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The paper is concerned with the interpretation of many experiments that have been reported recently on the
production of quantum turbulence by oscillating spheres, wires and grids in both 4He and 3He-B at tempera-
tures so low that there is a negligible fraction of normal fluid. The experimental results are compared with
those obtained in analogous experiments with classical fluids and with preliminary simulations of the quantum
turbulence. Particular attention is paid to observed values of drag coefficients and to the very different critical
velocities observed in 4He and 3He. It is tentatively concluded that in the case of 4He behavior may well be
similar to that observed in the classical analogues, with relatively small changes when the characteristic size of
the oscillating structure is not large compared with the quantized vortex spacing, but that in the case of 3He
behavior is very different and due perhaps to very rapid intrinsic nucleation of the quantized vortices.

DOI: 10.1103/PhysRevB.75.064502 PACS number�s�: 67.40.Vs, 47.27.Cn

I. INTRODUCTION

Although turbulence in a superfluid 4He was discovered
over 50 years ago, interest in it has recently intensified,1 es-
pecially in connection with forms of superfluid turbulence in
both 4He and 3He that have classical analogues. Flow of a
superfluid is strongly influenced by quantum effects, and the
study of superfluid turbulence �or quantum turbulence� is
often concerned with the way in which these effects influ-
ence various forms of turbulence. The quantum effects are of
two types: those leading to two-fluid behavior, a normal
fluid, behaving like a conventional viscous fluid, coexisting
with an inviscid superfluid component; and those that lead to
quantum restrictions on the flow of the superfluid compo-
nent. In pure 4He or pure 3He the normal component is com-
posed of thermal excitations, and it disappears at very low
temperatures.2 The behavior of a superfluid at very low tem-
peratures is therefore of special interest, since it is concerned
with the simple and fundamentally important case when
there are no complications due to the presence of a normal
component. This paper will be concerned with this important
case.

Superfluidity is associated with the formation within the
fluid system of a coherent particle field, due to Bose conden-
sation of helium atoms in the case of 4He and to BCS
condensation of Cooper pairs of atoms in the case of 3He.2

The long-range phase coherence of the particle field �or con-
densate wave function� leads to two restrictions on the ve-
locity field, vs, of the flowing superfluid component: in a
simply connected volume curl vs=0; and in a multiply con-
nected volume the circulation is subject to quantization in the
form

� vs · dr = n� , �1�

where n is an integer, �=2�� /m is the quantum of circula-
tion, and m is the mass of a single 4He atom or a pair of 3He
atoms. Free vortex lines can exist in the bulk of the super-
fluid, provided that the line has a core at the center of which
the condensate wave function vanishes. In practice free vor-
tex lines in both 4He and the low-temperature phase of 3He,
3He-B, have single quanta of circulation. The radius of a
core is typically about 0.05 nm in 4He and 80 nm in 3He-B.

Since turbulent flow is necessarily rotational, turbulence
in the superfluid component can arise only through the pres-
ence of quantized vortex lines, and it must take the form of
what is often described as a random tangle of lines. This term
is rather misleading because in practice the tangle is often
not random, but rather is locally polarized in such a way as
to produce velocity fields on scales much larger than the
spacing between the vortex lines. Indeed this polarization is
often crucially important in forms of turbulence with classi-
cal analogues, because it allows flow on a wide range of
length scales, as is characteristic of many forms of classical
turbulence.3

The study of classical turbulence has often been con-
cerned with flows that are on average steady, either through a
grid, or past an obstacle such as a cylinder or a sphere. Grid
flow produces a particularly simple form of turbulence,
since, well behind the grid, it is approximately homogeneous
and isotropic.4 Steady flow past an obstacle relates to many
practical problems. Controlled steady flow of a superfluid is
difficult to achieve, although turbulence in the wake of a
steadily moving grid in 4He at relatively high temperatures
has been the subject of very important studies.5 Steady flow
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at very low temperatures is especially difficult to achieve,
although plans to study turbulence in the wake of a moving
grid are well advanced. It is, however, rather easy to produce
oscillatory motion of an obstacle or a grid in a superfluid at
a very low temperature, and it is with the results of such
experiments that this paper is concerned. Unfortunately flow
associated with such oscillatory motion is quite complicated,
even in the classical case, and this makes for difficulty in
interpreting experiments in the quantum case. Nevertheless,
useful progress in this interpretation has already been made,
and our paper aims to extend this progress. Sometimes we
shall argue that effects have close classical analogues; in
other cases the quantum case seems rather different.

As is well known, the creation of vortex line in a flowing
superfluid is inhibited by a potential barrier, analogous to
that opposing condensation of a supersaturated vapor.6 In the
case of 4He this barrier is so high that it cannot be overcome
at low temperatures, by either tunneling or thermally, unless
the flow velocity is greater than �10 ms−1 �see, for example,
vortex nucleation by a moving ion in 4He �Ref. 7��. In all the
cases that we shall examine the velocities are much too
small, so that nucleation of turbulence must be extrinsic,
relying on the growth of remanent vortices that are left over
from previous turbulent flows or formed during cooling
through the superfluid phase transition. For such remanent
vortices to be persistent they must be pinned, as explained in
Sec. IV B. In the case of 3He-B the barrier is much smaller,
owing to the much larger core size, and intrinsic nucleation
may be relevant to the experiments that we shall examine.

It has become clear during the past decade that quantum
turbulence can often mimic its classical counterpart, the most
striking example being the Richardson cascades and Kol-
mogorov energy spectra8 observed in appropriate quantum
cases, especially those involving homogeneous
turbulence.5,1,3 We shall examine the extent to which experi-
mental evidence points also to similarities in flow past ob-
stacles at very low temperatures. We shall find that such
similarities do seem to exist, at least in part, with 4He, but
not apparently with 3He-B, and we shall try to discuss why
this difference exists. We shall report the results of prelimi-
nary simulations of quantum turbulence that are relevant to
our discussion; we shall show that these simulations already
provide interesting hints, but that further progress will de-
pend on the development in future of simulations that are
more extensive and more time consuming. This development
will take time, and we take the view that presentation of our
results so far should not await its completion.

Our paper is arranged as follows. In Sec. II we shall sum-
marize the experimental results that have been reported on
the behavior of oscillating spheres, wires and grids in both
4He and 3He-B, and we shall emphasize both certain com-
mon patterns of behavior and certain differences between the
behavior of the two isotopes. In Sec. III we shall summarize
behavior observed with classical fluids. In Sec. IV we shall
compare the classical and quantum cases for 4He, basing our
knowledge of the quantum case on both experiment and the
results of the preliminary simulations. Section V will be con-
cerned with a parallel discussion for 3He-B, and Sec. VI will
be devoted to summaries of our present understanding and of
further work that is required.

II. EXPERIMENTAL RESULTS ON OSCILLATING
STRUCTURES IN 4He AND 3He-B AT VERY

LOW TEMPERATURES

A. Critical velocities

Many experiments have now been reported, and we aim
to summarize the principal findings. In all cases it is ob-
served that the drag on the oscillating structure is consistent
with ideal potential flow of the superfluid component at low
velocity amplitudes, but that above a critical velocity there is
increased drag, the magnitude of which tends at high veloci-
ties to be proportional to the square of this velocity. Figure 1
summarizes the observed critical velocities. Observations on
a 100 �m radius sphere in 4He were reported by Schoepe’s
group;9–12 those on vibrating wires in 4He by Bradley et al.13

and by Yano et al.;14 those on vibrating grids in 4He by
Nichol et al.15,16 and by Charalambous et al.;17 those on vi-
brating wires in 3He-B by Fisher et al.;18 and those on a
vibrating grid in 3He-B by Bradley et al.19,20

The precise critical velocity varies a little from one ex-
periment to another, as indicated by the bars in Fig. 1, and
especially for wires there is significant hysteresis �discussed
in more detail below�, the extent of which contributes to the
length of the bars �there is very large hysteresis for the thin
smooth wire�. In the case of wires there is evidence that the
critical velocity increases with increasing frequency, espe-
cially above about 2 kHz, and the relatively large values seen
with a smooth wire are associated with the fact that they
relate to a high frequency �about 3.8 kHz, compared with
about 1 kHz or less in the other cases�. We see that for 4He
the values lie within a surprisingly small range, which seems
independent of the type of structure and of the character of
the roughness of the surface of this structure �the roughness
of the grids is very different in character from that of the
wires�. Since, as we have noted, the critical velocities in 4He
must be extrinsic, depending on remanent vortices, it is sur-
prising that changes in roughness appear to have such a
small effect; we would expect increased roughness to in-
crease the density of remanent vortices and hence decrease
the critical velocity. Very recently Yano �private communica-
tion� has suggested that the critical velocity in 4He should be
defined, in terms of a plot of the velocity against drag force,
as the velocity at which the line describing the drag in the

FIG. 1. �Color online� Critical velocities for various oscillating
structures. The bars relate to 4He.
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potential-flow state �due to extraneous damping and residual
phonons� intersects the line describing the drag in the fully
turbulent state, this latter line being if necessary extrapolated
backwards �we discuss in an Appendix the assumptions that
underlie definition, which are not necessarily justified�. With
this definition Yano shows, remarkably, that all the critical
velocities, plotted as a function of frequency, lie on a single
curve, with the critical velocity being roughly proportional to
the one-third power of the frequency at the lowest tempera-
tures.

Critical velocities in 3He-B are noticeably smaller than
those in 4He, especially with a vibrating grid, for which the
critical velocity is not well defined but is not greater than
about 1 mm s−1. Furthermore, they may be intrinsic. Those
observed with a vibrating wire are similar to those at which
pair breaking occurs �about 8 mm s−1�, and pair breaking and
vortex creation seem to occur simultaneously. In the case of
a vibrating grid there is evidence that pair breaking is unim-
portant in the relevant range of velocities, but, as we shall
argue later, it is at least possible that vortex creation is indeed
intrinsic and does not rely on remanent vortices.

In the cases of an oscillating sphere or a vibrating wire,
the transition to turbulence is accompanied by what can be
described loosely as hysteresis. However, in discussing these
effects we must remember that the velocity response is mea-
sured as a function of drive amplitude, so that for each ex-
perimental point a constant amplitude of drive is imposed.
This is in contrast to the simulations that we report later, in
which the constant velocity amplitude is imposed. With a
constant drive there can be a switching phenomenon, in
which the velocity amplitude builds up until it exceeds the
critical value for transition to turbulence, whereupon the in-
creased dissipation leads to a reduction in the velocity am-
plitude to a value below critical; the decreased dissipation
then leads to a rise in the velocity amplitude above critical,
and so on. It appears that this switching occurs most straight-
forwardly over a range of drives in the case of the oscillating
sphere studied by Schoepe et al. This means that if each
experimental point were obtained at constant velocity ampli-
tude there would be no hysteresis. In the case of a vibrating
wire switching seems sometimes to occur, but not always;
when it does not occur straightforward hysteresis is ob-
served, an increasing drive amplitude leading to a transition
to turbulence at a higher velocity than that obtained with a
decreasing drive amplitude. It is possible of course that
switching requires more time in the case of the vibrating
wire, and that it would therefore always be observed if the
experiments were conducted more slowly. There is little evi-
dence for either switching or hysteresis in the most recent
�and probably most reliable� work on oscillating grids.17,19,20

B. Drag coefficients

The proportionality of the supercritical drag to the square
of the velocity �at least at high velocities� has led authors to
a comparison with the drag observed in classical fluids at
high Reynolds number.21 For steady flow at velocity U past
an obstacle in a classical fluid of density � the drag can be
written in the form

F = 1
2�U2CDA , �2�

where A is the projected area of the obstacle normal to the
flow, and CD is a dimensionless drag coefficient. We shall
discuss values of classical drag coefficients in Sec. III; here
we note that for a classical fluid at high Reynolds number
this value is of order or a little less than unity. These classical
drag coefficients relate to steady flow past an obstacle, but,
as we shall see in Sec. III, they are relevant also to oscillating
flows.

We can estimate drag coefficients for the quantum cases,
in the limit of high velocities, from the data on the velocity-
dependent drag �Table I�. For the case of a flow that oscil-
lates in time �or of an obstacle that undergoes oscillatory
motion in an otherwise stationary fluid� we need to take care
in defining CD: again we base it on Eq. �2�, but with U and F
taken as peak values. In cases where not all parts of the
structure oscillate with the same amplitude we assume that
Eq. �2� holds for each element of the structure, and then we
average over the structure. For the stretched grid in 4He stud-
ied by Charalambous et al.17 we have carried out this aver-
aging carefully, taking into account the fact that the spatial
dependence of the displacement is a zero-order Bessel func-
tion; in the case of wires, lack of information has led us to
make only rough estimates, which are good to only perhaps a
factor of 2. We find that for 4He the drag coefficient is al-
ways of order or a little less than unity for the fully devel-
oped turbulent regime, but that for 3He-B it seems to be
always much larger than unity; in the case of a grid it is
larger by a factor of at least 20. In the case of a wire in
3He-B part of the drag may be due to the pair breaking that
seems to accompany the turbulence, so that the figure of 9.5
in Table I is unreliable. We shall attach importance in our
later discussion to the different values of the drag coefficient
in the two isotopes.

C. Observations of grid flow in 3He-B

In the case of 4He no technique has yet been developed to
study the form of the superfluid turbulence produced in the
wake of a moving obstacle, except for the application of
particle image velocimetry to very large obstacles in a ther-
mal counterflow at high temperatures, where the interpreta-
tion is made difficult by the presence of the two fluids.22

However, in the case of 3He-B at low temperatures the Lan-
caster group has been developing a technique that promises
to provide us with pictures of superfluid turbulent fields, and

TABLE I. Estimates of drag coefficients.

Superfluid Oscillating structure CD

4He Sphere, radius 100 �m 0.36
4He Wire, radius 1.25 �m 0.17
4He Wire, radius 2.25 �m 0.13
4He Grid, strip width 20.8 �m 0.29
3He-B Wire, radius 6.5 �m 9.5
3He-B Grid, strip width 11 �m 17.8
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which is based on the Andreev scattering of thermal quasi-
particles from a superfluid velocity field.18,19 The interpreta-
tion of the observations is not quite straightforward, and we
shall not discuss it here. Nevertheless, the following tentative
picture has emerged of the form of turbulence produced in
the wake of an oscillating grid in 3He-B. At least at low
velocities vortex rings emerge from the grid, presumably in
all directions, and at sufficiently small velocities these rings
interact to a negligible extent and simply fly away from the
grid. At higher velocities the density of rings has increased to
the point where interactions become important, and this leads
apparently to a turbulent tangle of lines which remains local-
ized in the neighborhood of the grid. We shall comment on
this picture later in our discussion.

III. OSCILLATING STRUCTURES IN A CLASSICAL
FLUID

In this section we aim to summarize what is known about
the form of turbulence produced by oscillating spheres, cyl-
inders and grids in a classical fluid. We are interested in
behavior at high Reynolds number, and we shall start with
the case of cylinders, about which most seems to be known.

A. Cylinders

We recall first the behavior of a cylinder of diameter d
moving in a classical fluid with constant velocity. There is
then one characteristic dimensionless number, namely the
Reynolds number, Re=dU /�, where � is the kinematic vis-
cosity of the fluid.21 For very small values of Re there is
laminar flow, and the drag on the cylinder is given by a
formula due to Lamb21 �the analogue of Stokes law for a
sphere�. If the flow is set up at high Reynolds number, the
vorticity is initially confined to a thin boundary layer, flow
outside the boundary layer being irrotational. The �Ber-
nouilli� pressure distribution associated with this potential
flow is such that initially it leads to no net force on the
cylinder �the d’Alembert paradox�. The pressure is a maxi-
mum on the stagnation lines at the front and rear of the
cylinder, and it falls to a minimum value in between. The
flowing fluid at the rear of the cylinder therefore experiences
a rising pressure as it moves towards the rear stagnation line.
This causes the fluid within the boundary layer to move
backwards and give rise to the phenomenon of separation, so
that a region is formed behind the cylinder where the flow is
rotational. The resulting flow at a Reynolds number of order
20 is shown in the upper diagram in Fig. 2.23 As the Rey-
nolds number increases the pattern of rotational flow
evolves, as shown in the lower diagrams of Fig. 2. When
Re� �100, vortices start to be shed from behind the cylin-
der, and a gradually increasing Reynolds number leads even-
tually to a wake in which there is fully developed turbulence.

If we describe the drag on the cylinder as a function of Re
by Eq. �1�, we find that the drag coefficient CD varies as
shown in Fig. 3.24 At large values of the Reynolds number
the drag on the cylinder arises mostly from the pressure dis-
tribution at its surface. Within the separated wake the pres-
sure is roughly constant and equal to that at the line of sepa-

ration, the fluid velocity within the wake, near the surface of
the cylinder, being significantly smaller than that in the po-
tential flow. It follows that the pressure distribution gives rise
to a force on the cylinder of order �1/2��U2 per unit area
projected on a plane normal to the motion of the cylinder.21

Therefore the drag coefficient CD is of order unity, as ob-
served, although its precise value depends on the details of
the flow and the position of the line of separation. We see
from Fig. 3, however, that there is no abrupt change in the
behavior of CD in the transition from laminar flow to turbu-
lent flow. This suggests that the vortices depicted behind the
cylinder at the top of Fig. 2 develop gradually, at least to
some extent. For Reynolds numbers in the range 102 to 105

CD is very close to unity, but it drops to a value of about 0.3

FIG. 2. Patterns of flow in the wake of a cylinder moving with
constant velocity in a classical fluid �Ref. 23�.

FIG. 3. �Color online� Drag coefficient plotted against Reynolds
number for flow past a cylinder.
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at the so-called drag crisis, when the turbulent wake sud-
denly becomes narrower because the boundary layer has be-
come turbulent.

For an oscillating cylinder �amplitude of oscillation a;
frequency f� the situation is more complicated because the
single dimensionless number, Re, must be replaced by two
numbers. The choice is to some extent arbitrary, but a com-
monly used pair are the Keulegan-Carpenter number, given
by

KC =
2�a

d
, �3�

and the Stokes number, given by

� =
fd2

�
. �4�

We note that the Reynolds number is simply the product of
KC and �.

Patterns of turbulence generated by an oscillating cylinder
have been observed by many authors. For our purposes we
refer to the work of Williamson,25 Obasaju et al.26 and
Sarpkaya,27 which relate to values of KC roughly in the range
from 0.4 to 100 and to values of � roughly in the range 100
to 104. The observed patterns of flow are quite complicated
and vary with the values of KC and �, and it is neither prac-
ticable nor appropriate at this stage in our work to describe
these patterns in detail. Typically, however, motion of the
cylinder during one half-cycle tends to produce a vortex pair
of the type shown in the upper diagram of Fig. 2, although
the two vortices may be of unequal strength. At small values
of KC these vortices do not become completely detached.
They may be carried to the other side of the cylinder during
flow reversal, but eventually they seem to be dissipated. At
larger value of KC vortices do become detached, in pairs that
propagate away from the oscillating cylinder; the pairing
may involve vortices formed on opposite sides of the cylin-
der during successive half-cycles, and these pairs tend to
propagate in a direction perpendicular to the direction of os-
cillation of the cylinder, often as a vortex street. In view of
the general tendency to produce vortex pairs behind the mov-
ing cylinder during one half-cycle we can expect the drag on
the cylinder to have the form of Eq. �2�, with CD�1. This
expectation is confirmed by the measurements reported in
the papers by Sarpkaya and Obasaju et al. who find that, at
parameters large enough to cause the breakdown of laminar
flow, CD lies always in the range between roughly 0.5 and 2,
only slightly larger in general than is the case for steady flow.
However, it should be emphasized that the drag coefficient is
observed to vary with velocity within this range in a charac-
teristic and roughly oscillatory way that reflects changes in
the detailed form of the flow.

B. Spheres

As far as we know, there has been no published study of
the flow associated with an oscillating sphere at high Rey-
nolds numbers, comparable with those for cylinders. How-
ever, an experimental study is now in progress by

Donnelly,28 and we can summarize the preliminary results
obtained so far. Vortices are produced if KC� �3. The vor-
tex pair that tends to be produced in the wake of the moving
cylinder during one half-cycle is replaced by a vortex ring.
This ring may move to the opposite side of the sphere during
the next half-cycle �performing a “leapfrog” motion over the
sphere�, but it is eventually shed by the sphere, so that a
sequence of rings propagates away from the sphere in both
directions along the line of motion. No regime in which vor-
tices are not shed has yet been observed. Preliminary mea-
surements of the drag lead to drag coefficients of order unity.

C. Grids

We consider a grid in the form of a thin solid sheet in
which a regular pattern of holes has been drilled. The pattern
of flow through such a grid when it moves at a steady veloc-
ity perpendicular to its own plane is well known and shown
in Fig. 4. A jet is formed at each aperture, the boundaries of
the jet being vortex sheets. After a distance of order the mesh
length the instability of these vortex sheets leads to the break
up of the jets into vortex rings, which then interact to pro-
duce turbulence that is approximately homogeneous and iso-
tropic. The drag on the grid must have the form of Eq. �2�,
with CD=1, where the area is that of the opaque portion of
the grid. In some ways the opaque portions of the grid seem
to behave like a disc placed normal to the flow, for which the
line of separation is at the edge of the disc, and for which the
observed drag coefficient is constant and very close in value
to unity.

A recent study of the flow pattern produced by a form of
oscillating grid has been reported by Voropayev and
Fernando.29 The grid consists of a planar array of circular
cylinders, with mesh size M. Oscillation of this grid with
velocity amplitude U produces vortex pairs at each of the
cylinders, each pair being similar to those produced by a
single oscillating cylinder. These vortex pairs interact to pro-
duce a turbulent front, which diffuses away from the grid.
The authors give a detailed analysis of this diffusion process,
but the essential features seem to be as follows. If we assume
that the turbulence spreads by diffusion, then the appropriate
diffusion coefficient is probably given by something like

D � 	UM = 	� Re, �5�

where 	 is a constant less than unity that describes the factor
by which velocity in the eddy motion is less than U, and Re

FIG. 4. Steady flow of a classical fluid through a grid �Ref.
8�.
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is the Reynolds number MU /�. The turbulent front will
therefore diffuse a distance x in time t, where

x2 = �	� Re�t . �6�

This result is closely similar to that derived by Voropayev
and Fernando by more sophisticated methods. Since each
cylinder composing the grid produces a vortex pair, we can
expect that the drag will be given by Eq. �2�, again with
CD�1. Similar principles are likely to apply to other forms
of grid, including one formed from holes drilled in a sheet.

IV. OSCILLATING STRUCTURES IN 4He AT A VERY
LOW TEMPERATURE: DISCUSSION AND SIMULATIONS

A. Drag coefficients

We have noted that the forces on oscillating structures in
4He are described at high velocities by Eq. �2�, with a value
of the drag coefficient that is a little less than unity. This
suggests that the behavior of 4He may be similar, at least in
some respects, to that of a classical fluid. We shall examine
this idea in what follows, calling on the results of prelimi-
nary simulations that we describe in Sec. IV D.

We note at this point that in one important respect the
behavior of the drag coefficient for 4He must differ from that
for a classical fluid. This difference arises because at low
velocities �analogous to low Reynolds numbers� the drag is
zero for the superfluid �at zero temperature�. This means that
the velocity dependence of CD in 4He must differ from that
in Fig. 3. Two possible forms are shown in Fig. 5. The stud-
ies of Schoepe11 show that for a sphere at zero temperature,
and for velocities exceeding critical, the dependence of drag
force on velocity has the form

F = 1
2�CAU2 − F0, �7�

where C and F0 are constants, which is in fact the form
shown in the lower, smooth, curve in Fig. 5. For such a form

to arise the rotational flow in the wake of the sphere must
develop only gradually as the velocity of flow is increased
through the critical value, as probably happens in the classi-
cal case.

Values of the Keulegan-Carpenter number for the experi-
ments on oscillating structures in 4He are as follows: for the
sphere, KC�1; for the wires, KC�10; for the grid, KC
�2.5; for 3He the values for wires and grids are smaller by
factors of order 20.

It is interesting to ask whether the experimental measure-
ments on the various oscillating structures in a superfluid
reveal a drag coefficient at supercritical velocities that oscil-
lates with velocity by factors of order 2, as is the case with a
cylinder in a classical fluid, oscillations that are associated,
as we have already noted, with changes in the detailed struc-
ture of the flow. As far as we have been able to judge, such
oscillations are not present in the superfluid case; no such
oscillations seem to be superimposed on a smooth variation
of the type shown in Fig. 5 �see, for example, the very care-
ful measurements of Niemetz and Schoepe11�. If this judge-
ment is correct, then there is evidence that, in contrast to the
classical case, the pattern of turbulent superflow remains the
same over a wide range of velocity. The similarity between
the quantum and classical cases may therefore be limited.

B. The extrinsic character of the critical
velocity in 4He

We recall from Sec. I that the generation of turbulence in
4He must rely on the growth of remanent vortices. If the
helium has been allowed to settle before the velocity is ap-
plied, each remanent vortex must be in metastable equilib-
rium. It is sometimes suggested that the remanent vortices
have the form shown in Fig. 6�a�. However, such a form
cannot be in metastable equilibrium in the absence of an
imposed flow; the loop simply collapses into the wall, even if
the ends of the loop are pinned at the wall. For the case of a
sphere levitated in a box, such as was studied by Schoepe, an
allowed remanent vortex is shown in Fig. 6�b�; the ends of
the vortex need not be pinned to protuberances on the sphere
or the containing walls. We have used this form of remanent
vortex in the simulations described in the next section.

There have been recent reports that the effective mass of
oscillating wires and grids in superfluid 4He is anomalously
large,14,17 and it has been suggested that this effect might be

FIG. 5. �Color online� Possible forms of dependence of the drag
coefficient on velocity in 4He at zero temperature.

FIG. 6. Forms of remanent vortex.
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due to very large density of small remanent vortex loops
attached to the surface of the structure �although the effect
seems not to be very reproducible�. According to our present
knowledge, it is hard to understand why such a large density
of small remanent vortices can persist, although it is easy to
see that a very small density of long lengths of remanent
vortex might well persist for long periods at very low tem-
peratures, where mutual friction has become very small and
where the low vortex density tends to inhibit decay processes
that do not depend on mutual friction. For the present we
shall assume that the enhanced effective mass has some other
cause, and we shall continue to assume that the remanent
vortices relevant to the simulations we have performed are
few in number. If this assumption proves to be unfounded,
our simulations will require modification.

C. Comments on the nature of quasiclassical behavior

We have mentioned that one aim of this work is to dis-
cover the extent to which turbulent flow of a superfluid past
an obstacle mimics the corresponding classical flow. Before
we proceed further we must examine the extent to which this
can really be the case.

One of the clearest and most widely discussed examples
of this tendency for turbulent superflow to mimic its classical
counterpart is provided by steady flow through a grid.5,3 Here
the relevant experiments were carried out with 4He above
1 K, where there is at least a small fraction of normal fluid.
A common description of the classical version of this flow at
high Reynolds number supposes that flow through the grid
leads to the injection of energy into eddies with size of order
of the mesh of the grid, followed by transfer of this energy in
a Richardson inertial cascade to smaller and smaller eddies,
until it can be dissipated by viscosity. A similar picture is
given for the quantum case, except that viscous dissipation is
replaced by dissipation due to a combination of normal-fluid
viscosity and mutual friction, this dissipation taking place on
a length scale comparable with the spacing between vortex
lines. It is widely believed1 that this picture continues to hold
at very low temperatures, for both 4He and 3He-B, except
that the dissipation is now due to emission of excitations
�phonons or, in the case of 3He-B, Caroli-Matricon quasipar-
ticles in the vortex cores�. This emission is associated with
either vortex reconnections or vortex �Kelvin� waves of high
frequency, the scale on which dissipation is occurring being
then less than the average vortex separation.

It is important to recognize that there must be an impor-
tant difference between the classical and quantum cases, at
least in principle. In the classical case there can be large
eddies even in the absence of small eddies, so that we can
imagine that large eddies are produced in the neighborhood
of the grid, and that the smaller eddies are produced only
later in the flow by decay of the large eddies. This cannot be
the case with a superfluid, since the large eddies can then
exist only as a result of the partial polarization of a tangle of
vortex lines; in other words the large eddies can exist only in
the presence of very small eddies associated with the vortex
tangle. Thus flow through the grid must produce a tangle of
vortex lines on a scale less than the mesh of the grid before

it can produce eddies on a scale equal to the mesh of the grid.
For grids formed from holes drilled in a sheet the nature

of the classical flow, shown in Fig. 4, appears to be such that
both large and small eddies are produced simultaneously, at
least at large enough values of the Reynolds number: the jets
emerging from each hole involve vortex sheets, which imply
motion on a large range of length scales. The quantum ana-
logue of a vortex sheet is a row of quantum vortices, so that
in the quantum case production of turbulence on the scale of
the quantized vortex lines may occur in parallel with the
production of large scale motion. But in the case of classical
flow past a cylinder, or flow through a grid formed from such
cylinders, the transition to turbulence seems to involve only
the production of large eddies, without the simultaneous pro-
duction of small eddies, so that quantum analogue must be
different. In any case production by a grid of a wide range of
eddy sizes might lead to a situation where energy is being
injected at a significant rate over the whole of what should be
the inertial range of wave numbers, with consequent depar-
tures from the Kolmogorov spectrum. This appears not to be
the case in either the classical or the quantum cases, so that
the injected energy associated with such a wide range of
wave numbers must be relatively small.

D. Simulations with a sphere of radius 100 �m

So far we have had the opportunity to carry out only
limited simulations, but the results are nevertheless interest-
ing and point the way towards more extensive studies that
we hope to perform in the future. The simulations that we
report relate for the most part to the situation depicted in Fig.
6�b�, with a sinusoidal oscillating flow, velocity amplitude U,
in a direction perpendicular to the unperturbed remanent vor-
tices. They are based on a full Biot-Savart treatment of the
vortex filament model, with reconnections assumed to take
place when two elements of vortex approach each other
within a distance equal to the mesh size in the simulation,
but with the proviso that the reconnection must result in a
reduction in the total length of line.

Typical results for a smooth sphere of radius 100 �m are
shown in Fig. 7; this size of sphere is similar to that used in
the experiments of Schoepe et al. although their sphere was
rather rough. Soon after the oscillation is established �a�,
Kelvin waves appear on the remanent vortex, with a domi-
nant wavelength of roughly 40 �m, which corresponds to the
frequency of 200 Hz. Continued oscillation leads to increas-
ing Kelvin-wave amplitudes, with increased nonlinear cou-
pling to other wave numbers. Then at sufficiently large
Kelvin-wave amplitudes reconnections occur, resulting in the
appearance of free vortex rings and vortex loops attached to
the sphere �b�. In due course �c�, a region of strong turbu-
lence appears on one or the other side of the sphere �in the
direction of the flow�, the turbulence resulting apparently
from loops being pulled out from the surface of the sphere.

This region of strong turbulence is reminiscent of a clas-
sical turbulent wake. However, there is a serious reservation.
The vortex lines in the wake appear to be completely ran-
dom, so that, in contrast to the classical case, they generate
no large scale motion that can cancel out the potential flow to
the rear of the sphere.
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At this point we must refer to Fig. 8, which shows the
development with time of both the total length of vortex line
in the region near the sphere and of the number of attached
vortices. We see immediately that over the time during which
the simulations were carried out the system had not reached
a steady state; both the total length of vortex line near the

sphere and of the number of attached vortices were still
growing with time. Unfortunately, available computer time
did not allow any continuation of the simulation to much
larger times. Therefore we can draw only limited conclusions
from the simulations, as follows.

Let us first consider the magnitude of the drag on the
sphere due to the wake shown in Fig. 7. This drag is due to
the pressure distribution at the surface of the sphere, and we
shall regard this pressure as arising from two contributions:
the first, p1, due to flow on a scale larger than the vortex
spacing; and the second, p2, due to flow on a scale less than
the vortex spacing. The fact that there is no cancellation of
the large scale potential flow to the rear of the sphere means
that the total contribution to the drag from p1 is zero, leaving
only the contribution from p2. The major contribution to p2
must come from the high flow velocities near the cores of the
vortex lines that are attached to the sphere, and it can there-
fore be regarded as arising from the tension in these attached
lines �the tension being equal to ��s�

2 /4��ln�� /
�, where �
is the vortex line spacing, and 
 is the radius of the vortex
core�.

It is easily shown that the maximum number of attached
vortices shown in Fig. 8 leads to a drag coefficient that is of
order 8�10−3, which is much less than the observed value of
order unity. Thus the wake does not have a form similar to
that in a classical fluid, partly because, as we have already
noted, it does not incorporate any appropriate large-scale
flow, and partly because, as we now see, it fails to give the
correct drag coefficient. There are two possible reasons.
First, the wake has not had sufficient time to develop. And
second the simulations are in some way unrealistic. If the
first reason is relevant then there may be a connection with
our comment towards the end of Sec IV C that the produc-
tion of a random tangle of vortex line might need to precede
the establishment of a large-scale quasiclassical flow pattern.
The second reason might be connected with the smooth char-
acter of the sphere used in the simulations. Perhaps it needs
to be rough in order to have quasiclassical behavior �the
sphere used in the experiments by Schoepe et al. was indeed
very rough�. Further progress must await the completion of
further simulations. The way in which these simulations
should proceed is, however, now much clearer.

It is interesting to ask whether the steady-state drag on a
sphere in the quantum case could arise entirely from the
contribution p2 to the pressure over the surface of the sphere.
In principle, it could, but there seems no reason why this
mechanism should lead to a drag coefficient of order unity.
In a later section we shall argue that in the case of an oscil-
lating grid in 3He-B the dominant contribution to the drag
does indeed come from p2, but that the drag coefficient does
not then have the classical value. We emphasize our belief
that, because in 4He the observed drag coefficient is close to
unity, most of the drag in that case arises from p1. Confirma-
tion that this belief is correct must come from simulations
that extend to times large enough to exhibit a steady state.

Although in our simulations a wake can sometimes appear
in successive half-cycles on opposite sides of the sphere, as
in the classical case, there seems to be a tendency for it to
form more strongly on one side, although the favored side
seems to be random. Further study is required to establish

FIG. 7. �Color online� A simulation of the development of tur-
bulence around a sphere of radius 100 �m exposed to an oscillating
superflow �U=150 mm s−1� at a frequency of 200 Hz in 4He.

FIG. 8. �Color online� The development with time of the total
length of vortex line �upper, blue, line; left-hand vertical axis� and
the number of vortex attachments to the sphere �lower, green, line;
right-hand vertical axis� for the simulation shown in Fig. 7.
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whether this is a real effect, or whether, for example, it is
linked to the simulated behaviour not having reached a
steady state. The appearance of the wake does not depend on
the particular form of nucleating vortex; other forms of
nucleating vortex lead to the same type of wake at similar
velocities. We note also that the wake extends only a small
distance from the sphere; there is no indication of its being
cast off from the sphere periodically. In the absence of tur-
bulent regions being cast off from the sphere, dissipation
inherent in the drag must occur through two processes: the
occasional loss of a vortex ring from the turbulent region;
and decay of the turbulence into phonons. In reality, this
latter decay process must involve the flow of energy into
smaller and smaller length scales and ultimate dissipation
into phonons;1 in the simulations it is associated with the
flow of energy into vortex structures that are smaller than the
spatial resolution of the simulations.

The wake does not form if the velocity falls below ap-
proximately 120 mm s−1, although some vortex rings are still
produced by reconnections. Furthermore, the formation of
the wake is not hysteretic: if the wake is established at a
velocity exceeding 120 mm s−1, and the velocity is reduced
below 120 mm s−1, the wake disappears. The velocity of
120 mm s−1 is a factor of about 3 greater than the critical
velocity observed by Schoepe’s group �Fig. 1�. The produc-
tion of some vortex rings at the lower velocities implies
some drag, but estimates of the energy loss associated with
these rings show that this drag is probably too small to be
observed.

As we have noted, our computational studies are still at an
early stage of development, and there is the possibility that
the results obtained so far are misleading. We emphasize
particularly that the development of the turbulent wake
shown in Fig. 7 has not been followed to times sufficiently
large to ensure that a steady state has been achieved, and that
no account has been taken of any roughness of the surface of
the sphere. We shall need to learn how to incorporate this
roughness into the simulations.

In spite of the fact that our simulations are incomplete,
they do nevertheless serve to emphasize that an understand-
ing of the transition to turbulence around an oscillating struc-
ture requires an understanding of the formation of a wake, at
least in the case of 4He. It seems sometimes to have been
supposed that an understanding of the critical velocity for the
transition to turbulence involves only an understanding of
vortex ring formation by reconnections within a single vor-
tex. As we have mentioned, our simulations show that such
ring formation can occur at velocities smaller than those nec-
essary for the development of a significant drag associated
with fully developed turbulence; our simulations suggest
therefore that ring formation is a necessary, but not suffi-
cient, condition for the onset of significant drag.

E. Simulations with a smaller sphere; other structures

As we show in Sec II, some of the experiments relate to
structures �wires and grids� that are significantly smaller in
relevant scale than the 100 �m sphere. We have therefore
carried out simulations with a smaller �smooth� sphere, ra-

dius 10 �m, at a velocity of 150 mm s−1 and frequency of
1 kHz; the higher frequency is chosen to match that relevant
to these smaller structures.

We found that there is some tendency to produce a turbu-
lent wake �this time, actually, on both sides of the sphere�,
but that the wake was much less clearly defined �again we
must express a reservation about this simulation because it
did not proceed to a steady state�. This result is not surprising
because quasiclassical behavior requires the presence of
many quantized vortices on a scale of the classical eddies.
For very small structures this condition may not be satisfied.
At first sight one might then expect the drag to be rather
different in form from that observed with larger structures.
The smallest structure investigated in experiments so far in
4He has been a wire of diameter 2.5 �m.14 Surprisingly, the
experimentally observed drag still appears to be classical in
form, although the drag coefficient is only about 0.17, which
can be compared with the minimum classical value for a
cylinder of about 0.3 �Fig. 3�.

Extensive experiments have been reported on the behav-
ior of vibrating grids in 4He; the grids are formed by making
a regular pattern of square holes ��100 �m�100 �m� in a
thin sheet, the width of the relatively thin opaque strips sepa-
rating the holes being 20.8 �m. The drag coefficient, evalu-
ated with the area A equal to that of the opaque part, proves
to be about 0.29. For a thin strip, which might be expected to
behave like a disc at right angles to the flow, we would
expect that CD would be rather close to unity.24 Thus again
we find that the drag coefficient associated with a small
structure is somewhat less than the classical value.

F. Critical velocities

We have already noted that the critical velocity at which
the strongly turbulent wake appears in the simulations for the
100 �m sphere is larger than that observed by Schoepe et al.
by a factor of about 3. At present we do not know the reason,
although we wonder whether it is due to the roughness of the
Schoepe sphere. An interesting feature of the simulations is
that the critical velocity seems to be largely independent of
the form of the nucleating remanent vortex. If this feature is
always found, it could account for the fact that, as we noted
in Sec. II, observed critical velocities are so reproducible
from one experiment to another. A challenge for the future is
to understand the physics underlying the critical velocity,
which is not obvious from the simulations.

V. OSCILLATING STRUCTURES IN 3He-B
AT VERY LOW TEMPERATURES

Two structures have been studied in this case: a vibrating
wire, of typical diameter 13 �m;18 and a grid, similar in
design to that used in the experiments we have described in
4He, but with characteristic dimensions reduced by a factor
of about 2.19,20 In the case of the wire, the process of vortex
creation seems to occur at much the same velocity as the
Landau critical value for pair breaking �about 8 mm s−1�;
clearly this complicates the interpretation, and we shall
therefore focus our attention on the grid, where pair breaking
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seems not to be playing a significant role. In the case of the
grid, as we have already mentioned, the critical velocity for
vortex creation is not well defined but seems to be not more
than about 1 mm s−1, which is smaller than that observed in
4He by a factor of at least 20 �Fig. 1�. On the other hand,
drag coefficients for the grid at high velocities are much
larger than in 4He, by a factor again of at least 20 �Table I�.

We have performed simulations similar to those illustrated
in Fig. 7, but with vortex parameters �quantum of circulation
and core size� relevant to 3He-B. The results are not notica-
bly affected by this change. This suggests that the mecha-
nism for production of vortex line is quite different in the
two cases. We know from the experiments of Parts et al.30

that the critical velocity for intrinsic vortex creation at a solid
boundary in 3He-B can be quite small, and that it falls with
increasing roughness of the boundary. The surface of the grid
is not well characterized, but it is likely to be very rough in
comparison with the surfaces studied by Parts et al. Further-
more, the grid has sharp edges at each aperture, which will
enhance the local superfluid velocity. It seems reasonable to
conclude that the mechanism for vortex production by the
oscillating grid in 3He-B was intrinsic. Presumably this pro-
cess involves the production of vortex loops at the surface of
the grid, which then expand under the influence of the super-
flow relative to the grid. The rate at which this process pro-
duces vortex line is not known, but it could well be much
greater than that for extrinsic nucleation in 4He.

We shall try to understand how the drag coefficient can be
so large. We recall first that this drag is associated with the
distribution of pressure over the structure, and that this pres-
sure can be regarded as having two contributions: p1, due to
flow on a scale larger than the vortex spacing; and p2, due to
flow on a scale less than the vortex spacing. We suggested
that in the case of 4He the contribution p1 is quasiclassical,
while the contribution p2 can be neglected. We now suggest
very tentatively that in 3He-B the contribution p2 is dominant
and accounts for the large drag.

We first make the comment that in order for our supposi-
tion to be correct that the drag in 4He is due primarily to p1
there must be a sufficient density of vortex lines behind the
sphere that the polarization of these lines can lead to a flow
that mimics a classical wake. At the same time this minimum
density must not be so large that the effect of p2 can become
significant. Thus if, as we suggest, p2 is important in the case
of 3He-B, then this minimum must be greatly exceeded. We
suggest that, like the low critical velocity, this situation has
its origin in intrinsic nucleation. We suggest in fact that in-
trinsic nucleation produces vortex line at a rate that greatly
exceeds that due to extrinsic nucleation in 4He. If the drag on
the grid used by the Lancaster group in 3He-B were due
entirely to the tension in attached vortices, the value of the
vortex spacing at a grid velocity of 10 mm s−1 would have to
be about 2 microns, which is not unreasonable. There may
still be a contribution to the drag from the pressure distribu-
tion p1, but it is swamped by that due to p2.

We now comment on the picture of turbulence produced
by an oscillating grid in 3He-B suggested by the Lancaster
group.19,20 This is that there is a production of vortex rings in
the immediate neighborhood of the grid; these rings fly away
from the grid, but, at high enough grid velocities, they reach

a density at a point behind the grid such that they interact to
give a turbulent field. The production of rings near the grid is
seen as arising from the excitation of Kelvin waves on rem-
anent vortices, with subsequent reconnections, as occurs in
the simulations that we displayed in Fig. 7�b�. We have ar-
gued, however, that the critical velocities observed in
3He-B are too small for this process to occur, and that in fact
vortex line is created by intrinsic processes. Such processes
will presumably lead first to the generation of vortex loops
attached to the grid, but these loops may be pulled out into
the flow, so that reconnections can lead to the formation of
vortex rings. In due course these rings will interact to give a
turbulent field. Thus the essential features suggested by the
Lancaster group remain valid. The picture of independent
rings must break down at high grid velocities.

In a recent paper20 the Lancaster group has reported ob-
servations of the decay of turbulence after oscillation of their
grid is stopped. They suggest that the decay may be similar
to that observed in the wake of a steadily moving grid,5 with
a maximum eddy size of order 2 mm, which is much larger
than the mesh of the grid. This result suggests that the flow
produced by the oscillating grid is rather different from that
observed in a classical fluid by Voropayev and Fernando,29

for which the maximum eddy size seemed to be of order the
mesh of the grid. This conclusion is not inconsistent with our
view that the production of the turbulence is not similar to
that occurring in a classical fluid, but we cannot go further at
this stage. It would be interesting to examine whether there is
evidence in the Lancaster experiments for a gradual diffusion
of vorticity away from the grid, similar to that described in
Sec. III C, during the period when the grid is driven. We
remark that in the Lancaster 3He experiments the grid oscil-
lates in an unconfined region, whereas in the classical experi-
ments and in the experiments with 4He the grid oscillates
within a confining and closely fitting cylinder, the axis of
which is perpendicular to the plane of the grid. It seems
possible therefore that flow of the 3He through the moving
grid can be accompanied by significant flow round its outer
edge, so that the resulting turbulence may incorporate char-
acteristics similar to those produced by an oscillating disc
with size equal to that of the whole grid.

VI. SUMMARY AND CONCLUSIONS

We have discussed the likely forms of quantum turbu-
lence produced by various oscillating structures at very low
temperatures, in the light of what is known in analogous
classical cases. We have paid particular attention to observed
values of drag coefficients, and to the results of simulations
of the quantum cases. Much remains to be studied and un-
derstood, but tentatively we conclude that oscillating struc-
tures in superfluid 4He behave in a way that is reminiscent of
classical behavior, with some modification when the size of
the structure is not large in comparison with the characteris-
tic length scale �the quantized vortex spacing� in the quan-
tum turbulence. In the case of 3He-B the behavior seems to
be quite different from the classical cases, and we suggest
that this is associated with very fast intrinsic nucleation of
the quantized vortices.
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As we have emphasized several times, the simulations
that we have carried out so far are quite incomplete. How-
ever, the completion of more satisfactory simulations will
take time, especially as some will require the development of
new techniques to take account of surface roughness. There-
fore we think that it is right to present our preliminary con-
clusions in this paper.
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APPENDIX

We discuss how to identify critical velocities for transition
to turbulent flow from experimental plots of velocity against
drag force.

We refer to Fig. 9, in which we plot schematically various
dependences of velocity on drag force. We recall that in a
typical experiment the velocity of the structure is measured

over a range of particular applied forces. The solid �red� line
shows how the drag might vary for the case of potential flow
of the superfluid component. In this case the drag is due to
losses within the oscillating structure itself �due, for ex-
ample, to internal friction� and, at a small finite temperature,
to the residual normal fluid. The dotted �blue� line shows
how the component of the drag due to turbulence in the
superfluid component might vary with velocity. Let us now
assume that the drag represented by the solid �red� line is not
changed by the onset of turbulence in the superfluid compo-
nent. In that case the total drag in the presence of a turbulent
superfluid component at a particular velocity is obtained by
adding together the two drags represented by the solid �red�
and dotted �blue� curves. The result is the broken �green� line
�note, however, that the part of this line to the left of the
point A is unrealistic because it relates to an extrapolation of
the dotted �blue� line to negative values of F�. Suppose now
that the applied force is gradually increased from zero. At
low values of the velocity the flow of the superfluid compo-
nent remains potential, and the response of the system fol-
lows the solid �red� line. At high velocities flow of the su-
perfluid component is turbulent, and the response follows the
broken �green� line. The transition between one regime and
the other takes place in the neighborhood of the point of
intersection A, and the detailed behavior in this region is not
obvious. One possibility that seems sometimes to occur in
practice is that the transition takes place in a hysteretic man-
ner, as shown by the arrowed �black� lines, and in this case
there is sometimes switching between the turbulent and po-
tential flow regimes. In other cases there seems to be a
smooth transition from the solid �red� line to the broken
�green� line. In any case, we can identify the point of inter-
section A by suitable extrapolation. We see immediately that
the velocity corresponding to the point A is equal to the
velocity B at which the dotted �blue� line intersects the ve-
locity axis. It follows that this velocity is equal to the mini-
mum critical velocity for transition to turbulence in the su-
perfluid component at zero temperature �in the absence of
any dissipation not associated with this turbulence�. We em-
phasize, however, that the critical velocity may be larger than
this minimum value, as would be the case if there were hys-
teresis of the type shown by the arrowed �black� lines. Fur-
thermore, our conclusion holds only if the damping associ-
ated with the solid �red� line is not changed by the transition
to turbulence in the superfluid �the importance of this condi-
tion was understood by Jäger et al.31�. It seems very likely
that this is indeed the case if this damping is due to losses
within the oscillating structure itself, but it may not be accu-
rately the case for a contribution to the damping from the
normal fluid, in which the flow pattern �or the paths of the
quasiparticles in a ballistic regime� might well be modified
by the mutual friction associated with the superfluid turbu-
lence.

FIG. 9. �Color online� Schematic plots of velocity against drag
force.
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