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Quantum Monte Carlo simulation of spin-polarized H
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The ground-state properties of spin polarized hydrogen H| are obtained by means of diffusion Monte Carlo
calculations. Using the most accurate to date ab initio H|-H| interatomic potential we have studied its gas
phase, from the very dilute regime until densities above its freezing point. At very small densities, the equation
of state of the gas is very well described in terms of the gas parameter pa’, with a the s-wave scattering length.
The solid phase has also been studied up to high pressures. The gas-solid phase transition occurs at a pressure
of 173 bar, a much higher value than suggested by previous approximate descriptions.
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I. INTRODUCTION

The suggestion of Stwalley and Nosanow! in 1976 that
electron-spin-polarized gases of hydrogen (H|) could be an
ideal candidate for achieving a Bose-Einstein condensate
(BEC) state opened an intense experimental search which
finally led to its first observation in Rb, Na, and Li in 1995.2
The success attained in cold alkali gases was made possible
due to techniques like evaporative cooling developed previ-
ously for confining H|. The realization of a BEC state of
hydrogen was finally achieved in 1998 by Fried et al.* after
overcoming arduous problems like recombination on the
walls, by working with a wall-free confinement, and low
evaporation rates by using spin resonance. Also in 1998,
Safonov et al* observed a quasicondensate in two-
dimensional (2D) H| adsorbed on liquid “He. This is one of
the best realizations of a 2D quantum system since the ad-
sorption energy of H| on *He is only ~1 K and the adsorbed
gas floats approximately 8 A apart from the liquid. Further
experimental work is still necessary to observe in this system
signals of the Berezinskii-Kosterlitz-Thouless transition,
which has been recently observed in a trapped gas of Rb
confined in such a way that atoms can move only within a
plane.’

Hydrogen is the simplest element and its main properties
are well known theoretically, starting from the interatomic
interaction which can be computed almost exactly.® This is
significantly different from alkali gases in which the interac-
tion is much more involved and, in general, less well known.
Its s-wave scattering length a is appreciably smaller than the
typical values for alkalis, a feature that retards evaporative
cooling and produces a higher transition temperature
(50 uK). Spin-polarized hydrogen atoms interact via the
triplet potential b 32: determined in an essentially exact way
by Kolos and Wolniewicz,% and recently extended to larger
interparticle distances by Jamieson et al.” The H | -H]| inter-
action is highly repulsive at short distances and presents a
shallow minimum of ~6 K at r~4 A. The combination of
this extremely weak attraction and its light mass explains
why H| remains in the gas phase even in the limit of zero
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temperature. A measure of the quantum character of a given
system can be drawn through the quantum parameter,®

ﬁZ
n= (1)

with € and o the well depth and core of the interaction,
respectively. According to this definition, =0.5 for H]
which is the highest value for » among all the quantum fluids
(for instance, =0.2 for *He).

From a theoretical viewpoint, bulk H| was first studied by
Etters et al.® using the variational Monte Carlo (VMC)
method and by Miller and Nosanow?® using integral equations
for computing the multidimensional integrals of the varia-
tional approach. Both calculations showed that the ground
state of H| is unbound at any pressure. Lantto and
Nieminen!® confirmed this result using the Euler-Lagrange
hypernetted chain equation and estimated values for the con-
densate fraction of the gas at different densities for the first
time. More recently, Entel and Anlauf'! carried out a new
VMC calculation of properties of the gas phase such as the
energy, condensate fraction and excitation spectrum. The
heavier isotopes spin-polarized deuterium D| and tritium T
have also been studied theoretically. D| atoms obey Fermi
statistics and their three versions, involving one (D],), two
(D|,), and three (D|3) equally occupied nuclear spin states,
were analyzed by Panoff and Clark'? and Flynn et al.'? using
both VMC and Fermi-hypernetted chain theory (FHNC).
From the results obtained, they concluded that D|, and
D|jare both liquids at zero pressure. Their conclusion has
been confirmed by Skjetne and @stgaard,'* using a lowest-
order constrained variational method. On the other hand, mi-
croscopic properties of bosonic tritium T| clusters have been
recently studied by Blume et al." using the diffusion Monte
Carlo (DMC) method, and their results suggest the use of T|
as a new BEC gas with the advantage of a nearly exact
knowledge of the interatomic potential.

In the present work, we present a DMC study of the gas
and solid phases of spin-polarized hydrogen. Using recent
updates of the ab initio H|-H| interatomic potential and
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relying on the accuracy of the DMC method, we report ac-
curate microscopic results for energetic and structural prop-
erties of the bulk system. In the very low density regime, the
energy is well reproduced by the well-known analytical ex-
pansion in terms of the gas parameter pa’,'°"'® with a the
s-wave scattering length obtained by solving the two-body
Schrodinger equation with the chosen interatomic potential.
A relevant result of our work is an accurate computation of
the gas-solid phase transition point which is predicted to oc-
cur at pressures significantly higher than previous predictions
based on quantum theory of corresponding states' and VMC
simulations.!?

In Sec. II, we report briefly the DMC method and discuss
the trial wave functions used for importance sampling in the
gas and solid phases. In Sec. III, the results of the DMC
simulations are reported in several sections. In the first one,
we review the H|-H| interatomic potentials and compare
our results at the variational level with some previous esti-
mations. The second and third parts of Sec. III are devoted to
the microscopic results for the gas and solid phases, respec-
tively. In the last part of Sec. III, we study the gas-solid
phase transition point and report results on the freezing and
melting densities. Finally, Sec. IV comprises a summary of
the work and an account of the main conclusions.

II. METHOD

The DMC method is nowadays a well-known tool devised
to study quantum fluids and solids at zero temperature. Its
starting point is the Schrodinger equation written in imagi-
nary time,

IV(R,1)
ot

_h =(H-E,)¥(R.1), (2)

with an N-particle Hamiltonian

w2 N N
H== =2 Vi+ 2 V(ry). (3)
2mi i<j
In Eq. (2), E, is a constant acting as a reference energy and
R=(r,,...,ry) is a walker in Monte Carlo therminology.

DMC solves stochastically the Schrédinger equation (2)
replacing W(R, 1) by ®(R,1)=V(R,1)¥(R), with (R) a trial
wave function used for importance sampling. In this way Eq.
(2) becomes

IDP(R,1)
ot

=—DVE®P(R.1) + DVRx(F(R)®(R,1))

+(EL(R) - E)D(R,1), (4)
where D=#2/(2m), E;(R)=yAR)"'"HyAR) is the local energy,
and

F(R)=2¢(R)"'Vgyi(R) (5)

is the drift force which guides the diffusion process. In Eq.
(4), when t—o only the lowest energy eigenfunction, not
orthogonal to (R), survives and then the sampling of the
ground state is effectively achieved. Apart from statistical
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TABLE I. Results for gas H| at different densities p: energy per
particle (E/N), kinetic energy per particle (T/N), pressure (P), and
speed of sound (c). Numbers in parentheses are the statistical errors.

p(A3  E/INK)  T/N(K) P (bar) ¢ (m/s)
0.0001  0.0221(5)  0.101(1)  0.000321(3) 19.9(2)
0.001 0.302(3)  1.213(6)  0.0548(4) 90.8(6)
0.005 4.091(8) 9.55(3) 5.65(5) 470(4)
0.01 18.68(6)  27.40(13) 61.3(6) 1149(13)
0.0125 32.13(6)  38.61(2)  138.4(1.6)  1.56(2)x 10°
0.015 51.07(8) 51.93) 273(3) 2.02(3) X 10°
0.02 109.24(16)  83.2(5) 819(12)  3.08(5) X 10°

uncertainties, the energy of a N-body bosonic system is ex-
actly calculated.

The trial wave function used for the simulation of the gas
phase is of Jastrow form, i(R)=I1" f(r), with a two-body
correlation function f(r) of the form

f(r) = exp[— by exp(- b,r)], (6)

where b; and b, are variational parameters. This form has
been taken from the VMC work of Etters et al.,’ who used a
Morse potential fitted to reproduce Kolos and Wolniewicz ab
initio data.® It corresponds to the WKB solution of the two-
body Schrodinger equation for small interparticle distances
when the potential is of Morse type.

Simulations of the crystalline bcc, fcc, and hep phases
have been also carried out; in this case, we use a Nosanow-
Jastrow model

N
Ia®) = (R [T g(ri), (7)

where g(r)=exp(—ar?/2) is a localizing function which links
every particle i to a point r; of the lattice. The parameter « is
optimized variationally.

The variational parameters by, b,, and a [Egs. (6) and (7)]
have been obtained at different densities by optimizing the
variational energy calculated with the VMC method. For ex-
ample, in the gas phase and at a density p=0.0079 A~ the
values are b; =82 and b,=1.32 A~'; b, increases with density
whereas b, remains practically constant. In the solid phase
the most relevant parameter is «, which increases from a
value 0.3 A2 at melting density up to 1.3 A2 at the highest
density here studied; the Jastrow parameters are kept fixed in
all the solid density range, b;=70 and b,=1.32 A~'. The
statistical errors of the variational energies are similar to
those of the DMC results (see Tables I and II).

We use the DMC method accurate to second order in the
time step Az,”" and then larger At values than in linear DMC
algorithms can be used. We have studied both the time step
and the mean walker population in order to eliminate any
bias coming from them. Finally, we have analyzed carefully
the size dependence of our simulations. The calculations on
the gas phase have been carried out with 128 atoms and
some checks with 150 and 170 atoms have also been made.
Using standard tail corrections, which assume a uniform sys-
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TABLE II. Results for solid H| at different densities p: energy
per particle (E/N), kinetic energy per particle (T/N), pressure (P),
and speed of sound (c). Numbers in parentheses are the statistical
errors.

p (A7) EIN (K) T/N (K) P (bar) ¢ (m/s)
0.0125 33.02(8) 43.4(1) 121.6(2) 1445(3)
0.015 49.38(8) 59.0(6) 236.4(5) 1866(4)
0.02 99.6(2) 93.1(6) 679.8(1.4)  2821(6)
0.0225 134.9(2) 107.8(6) 1096(2) 3350(7)
0.025 178.5(2) 123.7(7) 1648(3) 3909(8)

tem [g(r)=1] beyond r>L/2, with L the length of the simu-
lation box, the size dependence of the energy remains
smaller than the typical size of the statistical errors. The size
effects are larger in the calculations of the solid phase. In this
case, we have used 128, 108, and 180 atoms for the bcc, fcc,
and hcep lattices. To consider tail corrections in the same form
as in the gas phase is a rough approximation due to the
periodic order of the solid. In order to overcome this diffi-
culty, we have studied the size dependence of the energy at
the VMC level where larger number of particles can be used.
From the VMC results one extracts the tail corrections for a
given number of atoms and then these are added to the DMC
energies. It has been verified?! that this procedure is able to
reproduce accurately the experimental equation of state of
solid “He.

III. RESULTS

A. Interatomic potential

Spin-polarized hydrogen atoms interact via the triplet po-
tential b 32;, calculated with high precision by Kolos and
Wolniewicz (KW) in 1965.° Due to the simplicity of the H
atom it is possible to calculate this potential in an essentially
exact way. More recently, it has been recalculated up to
larger interatomic distances by Jamieson, Dalgarno, and
Wolniewicz (JDW).” The differences between the KW and
JDW potentials, in the range where they can be compared,
are rather small, as shown in Fig. 1. The addition of mass-
dependent adiabatic corrections, which have been calculated
by Kolos and Rychlewski,?? to JDW potential, cannot be
discerned in Fig. 1.

In the past, only the KW potential has been used in the
study of the H| gas. Usually, an analytic form was assumed
and then the free parameters of the model were fitted to
reproduce the KW data. In this way, Etters et al.’ used a
Morse potential whereas Silvera and Goldman? proposed a
form which is similar to the ones used for He-He potentials.
The results of these models are also plotted in Fig. 1. In the
present work, we have used the JDW interaction and a cubic
spline to interpolate between the reported points. The result-
ing potential is plotted as a solid line in Fig. 1. The JDW data
are smoothly connected with the long-range behavior of the
H-H potential as calculated by Yan et al.>* The JDW poten-
tial has a core diameter of 3.67 A and a minimum e=
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FIG. 1. H|-H| interatomic potentials.

—6.49 K (slightly deeper than KW) at a distance r,
=4.14 A.

The influence of the potential on the energy of the gas at
small densities is shown in Fig. 2. We have carried out VMC
calculations using the trial wave function (6) introduced in
the preceding section and the KW and JDW potentials. The
JDW energies are below the KW ones in all the density
range, reflecting the slightly deeper well of the JDW poten-
tial. If we use the Morse potential adjusted by Etters et al.® to
the KW data, the VMC energies are significantly worse with
respect to the KW ones. This manifests the difficulties on
fitting a functional form to the ab initio KW data; the Morse
potential is a bit more repulsive than KW and therefore the
energies are higher. As a matter of comparison, we also show
in Fig. 2 results from previous calculations. The results from
Etters et al.® using the Morse potential are in nice agreement
with our VMC results using the same potential. The varia-
tional results of Miller and Nosanow® used the KW data and
are in close agreement with our present VMC results with the
same interaction. Finally, results of Lantto and Nieminen!'®
are also reported; they used the KW potential and performed
a Euler-Lagrange-HNC calculation. Their results, restricted
to very low densities, are slightly better than ours due to their
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FIG. 2. Influence of the interatomic potential on the equation of
state of gas HJ.
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E/N
.

pa’

FIG. 3. Equation of state of gas H| as a function of the gas
parameter pa’ in units of %#2/(2ma?) (solid points). The triangles
correspond to a HS gas (Ref. 25) and the line to Eq. (8).

use of an optimized Jastrow factor. All these variational re-
sults, both ours and from previous works, are compared in
the same figure with present DMC results with the JDW
interaction. As expected, the DMC results are below the
VMC ones in all the density range with a difference that
increases with p, a predictable feature attending to the fact
that the Jastrow factor (6) corresponds to an analytical form
which approximates the wave function solution of the two-
body problem.

B. Gas phase

The gas phase of spin-polarized H at very low densities is
of special relevance for the field of Bose-condensed gases at
low temperatures. The case of H is even more appealing than
alkali gases from a theoretical perspective because the inter-
atomic interaction between H| atoms is very well known, as
we have commented in the preceding section. At sufficiently
low densities, the equation of state becomes universal when
it is written in terms of the gas parameter x=pa’, with a the
s-wave scattering length. The equation of state of a bosonic
gas at low densities is given by

E 128
(—) =47Tx(1 + rxm), (8)
N 15V

where the first term is the mean-field result,'® and the second
is the Lee-Huang-Yang correction;'” the energy per particle
is written in units of #%/(2ma?).

In Fig. 3, the energy per particle of gas H| is compared to
the universal equation of phase (8) and to DMC results for a
hard-sphere (HS) gas from Ref. 25. In order to carry out this
comparison we have calculated the s-wave scattering length
of the JDW potential used in the present work. The value
obtained, a=0.697 A agrees with previous determ-
inations.!>?® As one can see in the figure, the equation of
state of gas H| coincides with both the analytic law (8) and
the HS results up to x=10"* in agreement with the range of
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FIG. 4. Condensate fraction of gas H| as a function of the gas
parameter pa’ (solid points). The triangles correspond to a HS gas
(Ref. 25) and the line to the Bogoliubov approximation (9).

universality determined in Ref. 25. Beyond this value, the
energies of bulk H| clearly separate from Eq. (8), increasing
with x faster than for HS gas.

The condensate fraction ny, i.e., the fraction of particles
occupying the zero momentum state, presents also a univer-
sal behavior in terms of the gas parameter x at very low
densities. According to the Bogoliubov formula,®

ng=1- 3——x1/2. 9)

The condensate fraction has been obtained from the long-
range behavior of the one-body density matrix p(r), ng
=lim,_,., p(r). We have verified by increasing the number of
particles of the simulation at different densities that the size
dependence of n is smaller than its statistical error. In Fig. 4,
we compare our results for the condensate fraction of gas H|
with Eq. (9). DMC results® for n; in the HS system are also
plotted in the same figure. As one can see, the three results
are coincident up to x= 1074, the same value observed for
the energy in Fig. 3. Both HS and H| show a faster decrease
with x than the law (9), the departure from it being signifi-
cantly larger for hydrogen, in agreement with the same fea-
ture observed in Fig. 3 for the energy.

Spin-polarized H in its gas phase has been studied in all
the density range up to densities above crystallization. DMC
results for the total and kinetic energy per particle at different
densities are reported in Table I. In order to remove any
residual bias from the trial wave function, kinetic energies
are calculated as differences between total energies and pure
estimations of potential energies. The energies are positive
everywhere, proving its gaseous nature, and dominated by
the kinetic part which is larger than the potential energy (in
absolute values) at any density. The potential energy per par-
ticle is negative up to a density p=0.015 A3, presenting a
minimum value of —9 K at a density p=0.01 A=, and then
becomes positive.

064506-4



QUANTUM MONTE CARLO SIMULATION OF SPIN-...

120 T T T T

100

0 1 1 1 1
0 0.004 0.008 0.012 0.016 0.02

p(A™)

FIG. 5. Energy per particle of gas H| (solid circles) as a func-
tion of the density p. The solid line corresponds to the fit to the
DMC energies using Eq. (10). The error bars of the DMC energies
are smaller than the size of the symbols.

In Fig. 5, we plot the present DMC results for the equa-
tion of state of the gas. Our results are well parameterized by
a polynomial form (e=E/N)

e(p)=eip+exp’+e3p’ +eyp’, (10)

shown as a solid line on top of the DMC results in Fig. 5.
The best set of parameters is e;=217.0(1.9) KA, e,
=7.76(9) X 10* K A2, ¢3;=8.23(12) X 10° K A3, and e
=5.1(5) X 107 K A%, the numbers in parentheses being the
statistical uncertainties.

Using the equation of state (10), the pressure is easily
derived from its thermodynamic definition

P(p) = p*(deldp). (11)
and from it, the corresponding speed of sound as a function
of the density

1{oP
cz(p)=—<—)- (12)
m\ dp

Results for the pressure P and the speed of sound ¢ for some
values of the density, where specific DMC simulations have
been carried out, are reported in Table 1. The functions P(p)
and c(p), derived, respectively, from Egs. (11) and (12), are
shown in Fig. 6.

DMC simulations allow also for exact estimations of
other relevant magnitudes such as the two-body radial distri-
bution function g(r) and its Fourier transform, the static
structure function S(k). With the use of pure estimators?’ it is
possible to eliminate the bias coming from the trial wave
function and arrive to exact results for both functions. The
evolution of g(r) with density for the gas H| is shown in Fig.
7. At the smallest density reported, g(#) is a monotonic func-
tion with the corresponding hole consequence of the repul-
sive core of the interatomic interaction. When p increases
g(r) gains structure, with the main peak that shifts to shorter
distances and increases its strength.
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FIG. 6. Pressure and speed of sound of gas H| as a function of
the density. Left- (right-) hand scale corresponds to pressure (speed
of sound).

In Fig. 8, results of S(k) at the same densities as in Fig. 7
are reported. The results show the expected behavior: when p
increases, the strength of the main peak increases and moves
to higher momenta in a monotonic way. At low momenta, the
slope of S(k) decreases with the density, following the lim-
iting behavior limy_,, S(k)=7%k/(2mc) driven by the speed of
sound c. As expected, the DMC data start at a finite k& value
inversely proportional to the box size L.

To end this section, we show in Fig. 9 the density depen-
dence of the condensate fraction from the very dilute regime
up to densities corresponding to freezing. The full set of data
is well reproduced using the functional form

8
no(p)=1- 3\_/7—7(Pa3)1/2 - blPa3 - bz(Pa3)2 - b3(pa3)5/2,

(13)

which is also plotted in the figure as a solid line on top of the
DMC results. The values of the parameters in Eq. (13) are

1.8 T T T T T

16
14 r
12 |

1+F

&)

08 r
0.6
04 r
02 r

A)

FIG. 7. Two-body radial distribution functions of the gas phase.
From bottom to top in the height of the main peak, the results
correspond to densities 0.002, 0.0067, 0.01, 0.0125, and 0.015 A3,
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FIG. 8. Static structure function of the gas phase. From bottom
to top in the height of the main peak, the results correspond to
densities 0.002, 0.0067, 0.01, 0.0125, and 0.015 A3,

b, =504(5), b,=—1.254(49) X 10°, b;=8.54(55) X 10°, and a
is the scattering length.

C. Solid phase

The solid phase of spin-polarized H has been studied by
using as importance sampling trial wave function a
Nosanow-Jastrow model (7). The geometry of the lattice is
defined by a proper selection of the lattice sites r; around
which the atoms are organized according to a commensurate
solid. There is no experimental measurement on solid H| at
the pressures in which we are interested in and nothing is
known about the form of its solid lattice at low temperatures.
We have carried out calculations of the solid phase at some
densities using the fcc, hep, and bec lattices. Near the melt-
ing density the bcc phase is slightly better and, at higher
densities, the differences between them are not distinguish-
able within the statistical noise at p=0.0125 A=, E/N
=33.12(4), 34.30(5), and 33.02(8) K, and at p=0.018 A3,

09 r 1
0.8 1
0.7 r 1
0.6 1

04 | .
03} .

O 1 1 1 1
0 0002 0004 0006 0008 001 0012 0014
pA~)

FIG. 9. Condensate fraction of spin-polarized H in the gas
phase. The line corresponds to a fit to the DMC data using Eq. (13).
The error bars are smaller than the size of the symbols.
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FIG. 10. Energy per particle of solid H| (solid circles) as a
function of the density p. The solid line corresponds to the fit to the
DMC energies using Eq. (14). The error bars of the DMC energies
are smaller than the size of the symbols.

E/N=76.2(2), 76.2(2), and 76.1(2) K for fcc, hep, and bee,
respectively. Therefore, we decided to study the solid H|
properties assuming a bce phase. It is worth noticing that the
same lattice was used in the past by Pierleoni et al.?® in the
study of solid H at very high pressure.

Some selected results for the total and kinetic energies per
particle are reported in Table II. The behavior of the partial
energies, potential and kinetic, is very similar to the one
obtained for the gas: the kinetic energy dominates in all the
density regime and the potential energy is negative at the
lower densities and becomes positive for densities p
=0.02 A=, The full set of results for the energy of the solid
phase is shown in Fig. 10. The solid line on top of the DMC
results correspond to a numerical fit obtained using the func-
tion

elp) =sip+s3p°. (14)

The optimal values in Eq. (14) are s;=1147(6) K A and s,
=9.57(2) X 10° K A3.

From the functional form (14), and using the correspond-
ing thermodynamic expressions for the pressure (11) and the
speed of sound (12), one can easily derive the dependence of
these magnitudes on the density. The results for both func-
tions are plotted in Fig. 11.

The spatial order of the solid is reflected in the shape of
the two-body radial distribution function g(r). Results for
g(r) in the solid phase for different densities are shown in
Fig. 12. At densities p=0.0125 and 0.015 A~3, we can com-
pare results for g(r) in the gas and solid phases. As one can
see, the peaks of the solid are slightly shifted to larger dis-
tances than in the gas and more importantly, and as expected,
the secondary peaks of the solid are more pronounced. When
p increases, the height of the peaks increases and moves to
shorter distances, like in the gas phase.
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FIG. 11. Pressure and speed of sound of solid H| as a function
of the density. Left- (right-) hand scale corresponds to pressure
(speed of sound).

D. Gas-solid phase transition

A relevant prediction that can be drawn from the present
DMC results on the energies of the gas and solid phases of
H| is the location of the gas-solid phase transition. In order
to determine the transition point and the corresponding freez-
ing (py) and melting (p,,) densities, we have performed the
Maxwell double-tangent construction as shown in Fig. 13.
From the common tangent to both phases we obtain p;
=0.01328 A~ and p,,=0.013 79 A3, which corresponds to
a common pressure at the transition of P=173(15) bar. The
melting pressure has proven to be quite independent of the
lattice used in the simulation since using fcc and hcp we
obtain 175 and 176 bar, respectively.

At the transition the kinetic energy per particle of the
system is discontinuous. The size of this discontinuity in
other quantum fluids such as He and Ne has received the
interest in the past from both the theoretical and experimen-
tal sides.?”3! In the present system we are able to accurately

1.8

1.6

14
1.2 r

g(r)

0.8

0.6
0.4

0.2

r(A)

FIG. 12. Two-body radial distribution functions of the solid
phase. From bottom to top in the height of the main peak, the
results correspond to densities 0.0125, 0.015, 0.02, and 0.025 A3

PHYSICAL REVIEW B 75, 064506 (2007)

E/N(K)

50 60 70 80 90 100

70 72 74 76 78 80
Up(A%

FIG. 13. Maxwell construction based on plotting the energy per
particle, E/N as a function of 1/p. The densities at which the first-
order transition occurs are identified by finding the common tangent
(solid line) to both the solid (dotted line) and gas curve (dotted-
dashed line). The inset shows the construction in a wider range of
1/p.

measure this discontinuity: in the gas side at freezing 7/N
=44.0(5) K and in the solid side at melting T/N
=51.5(6) K. Therefore, the discontinuity amounts to 7.5 K
approximately. On the other hand, when the system crystal-
lizes the condensate fraction of the gas is small but not zero,
ny=0.04.

The Lindemann’s ratio, defined as y=+\((r—r)*/a;,
where a; is the lattice constant, can also be obtained from the
DMC simulations. At the melting point it is y=0.25, a nearly
identical value to the one of solid “He (y=0.26).

The spatial structure of both phases at the transition point
is rather different in spite of the small difference between p;
and p,,. In Fig. 14, we show results of g(r) for both phases at
the transition point. As one can see, the degree of localiza-
tion is higher for the solid, the strength of the main peak is
larger and the height of the subsequent peaks decreases more

1.6 T T T T T

1.4

1.2F

0 . \ \ \ \
0 2 4 6 8 10 12

r(A)

FIG. 14. Two-body radial distribution function at the gas-solid
phase transition. The solid line corresponds to the solid at p,, and
the dashed line to the gas at py.
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FIG. 15. Static structure factor at the gas-solid phase transition.
The results correspond to the gas at py and to the solid at p,,.

slowly than in the gas. Nevertheless, the signature of the
solid phase manifests more clearly in S(k). In Fig. 15, results
of S(k) for both phases are compared at densities p, (gas) and
P, (solid). High intensity peaks located at the reciprocal lat-
tice sites are a clear signature of the solid order; they are
obviously absent in the S(k) of the gas.

IV. CONCLUSIONS

The ground-state properties of spin-polarized hydrogen
H| have been accurately determined using the DMC method.
The combination of the accuracy provided by the DMC and
the precise knowledge of the H|-H| interatomic potential
has allowed for a nearly exact determination of the main
properties of the system, in both the gas and solid phases.

The light mass of the hydrogen atom and the shallow well
of its interaction force H| to remain a gas in the limit of zero
temperature. In the very dilute limit, the equation of state of

PHYSICAL REVIEW B 75, 064506 (2007)

the gas is well described by the general expression of a
weakly interacting Bose gas. This analytical behavior de-
pends only on the gas parameter pa’, with a the correspond-
ing s-wave scattering length. Compared with other Bose-
condensed gases, like the alkalis, hydrogen presents the
appealing circumstance of the accurate knowledge we have
of its interatomic interaction. This allows for the use of the
real interaction in all the density regime, and thus accurate
calculations at much higher densities are possible.

When the density is high enough the system freezes. We
have studied the energetic and structural properties of the
solid phase. Near melting the bcc phase is slightly preferred
over the hcp and fcc ones. However, the energy differences
between the lattices are very small and become indistin-
guishable at higher densities. From the DMC equations of
state of the gas and solid phases, we have obtained the gas-
solid transition point. At zero temperature, the transition oc-
curs at P=173(15) bar. This value is significantly higher
than previous estimations: 50 bar, obtained by using the
quantum theory of corresponding states,' and 81 bar, from a
VMC estimation by Danilowicz et al.'® It is worth noticing
that the transition point depends dramatically on the accu-
racy of the theoretical method used for its calculation: if
instead of using the DMC technique an estimation is per-
formed using only the VMC method, one obtains P
=113(17) bar, a value significantly smaller than the DMC
result.
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