model;!” (ii) by a con-
tour deformation (CD) method,?* which consists in a defor-
mation of the real axis contour such that the self-energy can
be calculated as an integral along the imaginary axis minus a
contribution arising from the residual of the contour-included
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poles of G; (iii) by an analytic continuation (AC)
method,®—i.e., calculating the integral and also the self-
energy on the imaginary axis and then performing an analyti-
cal continuation to the real axis. In the last step we carried
out the quantum transport calculation using a modified ver-
sion of the WANT code.>!! We first projected the GW self-
energy, as well as the noninteracting Hamiltonian H°, on the
Wannier functions basis set (nondiagonal self-energy ele-
ments in the Bloch basis were neglected). We study the bulk
conductance and also partition the system into three regions:
the right (R) and left (L) leads—two semi-infinite gold
monoatomic chains—and a central (C) region, constituted by
a single gold atom. This has the purpose of clarifying the role
of both intraconductor and conductor-lead correlations. We
calculate the retarded Green’s function in the space spanned
by the MLWEF set by inverting the Dyson equation—i.e.,

G'(w)=[o-H -3 ()], (2)

where H° is the KS Hamiltonian once the exchange-
correlation contribution is subtracted, H'=Hyq—V,,. For the
tripartitioned geometry, the total retarded self-energy

YIS Y YA Y (3)

is the sum of the correlation GW and lead self-energies. The
conductance is finally calculated using the following
formula:

2 2
Cle) = %tr[G“FRGTL(FL +To) T, 4)

first given by Meir and Wingreen'® and recently rederived
under more general conditions.!! Here I'=I"; +I'z+I gy, not
to be confused with the vertex function, is the total decay
rate (the sum of the electron in- and out-scattering func-
tions), due to both the presence of the R and L leads and the
effect of the e-e interaction,

=i -39=i(3"=-3%). (5)

With respect to the Landauer formula, Eq. (4) presents a
factor (I';+T'x)~'T" which reduces to 1 in the uncorrelated
case. Equation (4) represents an effective (including correla-
tion effects) transmission probability of an electron injected
at energy e through the conductor.

In Figs. 2(a) and 2(b) we compare the DFT-LDA (Kohn-
Sham) and the GW (quasiparticle) electronic structure for the
relaxed geometry. The dots represent the DFT-LDA levels
from the PW calculation. We verified that the diagonalization
on the MLWF basis (solid lines) closely reproduces the PW
results. Squares, triangles, and diamonds represent the GW
electronic structures calculated using the PP model, CD
method, and AC method, respectively. Little difference
among the GW methods is found. The GW corrections glo-
bally lower the d-like states with respect to the Fermi level
and also reduce the s-like bandwidth (this effect is less evi-
dent in the stretched chain where the bandwidth shrinks
about 3 eV already at the DFT level).

In Fig. 2, we compare the real and imaginary parts of the
self-energy (d) and the spectral function A=i(G"-G*) (c) for
a point close to the Fermi level. We remark that the AC
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FIG. 2. (Color online) (a) and (b) DFT-LDA Kohn-Sham vs GW
electronic structure: Black dots: DFT-LDA on PW basis. Lines:
DFT-LDA on MLWE. Squares, triangles, and diamonds refer to GW
calculations from the PP model, CD method, and AC method, re-
spectively. The Fermi energy is set to zero. (c) Spectral function and
(d) real and imaginary parts of the GW self-energy: dashed, thin,
and thick lines are from the PP model, CD method, and AC method,
respectively. The dotted curve is the straight line w—eXS+(V,.)
whose intersections with the real part of the self-energy give the
peaks of the spectral function. The 0 is set to the Kohn-Sham Fermi
energy.

method appears to smooth the richer-in-structure CD spec-
trum. Although computationally cheaper, the AC method
should be considered less accurate than the CD method, es-
pecially in the imaginary part. However, the frequency de-
pendence as well as the shape and the position of the main
structures (both QP and satellites peaks) are essentially
caught by both methods. Therefore, we use the AC approach
in the following.

In Fig. 3 we show the conductance and the spectral func-
tion of the gold chain for the stretched geometry, obtained
using different methods: The thin dashed line is calculated
using the Landauer formula and the DFT KS electronic
structure. The conductance at the Fermi level for the
stretched chain appears to be 1 (in units of 2¢?/h), and it is
of s-like character. This is true also for the relaxed structure
(not shown), although in that case the Fermi level is at the
limit of the onset of the d-like states. The thin solid line is
obtained from the Landauer formula evaluated using the GW
real-part-only QP energies. GW corrections are considered
both in the conductor and in the leads. Otherwise, a ficticious
contact resistance, unphysical for a homogeneous system,
would appear. At this first level, the net effect is a renormal-
ization of KS into QP energies, the true energies to introduce
and remove an electron from the system. Therefore, the
GWA affects the conductance profile by modifying the posi-
tion of the conductance steps, especially in the d-like region.
In the relaxed geometry, the GWA also narrows the s-like
conductance channel.

The thick dashed line in Fig. 3 represents the result ob-
tained in the tripartitioned geometry by using the Meir-
Wingreen formula and introducing a full non-Hermitian and
dynamical GW self-energy in the conductor. Static real-part-
only QP energies are included in the leads. This introduces
loss of coherence only in the conductor while leaving the
leads ballistic. At the same time it limits the introduction of
ficticious contact resistances; i.e., the QP levels are aligned
in the leads and the conductor. The difference of this curve
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FIG. 3. (Color online) Conductance (top) and spectral function
(bottom) for the stretched atomic configuration. The Fermi level is
set to zero. Thin dashed line: Landauer result using a DFT KS
structure. Thin solid line: Landauer using only a real-part GW
renormalization of the energies. Thick dashed line: Meir-Wingreen
result using a GW real-part renormalization in the leads and a full
(Hermitian+anti-Hermitian) dynamical GW self-energy in the con-
ductor. Thick solid line: GW bulk conductance with full dynamical
self-energy.

with respect to the thin solid line genuinely represents the
effect of e-e scattering mechanisms in the conductor, causing
diffusion, loss of coherence, and appearance of resistance.
With respect to Landauer approaches, the spectral function
now appears as a collection of broadened QP peaks, whose
finite width is directly associated to the inverse of the elec-
tronic lifetime of the QP state. The spectral weight, which is
spread out, results in a lowering and a spill-out of the con-
ductance step-like profile. This effect is directly related to the
imaginary part of the QP energies and can be seen to increase
with e—Efg although not with a quadratical scaling Fermi-
liquid behavior, as is normally observed in GW results for
three-dimensional systems. Finally, we calculate the fully
correlated bulk GW conductance by taking into account a
non-Hermitian and dynamical GW self-energy everywhere in
the system, conductor, and leads (thick solid line). With re-
spect to the previous case, even residual contact resistances
(due to the fact that the conductor and lead spectral peaks
were differently shaped, with finite and infinitesimal widths,
respectively) are completely removed and the conductance
increases almost overall. Only around -3 eV do we see a
slight drop, which is due to the specific (I'; +I'5)~'T" factor in
Eq. (4). Moreover, new structures appear in the conductance
at the lowest energies. By inspecting the spectral function,
we can attribute them to the presence of satellites of elec-
tronic origin—i.e., plasmons or shake-ups—of the main QP
peaks. Since the e-e interaction is an elastic scattering
mechanism, these satellites are necessary to balance the
losses which occur at energies close to the Fermi level and
are therefore important for transport. The e-e scattering acts
in a way to redistribute the conductance channels to different
energies, rather than globally destroy conductance as in the
e-ph scattering, where momentum and current is lost to ionic
degrees of freedom.

Taking the GW bulk result, we have integrated the con-
ductance curve such to obtain the voltage characteristics of
the correlated system. We compare with the experimental
results of Ref. 20 and the e-ph result of Ref. 9, calculated at
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FIG. 4. (Color online) Differential conductance vs applied bias.
Thin solid line: DFT Landauer result. Dots: present NEGF GW bulk
result for the 5.35 bohr interatomic distance; dashed-dotted line:
e-ph theory of Ref. 9 corresponding to four atoms, the same inter-
atomic distance, and for the damped and undamped limits. Thick
solid lines: experimental result of Ref. 20 corresponding to two and
seven atoms and different chain strains.

exactly the same stretched 5.35 bohr interatomic distance.
Like in that work, we assume that an equilibrium picture can
still be appropriate to describe the small voltage range of
+30 mV. The GW result is shown in Fig. 4 (dots). The
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results from Ref. 9 attribute the step in the conductance,
occurring at ~15 mV, to the onset of phononic processes.
Instead, the continuous drop observed in our electronic cor-
related conductance, occurring in the first 15 mV, compares
favorably with the drop observed experimentally:* e-e scat-
tering mechanisms seem hence responsible for the conduc-
tance drops at very low bias.?® While the quantitative agree-
ment with the experiment on the conductance value may be
somewhat fortuitous,?’ the trend in this drop is a direct con-
sequence of the increase in the GW imaginary part of QP
energies.

In conclusion, we have calculated the conductance of a
realistic gold chain system by taking into account e-e corre-
lation effects within the GW approximation. With respect to
Landauer DFT results, the conductance profile is consider-
ably modified. Already at the level of an equilibrium non-
self-consistent GW approximation, the trend of the differen-
tial conductance appears to compare favorably with the trend
experimentally observed for this system.
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