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We present a numerical study of the magnetization process of frustrated quantum spin-S chains with S
=1,3 /2 ,2 as well as the classical limit. Using the exact diagonalization and density-matrix renormalization
techniques, we provide evidence that a plateau at one third of the saturation magnetization exists in the
magnetization curve of frustrated spin-S chains with S�1/2. Similar to the case of S=1/2, this plateau state
breaks the translational symmetry of the Hamiltonian and realizes an up-up-down pattern in the spin compo-
nent parallel to the external field. Our study further shows that this plateau exists both in the cases of an
isotropic exchange and in the easy-axis regime for spin-S=1, 3 /2, and 2, but is absent in classical frustrated
spin chains with isotropic interactions. We discuss the magnetic phase diagram of frustrated spin-1 and spin-
3 /2 chains as well as other emergent features of the magnetization process such as kink singularities, jumps,
and even-odd effects. A quantitative comparison of the one-third plateau in the easy-axis regime between
spin-1 and spin-3 /2 chains on the one hand and the classical frustrated chain on the other hand indicates that
the critical frustration and the phase boundaries of this state rapidly approach the classical result as the spin S
increases.
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I. INTRODUCTION

The search for novel quantum phases has been a strong
motivation for theoretical investigations of quantum spin
models. Quantum states that do not resemble classically or-
dered magnetic states may be realized as a consequence of
reduced dimensionality or competing interactions. Famous
examples are the Haldane phase of integer spin chains,1 or
the spin liquid ground states of spin-1 /2 ladder systems,2

both of which exhibit a finite spin gap.3–5 The presence of
competing interactions causes frustration and drives quantum
phase transition,6 as for instance in the frustrated spin-1 /2
chain that undergoes a transition from a critical, gapless
phase into a spontaneously dimerized one.7,8 Of great interest
are the excitations above these ground states, which are re-
flected in experimentally accessible quantities such as ther-
modynamic properties.

Here we are concerned with the interplay of frustration
and an additional external parameter, the magnetic field. A
magnetic field can close zero-field gaps, but may as well
induce gapped magnetic excitations in finite fields.9,10 The
magnetic phase diagram can experimentally be mapped out
by studying the magnetization process, which theoretically
may be computed by means of powerful and flexible numeri-
cal methods such as the density matrix renormalization
group technique �DMRG�.11,12 One of the intriguing features
of the magnetization curve of low-dimensional quantum
magnets is the emergence of plateaux at finite magnetic field,
which indicate the presence of massive excitations. This phe-
nomenon has been predicted for several low-dimensional
spin models.9,10,13–32 Experimentally, it has been observed in
many quasi-low-dimensional magnetic materials, realizing
networks of spin-1 /2 �Refs. 33–37� as well as of spin-1
moments.38 It is the purpose of this work to study the mag-

netization process of frustrated quantum spin chains with S
�1/2 and establish the existence of a plateau state at one
third of the full magnetization M.

The possible existence of magnetization plateaux in quan-
tum spin chains was predicted by Oshikawa, Yamanaka, and
Affleck.9 A notable result of this work provides a necessary
condition for the existence of plateau states at finite M:

pS�1 − M� � Z . �1�

Here, S is the spin, p denotes the period �or length of the
elementary unit cell� of the plateau state in real space. The
theorem implies that M always has a rational value on any
plateau and it allows for translational invariance to be broken
spontaneously, i.e., p can be larger than 1. Note that unfrus-
trated spin-S chains usually show a smooth magnetization
curve, as has been known for quite some time already,39

implying that competing interactions beyond a simple near-
est neighbor model, anisotropies, or special geometries are
responsible for the plateau formation. Indeed, theoretically,
the existence of plateaux has been established for, e.g., S
=3/2 chains with onsite anisotropy9,17,22 at M =1/2, in frus-
trated and dimerized spin-1 /2 chains at M =1/4,14 three leg
ladders at M =1/3,10 or exotic models such as the orthogonal
dimer chain.24

The simplest model with competing interactions in one
dimension is a spin-1 /2 chain with nearest-neighbor �NN�
and next-nearest-neighbor �NNN� exchange interactions, also
called a zigzag ladder. Only quite recently, by using DMRG
calculations,25 has the existence of a M =1/3 plateau in the
magnetization curve of frustrated antiferromagnetic S=1/2
chains been revealed. The plateau is accompanied by broken
translational symmetry with a period p=3 and an up-up-
down �uud� structure in the spin component parallel to the
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external field. While several higher-S chain models have
been studied in the context of magnetization
plateaux,9,13,16,17,21,22,40 the case of frustrated chains with S
�1/2 has not been addressed in sufficient detail. In particu-
lar, the existence of the M =1/3 plateau in these systems,
which we report in this work, has not been explored. Our
main result, based on exact diagonalization �ED�, DMRG,
classical Monte Carlo simulations �MC�, and spin-wave
theory, is that the M =1/3 plateau is realized in frustrated
quantum spin chains with S�1/2 in the case of isotropic
exchange and in the easy-axis regime as we show for the
specific examples of S=1, 3 /2, and 2. As for spin-1 /2,25 this
plateau always has broken translational symmetry with pe-
riod p=3 and the uud structure.

A M =1/3 plateau with this Néel type of order emerges in
the Ising limit of both quantum40–42 and classical frustrated
chains �see Ref. 43 and further references therein�. While the
classical frustrated chain does not exhibit a finite magnetiza-
tion plateau in the case of isotropic interactions as we show
in this work, the M =1/3 plateau is stable against quantum
fluctuations. The parameter region, however, where such pla-
teau exists for the case of isotropic interactions shrinks as the
spin S grows. As we compute the full magnetization curves,
we also obtain information on other intriguing features such
as kink singularities, macroscopic jumps, and even-odd ef-
fects in the magnetization curve, and a very rich phase dia-
gram is indeed found. We present a qualitative discussion of
the magnetic phase diagram of spin-1 and spin-3 /2 chains,
which extends the picture emerging from previous studies for
zero44–49 and finite magnetic fields.50

In contrast to the case of isotropic interactions, we find
that the M =1/3 plateau region prevails in a substantial part
of the magnetic phase diagram in the easy-axis regime. Its
boundaries rapidly approach the classical result in the easy-
axis regime. To this end, we study the magnetic phase dia-
gram of the classical frustrated chain as well by means of
MC simulations and linear spin-wave theory, aiming at a
comparison of emergent phases with the quantum cases of
S=1 and S=3/2.

In a very recent experimental study, a M =1/3 plateau has
been observed in the frustrated diamond spin-1 /2 material
Cu3�CO3�2�OH�2 �Ref. 36�. The existence of a 1/3 plateau
has also been reported for the spin-1 /2 trimer compound
Cu3�P2O6OH�2 �Ref. 37�. Our results may be of particular
relevance for materials that have been suggested to realize
frustrated spin-1 chains. One example is CaV2O5 with com-
peting next and next-nearest-neighbor antiferromagnetic
interactions.51 A promising family of materials realizing
higher spin-S zigzag chains is NaR�WO4�2 where R repre-
sents In, Sc �S=0�, Cr �S=1/2�, and V �S=0 or S=1�.52 The
exchange constants in the latter case are estimated to be of
the order of 180 K,52 which may be small enough to access a
substantial part of the magnetization curve. Finally, the for-
mation of spin-1 zigzag chains has recently been reported for
Tl2Ru2O7, for which a Haldane gap of 110 K is found.53 We
hope that our results will stimulate the search for the one-
third plateau in potential frustrated spin chain materials.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and briefly discuss the numerical
techniques employed in this work: DMRG, Lanczos, and

MC simulations. In Sec. III, we present our numerical results
for the magnetization process of frustrated spin chains with
S=1, 3 /2, and 2 and isotropic exchange interactions. We
demonstrate the existence of the M =1/3 plateau for these
quantum spins and numerically determine the phase bound-
aries of the plateau region for spin 1 and 3/2 in the field vs
frustration plane. We study the magnetization process of
spin-1 chains in more detail, focusing on �i� kink singulari-
ties in the magnetization curve, �ii� low-field phases, and �iii�
the combined effect of frustration and onsite anisotropies.
The latter is important as most materials that realize Haldane
chains have a substantial single-ion anisotropy. In Sec. IV,
we turn to the case of anisotropic frustrated chains in the
easy-axis region. The main purpose of this section is to dem-
onstrate how the M =1/3 plateau observed in frustrated
quantum spin-S chains is connected to the classical limit. To
this end, we first analyze a classical frustrated spin chain by
means of MC simulations, which allows us to map out the
ground-state phase diagram of the classical model in a finite
magnetic field. Analytical results for several phase bound-
aries are presented. We then perform DMRG calculations for
frustrated spin-1 and spin-3 /2 chains at �i� a fixed exchange
anisotropy, varying the frustration, and �ii� at a fixed frustra-
tion, varying the exchange anisotropy, and determine the
phase boundaries of the M =1/3 state for these two cases. A
summary and conclusions are presented in Sec. IV. An Ap-
pendix is devoted to the details of a linear spin-wave calcu-
lation for the M =1/3 plateau state in the classical limit.

II. MODEL AND METHODS

The Hamiltonian of a frustrated spin-S chain with onsite
anisotropy D and exchange anisotropy � in a magnetic field
h reads:

H = �
i
� �

n=1,2
Jn�1

2
�Si

+Si+n
− + Si

−Si+n
+ � + �Si

zSi+n
z �

− hSi
z + D�Si

z�2� , �2�

where J1�0 and J2�0 are the antiferromagnetic NN and
NNN exchange integrals, respectively. Here, Si= �Si

x ,Si
y ,Si

z�
denotes a spin-S operator acting on site i, and raising and
lowering operators Si

±=Si
x± iSi

y are defined as usual. We re-
strict our analysis to ��1, and we set J1=1 and D=0 unless
stated otherwise. The following normalization for the mag-
netization is used �this also applies to Eq. �1�	:

M =
Stotal

z

SN
; Stotal

z = �
i

Si
z, �3�

where N is the total number of sites in the chain. Thus, M
=1 at the saturation field hsat.

We compute the ground-state energies E0�Stotal
z ,h=0� in

subspaces labeled by Stotal
z on chains with periodic boundary

conditions �PBC� using the Lanczos algorithm. The ground-
state energies of substantially larger chains with open bound-
ary conditions �OBC� are calculated with DMRG. Typically,
we keep up to m=400 states in our DMRG calculations.
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Then, we include the Zeeman term and obtain the field-
dependent ground-state energies

E0�Stotal
z ,h� = E0�Stotal

z ,h = 0� − hStotal
z . �4�

The magnetization curves are constructed by solving the
equations E0�Stotal

z ,hstep�=E0�Stotal
z +s ,hstep�, which define

those magnetic fields at which the magnetization increases
from M =Stotal

z / �N S� to M�= �Stotal
z +s� / �N S�. Steps larger

than s=1 may occur.
In the classical limit, we treat Si as three-dimensional unit

vectors given by the polar angle �i and azimuthal angle �i.
For each value of h, we find the ground state of H using the
“simulated annealing” classical MC algorithm. Starting from
a random configuration of angles 
�i ,�i� and an initial in-
verse temperature �=�in, we proceed as follows. We per-
form sweeps through the chain, and for each site i=1, . . .N,
two steps are performed: �i� The energy E=E�
�i ,�i�� of the
current configuration is calculated from Eq. �2�. �ii� Angles
�i�=�i+r ·w and ��=�+r ·w are tried, where r� �0,1	 is a
random number and w is the maximal change allowed. The
angles are accepted with probability p=min
exp���E
−E��	 ,1�, where E�=E�
�i� ,�i��� is the energy of the con-
figuration with �i and �i replaced by �i� and �i�. After each
sweep through the chain, � is multiplied by the factor
��fi /�in�1/G, where �fi is the final inverse temperature and G
is the number of sweeps. w is adjusted such that the accep-
tance ratio is kept close to 50% for efficiency. Typically, we
use �in=0.5, �fi=10, and G=105. This slow-cooling tech-
nique prevents the simulation from getting stuck in local
minima in the energy landscape in most cases. Sometimes,
close to phase boundaries, the system gets trapped in local
minima, but repeating the algorithm a few times for the same
set of parameters usually solves the problem. After �fi has
been reached, we fine-tune the ground-state energy by re-
peating steps �i� and �ii� with �=� for several sweeps until
the energy change after a sweep becomes negligible.

III. MAGNETIZATION PROCESS OF FRUSTRATED
QUANTUM SPIN CHAINS WITH ISOTROPIC

EXCHANGE INTERACTIONS

In this section we present results for the magnetization
curves of frustrated spin-S chains with �=1. As a main result
of this paper, we provide numerical evidence that the M
=1/3 plateau, previously observed in the magnetization
curve of frustrated spin-1 /2 chains,25,26 exists for higher
spins as well. The boundaries of the plateau phase strongly
depend on S, and the region in the h-J2 plane where the M
=1/3 state is realized shrinks as a function of S. Our MC
simulations in the classical limit show no evidence for a
magnetization plateau in the isotropic case.

A. Magnetization curves of frustrated S=1, 3 /2, and 2 chains

The magnetization curves at an intermediate frustration
strength are presented in Fig. 1 for the cases of spin 1 �Fig.
1�a�, J2=0.4	, spin 3/2 �Fig. 1�b�, J2=0.4	, and spin 2 �Fig.
1�c�, J2=0.36	. The magnetization plateau at M =1/3 is
clearly observed in all three plots, and it can thus be consid-

ered a universal feature of frustrated quantum spin chains. In
accordance with the criterion Eq. �1� for the plateau forma-
tion, the translational invariance of the Hamiltonian is bro-
ken on the plateau, leading to a state with period p=3 and an
uud pattern in the onsite spin density �Si

z parallel to the
external field. The local spin densities corresponding to the
plateau state are shown in Fig. 2.55 As we use OBC suited for

FIG. 1. �Color online� Magnetization curve M�h� for frustrated
chains with an isotropic exchange ��=1� for �a� S=1 �J2=0.4�, �b�
S=3/2 �J2=0.4�, and �c� S=2 �J2=0.36�. Solid �dashed� lines are
DMRG �ED� results. The horizontal dotted lines mark M =1/3 and
M =1.
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DMRG calculations, one of the three possible patterns �up-
up-down, up-down-up, down-up-up� is selected as a unique
ground state due to energetically preferred orientations of
edge spins, pointing up in our case. We further observe de-
viations from the perfect up-down-up pattern, selected in our
case, at the boundaries: edge-spin induced spin-spin correla-
tions decay into the bulk.

Let us briefly comment on additional features of the mag-
netization curves presented in Fig. 1. In the case of spin 1
shown in Fig. 1�a�, we identify at least six regions, labeled
�i�–�vi� in the viewgraph. First, the Haldane gap1,4,45 shows
up as a zero-field plateau. A specialty of open spin-1 chains
is the presence of effective spin-1 /2 edge spins which have
been studied in detail both for unfrustrated4 and frustrated
chains.45,54 These edge spins couple to the so-called Kennedy
triplet, which in the thermodynamic limit is degenerate with
the ground state.56 The existence of the effective free spin-
1 /2 edge spins emerges naturally within the AKLT �Affleck-
Kennedy-Lieb-Tasaki� description of the ground state of a
spin-1 chain.4,57 Within our numerical precision, this triplet
causes a zero-field magnetization of M =1/N seen in the
Haldane phase. Similar edge spin effects are present in all
open spin-S�1/2 chains �see, e.g., Ref. 54 and references
therein�: spin-3 /2 chains have spin-1 /2 edge spins whereas
spin-2 chains have spin-1 edge spins, which consistently re-
sult in spurious M =1/N and M =2/N zero-field magnetiza-
tions seen in Figs. 1�b� and 1�c�.

At h�0.82, the frustrated spin-1 chain enters a second
region where the magnetization initially increases with a
steep slope but then follows M�h�=�h−b with b�0.74 for
h�0.9. The M =1/3 plateau is realized for 1.74	h	1.99.
Note, however, that the phase boundaries of the plateau state
cannot directly be obtained from N=120 sites for this frus-
tration parameter, as finite-size effects are still significant in
this regime. Both below and above the plateau �indicated as
region �iv�	, the magnetization increases in steps correspond-
ing to �Stotal

z =2. This may indicate binding effects between
the elementary excitations in finite magnetic fields. In the
high-field region below the saturation field, we highlight the

presence of a kink in the magnetization curve at h�3.89,
which correspond to jumps in the differential susceptibility
dM�h� /dh. This kink splits the high-field region into parts
�v� and �vi�. A second, less obvious kink may exist at smaller
fields h�2.8. The kink singularities are related to middle-
field cusp singularities recently studied in the
literature.50,58,59 We will discuss the kink singularities in
more detail in Sec. III C.

Apart from the M =1/3 plateau, the prominent features of
the magnetization curve of a frustrated spin-3 /2 chain with
J2=0.4 are the zero-field gap and several kinks. At zero mag-
netic field, the frustrated S=3/2 chain is gapless for J2
	0.29 and in a critical phase with antiferromagnetic corre-
lations, while a gap opens beyond this value.54 This transi-
tion at zero field is of the Kosterlitz-Thouless type and is
similar to the behavior of the frustrated S=1/2 chain.7,8 At
larger J2�0.29, the system enters a dimerized phase, with a
finite spin gap seen in Fig. 1�b�. For the case of h�0, several
kink singularities exist in the magnetization process of spin-
3 /2 chains both below and above the plateau, as is indicated
in Fig. 1�b�. The derivative of the ground-state energies
E0�Stotal

z ,h=0� with respect to M exhibits discontinuous
changes of the slope where the kinks emerge in the magne-
tization curve, indicating second-order transitions. Similar to
the case of spin 1, the magnetization increases in steps cor-
responding to �Stotal

z =3=2S around the plateau. This hints at
a very rich phase diagram in a magnetic field that deserves to
be explored in more detail.

The magnetization curve of frustrated spin-2 chains at
J2=0.36 exhibits a zero-field Haldane gap,48 similar to the
case of spin 1, kinks at high fields, and the M =1/3 plateau.

B. Magnetic phase diagram of frustrated spin-1 and 3/2
chains with isotropic exchange interactions:

The M=1/3 plateau region

We next discuss how the boundaries of the plateau region
depend on spin S. First, we present results for the critical
frustration for the plateau formation in Table I. Second, the
phase boundaries are determined as a function of frustration
J2 for spin 1 and spin 3/2 and these results are summarized
in Fig. 3. Finally, we present a discussion of additional
phases present in the case of spin S=1 in a separate section,
Sec. III C.

Since the plateau is induced by frustration, we expect it to
vanish as J2→0, as well as for J2
J1. In the latter case, the

TABLE I. Isotropic exchange, �=1: Lower and upper critical
frustrations J2,crit,l/u for the formation of the M =1/3 plateau for spin
1/2 �from Refs. 25 and 27�, spin 1, 3 /2, and 2.

Spin S J2,crit,l J2,crit,u

1 /2 0.487 1.25

1 0.35 0.87

3/2 0.34 0.78

2 0.35 0.72

� – –

FIG. 2. �Color online� Onsite spin density �Si
z /S on the M

=1/3 plateau state of frustrated spin-S chains with S=1, 3 /2, and 2
and isotropic exchange interactions ��=1� at J2=0.4 �S=1 and 3/2�
and J2=0.36 �S=2�. We show DMRG results for N=120 sites.
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system separates into two decoupled unfrustrated NN chains.
For the extreme quantum case of S=1/2, numerical
studies25–27 report the existence of the plateau for 0.487
	J2 /J1	1.25. On the other hand, as mentioned earlier, our
MC simulations for a classical frustrated spin chain indicate
the absence of the M =1/3 plateau in the isotropic case �
=1, thus we expect the region that allows for the uud state to
become the ground state at M =1/3 to shrink with increasing
spin S. We, therefore, determine the critical lower and upper
frustration J2,crit,l/u�S� for the formation of the plateau state.
To this end, we compute the onsite spin density �Si

z for
several J2, searching for the emergence of the uud pattern.
We also perform a finite-size scaling analysis of the plateau
boundaries and compare chains with open and periodic
boundary conditions. This procedure results in estimates of
the critical frustrations for spin-1 /2 consistent with Ref. 27.
Note that the precise determination of the critical frustrations
is sometimes difficult as the gap, i.e., the width of the pla-
teau, is typically exponentially small close to the critical
frustrations. Our results are intended to study trends and we
estimate the critical frustrations listed in Table I and II to be
correct with an error of ±0.02.

The results for S=1, 3 /2, and 2 are summarized in Table
I, together with data from Refs. 25 and 27 for spin 1/2. The
data collected in Table I renders S=1/2 a special case with
critical frustrations very different from S�1/2. For S�1/2,
the critical lower J2,crit,l�S� remains approximately constant,
while J2,crit,u�S�−J2,crit,l�S� shows a tendency to decrease with
increasing S, melting the plateau region from the large J2
side.

We next elaborate more on the phase boundaries h
=h�J2� of the plateau state in the h-J2 plane for S=1 and 3/2.
Our results from DMRG calculations for several J2 are sum-
marized in Fig. 3, which shows the magnetic phase diagram
of frustrated S=1 and 3/2 chains at �=1. Additional mag-

netization curves for S=1 and J2=0.0, 0.3, 0.7, and 0.8 are
shown in Fig. 4 and in Fig. 5 for S=3/2 and J2=0.3, 0.5, 0.6,
and 0.8.

Close to the upper critical fields J2,crit,u�S�, the determina-
tion of the boundaries is hampered by the existence of addi-
tional steps on the plateau. An example is shown in the inset
of Fig. 4�c� for J2=0.7, the steps are indicated by the arrow
in the plot. Such steps have also been seen in the case of
frustrated S=1/2 chains,25 and can be traced back to the
open boundary conditions. First, as we have verified for sev-
eral cases, in which such steps are observed, we find that the
step height scales down to zero with increasing system size.
Consistent with the interpretation that the steps are boundary
effects, they are not seen if periodic boundary conditions are

FIG. 3. �Color online� Magnetic phase diagram of frustrated S
=1 and 3/2 chains with an isotropic exchange ��=1� as derived
from ED and DMRG calculations of magnetization curves. Squares
denote boundaries of S=1 phases, while stars are for S=3/2. An
arrow at J2,t�0.75 at low fields marks the first-order transition
from the �gapped� Haldane phase found for J2	0.75 to the likewise
gapped double Haldane phase for the frustrated spin-1 chain.62

FIG. 4. �Color online� Magnetization curves for frustrated S
=1 chains with an isotropic exchange ��=1� for �a� J2=0, �b� J2

=0.3, �c� J2=0.7, and �d� J2=0.8. Full lines are DMRG results for
N=120 sites, dashed lines are ED results for N=15. The inset in
panel �c� is an enlarged view of the M =1/3 plateau. The squares
indicate the boundaries of the plateau as seen on N=15 sites with
PBC.

FIG. 5. �Color online� Magnetization curves for frustrated S
=3/2 chains with an isotropic exchange ��=1� for �a� J2=0.3, �b�
J2=0.5, �c� J2=0.6, and �d� J2=0.8. Full lines are DMRG results for
N=60 sites, dashed lines are ED results for N=12 sites with PBC.
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imposed. Finally, we compare the onsite spin density �Si
z on

the plateau to that of the step states, i.e., the magnetizations
just below and the two magnetizations just above the plateau.
The spin densities are shown in Fig. 6 for J2=0.7 and N
=120 sites. On the plateau �Stotal

z =40�, we find the up-
down-up pattern. For Stotal

z =39,41,42, i.e., just above and
below the plateau, a one-domain wall excitation sits in the
middle of the chain.26

In the magnetic phase diagram Fig. 3, we scale the field
with the value of S. We see that while the upper and lower
critical frustration J2,�l,u� are similar for S=1 and 3/2, the
width and the critical field, i.e., the boundaries of the plateau
region exhibit a significant dependence on spin S. In particu-
lar, we emphasize the nonmonotonic dependence of the pla-
teau’s width on S—it is quite narrow for S=1/2,25 broader
for S=1 and 3/2, and it disappears in the classical case
S=�.

C. Magnetic phase diagram of the frustrated spin-1 chain:
Additional phases

Finally, we present a discussion of additional phases
present in the case of spin S=1. To our knowledge only the
magnetization curve of the NN spin-1 chain has been com-
puted �see, e.g., Ref. 60�. Based on a field-theoretical analy-
sis, a first suggestion for the magnetic phase diagram of frus-
trated S=1 chains has been put forward in Ref. 50 for the
low- and high-field parts. Our results basically confirm their
picture and provide additional information on the so far un-
explored middle-field region where the M =1/3 plateau is
found.

Several studies of frustrated spin chains have focused on
the zero-field phases,45,47–50,54,61,62 with special interest in the
emergence of chirality. As is well known, unfrustrated S=1
chains exhibit a Haldane gap at zero magnetic field, in con-
trast to half-integer spin chains that have gapless
excitations.1,5,11 As earlier studies have shown, frustrated S
=1 chains have a gap for any J2.45,63,64 The Haldane phase
persists up to J2�0.75, and is then followed by another
gapped phase, the double-Haldane region.45 This transition is
a consequence of the frustration driving the system from
the unfrustrated one-chain �J2→0� to the two-chain limit
�J2→1; J1→0�.

The existence of a spin gap gives rise to a zero-field pla-
teau in the magnetization curve, which is evident from our
data shown for S=1 and J2=0.0,0.3,0.4,0.7,0.8 �Figs. 4�a�,
4�b�, 1�a�, 4�c�, and 4�d�	. The zero-field magnetization of
M =Stotal

z =1/N due to the Kennedy triplet is seen in the
Haldane phase, but disappears at the transition to the double-
Haldane phase.45

We therefore estimate the spin gap from the field where
the total Stotal

z increases from Stotal
z =1�0� to Stotal

z =2�1� in the
Haldane �double-Haldane� phase. Our results for the spin gap
are included in the magnetic phase diagram in Fig. 3
�squares� and are in agreement with the data of Ref. 62.

While the magnetization curve of both the unfrustrated
chain depicted in Fig. 4�a� and of chains with large J2 �not
shown in the figures� are mostly featureless, a more interest-
ing behavior arises in the range of parameters close to the

plateau region. Around the plateau itself we find evidence for
a narrow region where the magnetization increases in steps
corresponding to �Stotal

z =2: states with an odd Stotal
z never

become ground states. Such a region exists in frustrated S
=1/2 chains as well, both in its anti- and ferromagnetic
versions.25,66 The corresponding state has been called the
even-odd �EO� phase.25 While the EO phase for S=1/2 is
predominantly realized at large J2, we observe EO effects
only in a narrow region around J2�0.4 �see Fig. 1�a�	. Start-
ing from the limit of two decoupled chains, spins obviously
flip in pairs, one on each chain and independently of each
other. At finite J1, however, EO regions emerge as a conse-
quence of binding effects of magnons, leading to a lower
energy for magnon pairs as compared to single magnons, as
discussed for spin 1/2 in Refs. 25 and 66. In the case of the
frustrated S=1/2 chain, the EO region persists up to the limit
of J1=0,25 while no indications of an EO region have been
found for J1→0 for spin S�1/2 on the system sizes inves-
tigated here. For spin 1, Kolezhuk and Vekua50 conclude that
an EO phase is not possible in frustrated chains. Our DMRG
results do not contradict this prediction as we find EO effects
in a region that has not been studied in Ref. 50.

To gain a qualitative understanding of the behavior in
high magnetic fields, it is instructive to consider the disper-
sion of a single magnon, i.e., one spin flipped with respect to
the fully polarized state. The dispersion �k, generalizing re-
sults given in Refs. 58 and 65, reads

�k = 2S�J1 cos k + J2 cos 2k − ��J1 + J2�	 − h . �5�

Here, and throughout, k denotes the momentum. We also
have included the exchange anisotropy � �see Eq. �2�	 for the
sake of generality. Equation �5� first allows us to derive the
saturation field, which depends on S only by an overall pref-
actor �Ref. 65�:

hsat = 2S�J1 − J2 + ��J1 + J2�	 for J2 �
J1

4
,

hsat = 2S� J1
2

8J2
+ J2 + ��J1 + J2�� for J2 �

J1

4
. �6�

The saturation field is plotted as a dashed line in Fig. 3. For
�=1 the saturation field is independent of J2 for J2�1/4.

FIG. 6. �Color online� Onsite spin density �Si
z state for S=1,

J2=0.7, �=1, and N=120 sites �DMRG�. Panels �a�–�d�: Stotal
z

=39–42. Stotal
z =40 corresponds to M =1/3.
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For J2�0.25, a kink singularity splits off the saturation
field and divides the high-field region into two phases. A
second kink emerges at lower fields at J2�0.4 and then ap-
proaches the first one. We observe the first high-field kink for
0.25	J2	0.6, where it then merges with the second kink
and eventually disappears, at least on the system sizes stud-
ied here. Just below the saturation field, where the one-
magnon state is expected to give a correct description, we
can understand its emergence along the lines of Ref. 58,
where a similar effect has been observed for spin-1 /2 chains.
It turns out that for J2�0.25 the global minimum of �k at
k= splits into two local minima at the position of the high-
field kink singularity. We can further conclude that the high-
field region between this kink and the saturation field is in-
commensurate with cos k=−J1 /4J2. The observation of
incommensurability agrees with Refs. 50 and 58.

We emphasize that the interpretation of the kink singular-
ity based on the one-magnon dispersion Eq. �5� is justified
only just below the saturation field. Indeed, even for the case
of spin 1/2, the nature of the two phases left and right of the
kink singularity is currently under controversial discussion.
According to Refs. 25 and 58, it signals a transition from a
one-component Tomonaga-Luttinger liquid �TL1� to a two-
component Tomonaga-Luttinger liquid �TL2� state. This in-
terpretation has recently been challenged by Kolezhuk and
Vekua.50 Using bosonization techniques, they conclude that
the kink can be explained in terms of a renormalization of
the magnetization due to an irrelevant operator in the incom-
mensurate region neighboring the TL2 �or chiral phase� on
the large J2 side.

Further studies are necessary to relate the three features of
the M�h� curves—the plateau, kink singularities, and EO
effects—with each other and should involve a detailed study
of excitations of S=1 and 3/2 chains as well. Also, a numeri-
cal investigation of the high-field phases including the pos-
sible existence of chiral order is a necessary step towards a
complete understanding of the phase diagram of frustrated
S=1 chains in finite magnetic fields.

D. Magnetization process of frustrated S=1 chains
with onsite anisotropy

Most materials that realize S=1 chains typically also have
a significant onsite anisotropy D�0 of the form D�i�Si

z�2

�see also Eq. �2�	. We therefore study the effect of both frus-
tration J2 and a finite D on the magnetization process of
frustrated S=1 chains. The problem of a spin-1 chain with
frustration and onsite anisotropy D�0 has previously at-
tracted attention as well, however, for a slightly different
model Hamiltonian than our Eq. �2�, including biquadratic
terms of the form �Si ·S j�2.16,40

Our DMRG and ED results for the magnetization process
of frustrated S=1 chains with a finite D are presented in Fig.
7 for fixed J2=0.6 and �=1. A negative D does not affect the
existence of the M =1/3 plateau state. We have verified the
existence of the 1/3 plateau up to D=−1. While the width of
the plateau is �h�0.80 at D=0 and J2=0.6, it increases
steadily with D�0. At D=−0.5, we obtain �h�0.95. Thus,
a negative D stabilizes the M =1/3 plateau state. As an ex-

ample, the magnetization curve M�h� for D=−0.5 is shown
in Fig. 7�a�. A positive onsite anisotropy D, however, de-
stroys the plateau state which disappears for D�0.18. At
larger D, an anomaly around M =2/3 emerges, as is shown
in Fig. 7�d� for the case of D=0.5. Such a behavior at finite
D is expected since negative D favors the states with a maxi-
mal projection Si

z on each site �such as the uud state on the
M =1/3 plateau�. On the contrary, a positive D plays the role
of an easy-plane XY anisotropy and thus suppresses the pla-
teau formation.

Let us summarize the main results of this Sec. III on the
magnetization process of frustrated chains with an isotropic
exchange. First, we have presented numerical results for S
=1, 3 /2, and 2 showing that a M =1/3 plateau is realized in
the magnetization curve of frustrated spin chains with isotro-
pic exchange, while a classical frustrated model does not
support this state. Second, we have presented a magnetic
phase diagram for frustrated S=1 and 3/2 chains with a spe-
cial focus on the boundaries of the M =1/3 plateau region. A
tendency is found that as S�1/2 grows, the width of the
plateau becomes more narrow.

Moreover, kink singularities exist in the magnetization
curves of spin-1 chains for J2 /J1�0.25, which is—at least
close to the saturation field—due to the emergence of two
minima in the dispersion relation of the one-magnon excita-
tions above the fully polarized state, similar to the case of
S=1/2.58 This effect further indicates the presence of an in-
commensurate region for fields h�hkink above the high-field
kink singularity. The inclusion of an onsite anisotropy term
in the Hamiltonian of frustrated spin-1 chains stabilizes the
M =1/3-plateau when the onsite anisotropy is negative �D
�0�, but the plateau is quickly destroyed by a positive D
�0.18.

The magnetization curves of frustrated spin-3 /2 chains
exhibit a rich behavior with several kink singularities and the
M =1/3 plateau. Around the plateau and at small J2, the
magnetization increases in steps corresponding to �Stotal

z

FIG. 7. �Color online� Magnetization curves for the frustrated
S=1 chain with isotropic exchange, �=1 and J2=0.6, and a finite
onsite anisotropy. �a� D=−0.5, �b� D=0.1, �c� D=0.2, �d� D=0.5.
DMRG results are for N=60 sites �straight lines�; ED �dashed lines�
for N=15 sites and PBC.
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=2S=3. Steps of height �Stotal
z =2 have not been observed in

extended parts of the magnetization curve, which may indi-
cate that bound pairs of two magnons are not realized here,
unlike the case of spin-1 /2.25,66 It is beyond the scope of this
work to fully map out the phase diagram of spin-3 /2 chains
but interesting results are expected to emerge from future
studies.

IV. The magnetization process of anisotropic frustrated spin
chains in the easy-axis regime ��1

In this section we compare our results for frustrated spin-
S chains with S�1/2 to a classical frustrated spin chain.
Beyond a critical exchange anisotropy �c�J2�, the classical
frustrated chain supports a M =1/3 plateau. Using linear
spin-wave theory summarized in the Appendix, we derive
several expressions for the phase boundaries of the classical
model and in particular compare the phase boundaries of the
plateau region to the cases of S=1/2, 1 and 3/2 chains. The
quantum cases are studied by means of ED and DMRG. We
find that, as S increases, the classical phase boundaries are
rapidly approached. Deviations between the quantum cases
and the classical case are most significant close to the critical
frustration for plateau formation. The case of S=1/2 is
clearly singled out: here, the critical frustration and the phase
boundaries are very different from spin S� 1 /2 chains and
the classical model. Finally, we briefly discuss additional
phases of frustrated spin-1 chains in the easy-axis regime
��1.

A. Classical frustrated chain

We perform MC simulations on chains of up to N=36
sites with periodic boundary conditions which allow us to
determine the ground-state at finite magnetic fields as out-
lined in Sec. II. Knowing the states gives us a handle on
analytical expressions for their energies.

The closely related problem of a classical Ising-like
Heisenberg model on a triangular lattice was studied by
Miyashita43 and later on compared to a S=1/2 Ising-like
Heisenberg model on the same lattice.67 Similar to the Ising
limit and spin 1/2,41 the M =1/3 plateau was found and re-
sults for the magnetic phase diagram were reported. Here we
focus on the one-dimensional case only, but we allow J1
�J2 in our study, while Ref. 43 concentrated on equal ex-
change constants on all sides of the triangles.

As an example for our MC calculations, we show the
magnetization curve for J2=0.8 and �=2 in Fig. 8. At least
five phases can be distinguished. First, a zero-field plateau
exists, corresponding to a gap of 1.11. The ground state has
an up-up-down-down �uudd� structure in the Sz component,
while at small J2, a Néel state �up-down� is realized. Larger
J2 emphasizes the double-chain character of our model. An
uudd pattern results in Néel states on each of the single
chains in the limit of J1→0.

Next, separated by a first-order transition the system en-
ters a region where the magnetization increases linearly with
h. This phase has periodicity p=3 and is a precursor of the
plateau state: all spins lie in the same plane, one points ex-

actly in the −z direction while the other two are canted away
from the +z direction by angles � and −� such that

cos � =
1

� + 1
� h

J1 + J2
+ �� . �7�

As h is increased, � vanishes continuously, so that the tran-
sition into the plateau state is second order. The M =1/3
plateau exists for J1+J2=1.8�h	6.4108. The system then
enters a high-field region with a complicated dependence of
M on h. Within the error of our simulations the phase tran-
sition to this state from the plateau state is always second-
order. The high-field state is probably incommensurate with
the lattice period. This is illustrated by the system size de-
pendence of the magnetization curve and its small anomalies
shown in the inset of Fig. 8. Chains of finite length with PBC
cannot accommodate a truly incommensurate state. This pic-
ture is consistent with our analytical spin-wave calculations.
From Eq. �5� we obtain that, for the present value of J2
=0.8 and h=hsat−0+, the fully saturated state is unstable
against fluctuations with cos k=−J1 /4J2=−0.3125. On the
other hand, the plateau state is unstable against fluctuations
with cos�3k�=1 as shown in the Appendix. This dependence
of k on h emphasizes the incommensurability of the high-
field phase. In this work, we have not attempted to study the
k�h� dependence or the nature of this state in further detail.

B. The magnetic phase diagram of the classical model

We derive analytical expressions for the boundaries of the
plateau of the classical model as well as of several surround-
ing phases as a function of � and J2. The results are summa-
rized in the magnetic phase diagrams in Figs. 9 and 10.

At low fields, we find three phases: a Néel state at small
J2 �region N in Fig. 9�, the canted commensurate phase C,
and the double-Néel state DN for J2�0.64 with an uudd
pattern. According to Eq. �7�, the magnetization of the C
phase at h=0 is

FIG. 8. �Color online� Magnetization curve of a frustrated clas-
sical chain ��=2� for J2=0.8 obtained by means of MC simulations
�circles�. The horizontal, dotted line marks M =1/3. The inset
shows an enlarged view of the kink region around h�0.75, illus-
trating the size dependence.
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M�h = 0� =
1

3
�2 cos � − 1� =

� − 1

3�� + 1�
, �8�

which vanishes only in the isotropic limit �→1. Therefore,
as a nontrivial consequence of the interplay between frustra-
tion and exchange anisotropy, we observe a finite zero-field
magnetization in a model with purely antiferromagnetic in-
teractions.

The boundaries between the commensurate states men-
tioned above are given by:

hN-C =
1

2

�J1 + J2��1 − ��

+ �3��J1 + J2��1 + �����3J1 − 5J2� − �J1 + J2�	� ,

�9a�

hDN-C =
1

2

�J1 + J2��1 − ��

+ �3��J1 + J2��1 + �����3J2 − J1� − �J1 + J2�	� .

�9b�

For the lower boundaries of the M =1/3 plateau we find:

hN-P = 2��J1 − 2J2�; �10a�

hC-P = J1 + J2; �10b�

hDN-P = ��2J2 − J1� . �10c�

Note that the critical field hC-P does not depend on �.
Above the plateau, we have identified two phases. At

small J2, a canted Néel state is realized �labeled CN in Fig.
9�, separated by a first-order transition line

hN-CN = 2��J1 − J2��� − 1����J1 + J2� + �J1 − J2�	 �11�

from the gapped Néel state N. The P-CN transition is also
first order. It occurs at

hP-CN =
2

3
�J1 − J2 + ��J1 + J2�

+ 2�2J1J2�2 + �2� + J1
2��2 − � − 2� + J2

2��2 + � − 2�	 .

�12�

For larger J2 and magnetizations M �1/3, the situation be-
comes more complicated since incommensurability arises, as
discussed above. For the range of parameters that we study,
the P-IC phase transition is always second order. Hence, the
phase boundary can be derived from an analysis of spin-
wave instabilities around the plateau state �see the Appen-
dix�:

hP-IC =
J1 + J2

2
�2� − 1 + ��4�2 + 4� − 7�	 . �13�

Equations �10a� and �12� result in an expression for the mini-
mal frustration J2,crit��� required for the formation of the
M =1/3 plateau state in the vicinity of �=2:

FIG. 9. �Color online� Magnetic phase diagram �field h vs frus-
tration J2� of a frustrated classical chain at �=2. The phase bound-
aries of the classical model are given by Eqs. �9a�, �9b�, �10a�–
�10c�, and �11�–�13�. They are denoted by straight lines. The phases
are labeled by capital letters �see Sec. IV B�: N is a Néel phase, C
is a canted phase with periodicity three, DN is the double-Néel
phase, P the M =1/3 plateau state, CN is a canted Néel-like phase,
and IC is an incommensurate region. Numerical estimates of the
phase boundaries of the M =1/3 plateau region for spin 1/2, 1, and
3/2 are denoted by circles, squares, and stars, respectively. Dashed
lines are guides to the eye. The dot-dashed line is the saturation
field hsat from Eq. �6�. The dotted line schematically indicates the
phase boundary between phases CN and IC, which we have not
determined analytically.

FIG. 10. �Color online� Magnetic phase diagram �field h vs
exchange anisotropy �� of a frustrated classical chain at J2=0.8
obtained by MC simulations. The phase boundaries of the classical
model are given by Eqs. �9a�, �9b�, �10a�–�10c�, and �11�–�13�.
They are denoted by straight lines. Results for the phase boundaries
of the M =1/3 plateau region for spin 1 and spin 3/2 from DMRG
calculations are included �squares: spin 1, stars: spin 3/2�. The
dashed line is the saturation field hsat from Eq. �6�. Capital letters
�C, DN, and P� refer to phases shown in Fig. 9 and are discussed in
the text. H denotes a helical phase. �Ref. 68�. The dot-dashed line
indicates the transition between phases H and C. Dotted lines are
phase boundaries that are only indicated schematically.
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J2,crit

J1
=

1 − � + 2�2 − 2����� − 1�
1 − 2� + 5�2 . �14�

This implies J2,crit�0.079 for the classical frustrated chain at
�=2.

To conclude this section, we present a cut through the
phase diagram at fixed J2=0.8 in Fig. 10, now plotting the
magnetic field h /S vs the exchange anisotropy �. The
double-Néel phase DN vanishes at ��1.485, and below this
value of �, a helical phase H emerges at zero magnetic field
�see, e.g., Ref. 68 for a discussion of helical order in the
isotropic case�. The M =1/3 plateau only exists above a criti-
cal value of the exchange anisotropy: ��1.06. We obtain
this result by comparing the energy of the helical phase H,
which—according to our MC simulations—extends up to the
plateau at small �, to the energy of the plateau phase P. Note
that a similar plot has been presented in Ref. 43 for the
triangular lattice with equal couplings J on each triangle. A
phase C has not been reported in that work: at J1=J2, we
consistently also only find the double-Néel phase below the
plateau, separated by a first-order transition from the plateau
�see Fig. 9	.

We emphasize that we have not yet fully explored all
regions of the magnetic phase diagrams in Figs. 9 and 10 of
the classical frustrated chain. For instance, an analytical ex-
pression for the transition between phases CN and IC still
needs to be found. Moreover, additional phases may arise in
the limit J2
J1. In this parameter region, we expect the
plateau to vanish as the chains decouple.

C. M=1/3 plateau in the magnetization process of spin-1 and
spin-3 /2 chains: Comparison to the classical case

We now turn to the magnetization process of frustrated
quantum spin chains with S=1 and 3/2 in the easy-axis re-
gime ��1. Numerical results for M�h� are presented in
Figs. 11 and 12 for J2=0 ,0.2,0.4,0.8, and �=2. We briefly
discuss the magnetization process and emergent phases start-
ing with the low-field part. The focus here is on to what
extent S=1 and 3/2 chains resemble the phases found for the
classical chain. Results on the zero-field phase diagram of
frustrated spin-1 chains and ��1 can be found in Refs. 47
and 49. At a finite ��1 and for spin 1, essentially five
phases have been identified: a Néel state at small J2 and �
�1.18, the Haldane phase, the double-Haldane phase, and
the double-Néel phase for ��1.95 on the large J2 side �see
Ref. 47 and further references therein�. Our results reported
below are in agreement with this picture.

We now concentrate on the example of �=2. First, at
small J2, both the S=1 and 3/2 chains are in the Néel phase
N, see for instance Figs. 11�a� and 12�a�. This phase is
gapped and therefore, a zero-field plateau exists in the mag-
netization curves. The Néel phase terminates at J2,N-C�
�0.29 for S=1 and J2,N-C��0.39 for S=3/2. For larger J2,
an intermediate region C� follows, which is gapped in the
case of S=1 �see Fig. 11�c�	. This region must contain both
the Haldane and the double-Haldane phase, with a transition
at J2�0.8.47 The commensurabilty and the existence of a
gap in the case of S=3/2 in this region still needs to be

clarified. The width in J2 of this region at zero field becomes
narrower as S grows, approaching the boundaries of the
phase C of the classical model �see Fig. 9�. At J2,C�-DN
�1.02 for S=1 and J2,C�-DN�0.94 for S=3/2, the systems
undergo another first-order transition and enter the double-
Néel phase DN, which is gapped for both values of S �see
Figs. 11�d� and 12�d�, J2=0.8	.

At small J2 and h�0, the N phase terminates at a first-
order transition, indicated by macroscopic jumps in the mag-
netization curves of both S=1 and 3/2 chains �see the case
of J2=0 in Figs. 11�a� and 12�a�	. The critical frustrations for
the formation of the M =1/3 plateau state are J2,crit�0.16 for
S=1 and J2,crit�0.11 for S=3/2. Interestingly, an EO region

FIG. 11. �Color online� Magnetization curves of frustrated
spin-1 chains with an anisotropic exchange ��=2� for �a� J2=0, �b�
J2=0.2, �c� J2=0.4, and �d� J2=0.8. DMRG results �straight lines�
are for N=60 sites, the dashed lines are ED results �PBC�. The
capital letters stand for: Néel phase N, canted phase C, double-Néel
phase DN.

FIG. 12. �Color online� Magnetization curves for frustrated
spin-3 /2 chains with an anisotropic exchange ��=2� for �a� J2=0,
�b� J2=0.2, �c� J2=0.4, and �d� J2=0.8. DMRG results �straight
lines� are for N=60 sites, the dashed lines are ED results �PBC�.
The capital letters stand for: Néel phase N, canted phase C, double-
Néel phase DN.
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��Stotal
z =2� exists around the plateau at small J2 in the case

of S=1 �see Fig. 11�b� and 11�c� for J2=0.2 and J2=0.4	 and
extends far below the plateau. For S=3/2, we find a corre-
sponding region with �Stotal

z =3. An example is shown in Fig.
12�b� for J2=0.2. We are thus led to conjecture that frustrated
spin chains with S�1/2 generally realize regions with
�Stotal

z =2S. We have verified that this is the case for spin S
=2 as well.

The M =1/3 plateau becomes very broad with increasing
J2, as is evident from the case of J2=0.4 depicted in Figs.
11�c� and 12�c�. Similar to the case of isotropic chains,
boundary induced steps appear on the plateau. We have not
determined the upper critical frustrations for the plateau for-
mation, but we did verify that the plateau disappears for
large J2 in both the cases of S=1 and 3/2. For magnetiza-
tions M �1/3, we mention that kink singularities are again
found for J2�0.25, see the examples in Figs. 11�c� and
12�c�.

We proceed with a comparison of the critical frustrations
J2 of the M =1/3 plateau state as a function of S, listed in
Table II. For S�1/2, a clear trend toward the classical result
is seen. Numerical results for the phase boundaries of the
plateau state for both S=1 �squares� and S=3/2 �stars� are
included in Figs. 9 �h vs J2 at �=2� and 10 �h vs � at J2
=0.8�. It turns out that the phase boundaries in Fig. 9 con-
verge rapidly toward the classical result with increasing S.
For instance, on the scale of Fig. 9, the classical result for the
transition hC-P from the phase C to the plateau cannot be
distinguished from the quantum cases. The data points for
S=1 on the boundary hC-P quantitatively deviate from the
classical result, but the data points for S=3/2 are already
very close to the classical result for J2�0.6. Deviations are
strongest in both the limit of small and large J2.

With respect to Fig. 10 �h vs � at J2=0.8�, we note that
sizable differences between the plateau boundaries of the
classical chain and the quantum cases only appear at small
exchange anisotropies close to �=1. While the spin-1 chain
realizes the plateau in the isotropic limit �=1, the plateau
only opens in M�h� of spin-3 /2 chains beyond a critical 1
��crit,3/2	1.02��crit,class.

We can finally conclude that the magnetic phase diagram
of frustrated S=1 and 3/2 chains in the easy-axis regime
strongly resembles the phases found in the classical limit.
Examples are the Néel phase N, the double-Néel phase DN,
and most importantly, the M =1/3 plateau state. In the latter
case, the similarity is not only of qualitative nature, but the

phase boundaries of the plateau rapidly approach the classi-
cal result with increasing S. We emphasize our findings on
increases of the magnetization in steps corresponding to
�Stotal

z =2S which may indicate interesting binding effects
between excitations.

V. SUMMARY

In this work we have studied the magnetization process of
frustrated spin chains. Our numerical results using DMRG
and ED techniques reveal a complex and rich behavior of the
magnetization process of S=1, 3 /2, and 2 chains. We find
jumps, zero- and finite-field plateau states, as well as kink
singularities. Our primary result is the M =1/3 plateau state
with broken translational invariance and an up-up-down pat-
tern in the spin component parallel to the field. The existence
of this plateau indicates the presence of a gap in the spectrum
of excitations at finite magnetic fields. We have numerically
estimated the phase boundaries of the plateau for S=1 and
3/2 chains with isotropic exchange interactions. An addi-
tional onsite anisotropy term D�Si

z�2, necessary for the de-
scription of many Haldane materials, stabilizes the plateau,
when D is negative but rapidly destroys the plateau state
when D is positive.

The M =1/3 plateau state can be followed down from the
Ising limit by decreasing the ratio � /J1 for fixed S. For that
reason and for its Néel-type of order, it has been classified as
a classical state,25,28 but quantum fluctuations seem to stabi-
lize it in the case of isotropic exchange: a classical frustrated
chain does not show a plateau here. We have studied the
classical frustrated spin chain in detail, which realizes the
M =1/3 plateau in the easy-axis regime. Our work provides
several analytical results for the magnetic phase diagram of
the classical frustrated chain including the phase boundaries
of the M =1/3 plateau for ��1. In the easy-axis regime, the
phase diagrams of frustrated S=1 and 3/2 chains do not only
qualitatively resemble the classical result, but also the phase
boundaries of the M =1/3 plateau rapidly approach the clas-
sical result with increasing S. The extreme quantum case of
S=1/2 is singled out: the critical frustrations are different
from S�1/2 and the classical cases both in the isotropic
��=1� and the easy-axis regime. Our conjecture is that the
plateau exists for all frustrated spin-S chains in the easy-axis
regime, as our results for S=1, 3 /2, 2, and the classical case
suggest.

Our results on the emergence of the M =1/3 plateau may
be of relevance to the materials mentioned in the Introduc-
tion that are suggested to realize zigzag spin-1 chains:
CaV2O5 �Ref. 51�, NaR�WO4�2 �Ref. 52�, and Tl2Ru2O7

�Ref. 53�. Moreover, the M =1/3 plateau can be expected to
emerge in the magnetization process of all materials that re-
alize a spin-S Heisenberg model on a triangular lattice, as is
well known for spin 1/2 �see, e.g., Ref. 69�. Indeed, plateaux
at both M =1/3 and M =2/3 have recently been reported for
the S=1 bilinear-biquadratic Heisenberg model on the trian-
gular lattice.30

As by-products to the plateau study, and in particular
close to the plateau region, we have identified additional
phases. We have obtained the phase diagram of the frustrated

TABLE II. Easy-axis regime, �=2: Lower critical J2,crit for the
formation of the M =1/3 plateau for spin 1/2, 1, 3 /2, and 2
�DMRG results� and the classical limit S→�. The result for spin-
1 /2 is taken from Ref. 27.

Spin S J2,crit /J1

1 /2 0.40

1 0.16

3/2 0.11

2 0.10

� 0.079
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spin-1 chain with isotropic interactions, extending the results
of other studies.50 We highlight another interesting finding:
all frustrated spin chains with S�1/2 seem to realize regions
where the magnetization increases in steps corresponding to
�Stotal

z =2S. Extensions of our work will comprise a full char-
acterization of different phases in terms of correlation func-
tions and a more detailed study of excitations. A timely sub-
ject is the emergence of chirally ordered states in frustrated
quantum magnets, which is investigated both
experimentally51,70 and theoretically.46–48,50 We hope that our
work will stimulate future research activities in these direc-
tions.
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APPENDIX: SPIN WAVES IN THE
M=1/3 PLATEAU STATE

In this appendix, we outline the linear spin-wave theory
that allows us to determine the phase boundaries of the clas-
sical model. In this appendix, D=0. We start with the equa-
tion of motion for the spin operators Sp on the pth site of the
chain, dSp /dt= i�H ,Sp	, where H is the Hamiltonian Eq. �2�
and the brackets denote the commutator. Explicitly, we ob-
tain the following:

dSp
x

dt
= Sp

z�
q

JpqSq
y − �Sp

y�
q

JpqSq
z + hSp

y ,

dSp
y

dt
= − Sp

z�
q

JpqSq
x + �Sp

x�
q

JpqSq
z − hSp

x , �A1�

where Jp,q=J1 for q= p±1, J2 for q= p±2, and zero other-
wise. The fluctuations in Sz are negligible since �H ,Sp

z 	 con-
tains only products of the form Sp

xSq
y which are of second

order in small fluctuations. Here, we are only interested in
the classical limit which greatly simplifies the calculations.
Hence, in the following, Sp are viewed as three-dimensional
classical unit vectors.

It is convenient to divide the uud plateau structure into
“unit cells,” each containing three chain sites. To this end, we
replace p by a combined index �m ,��, where p=3m+�, m
=0, . . . ,N /3−1 is a unit cell number, and �=0,1 ,2 enumer-
ates the sites within the unit cell. Correspondingly, in the
linear approximation, Sm,0

z =Sm,1
z �S and Sm,2

z �−S, and �A1�
becomes a system of linear differential equations for Sm,�

x

and Sm,�
y . Introducing the plane-wave solution Sm,�

x,y

=S�
x,y exp�i�kp−�t�	 and a vector notation for the amplitudes

S= �S0
x ,S0

y ,S1
x ,S1

y ,S2
x ,S2

y�, Eq. �A1� can be written as A ·S=0,
where ���eik�

A =�
i� h 0 J1� + J2�*2 0 J1�* + J2�2

− h i� − J1� − J2�*2 0 − J1�* − J2�2 0

0 J1�* + J2�2 i� h 0 J1� + J2�*2

− J1�* − J2�2 0 − h i� − J1� − J2�*2 0

0 − J1�* − J2�*2 0 − J1�* − J2�2 i� h − 2��J1 + J2�
J1� + J2�*2 0 J1�* + J2�2 0 − h + 2��J1 + J2� i�

� . �A2�

The spin-wave spectrum �k is defined as the solution to the equation

f��k,k� � det A = 0. �A3�

We do not give the explicit cumbersome expression for f�� ,k�. It turns out, that, as a function of k, f�� ,k� only depends on
cos �3k� which is consistent with the broken translational symmetry of the plateau state. In general, f�� ,k� is a third-order

FIG. 13. �Color online� Lowest branch of spin-wave excitations
in the uud plateau state close to instability. The solid line is for the
range of parameters studied in Sec. IV, showing instability toward
k=0 fluctuations. The dashed line is for a larger J2 with an incom-
mensurate instability.
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polynomial in �2, the roots of which cannot be written in a
closed analytical form. We can, however, investigate the
minima of the function �k that is implicitly given by the
equation f�� ,k�=0. The extrema of �k are defined by

d�

dk
= −

�f/�k

�f/��
= 0. �A4�

The plateau state becomes unstable toward spin-wave fluc-
tuations when �k

min→0. After some algebra, we obtain that
the corresponding wave vectors are defined by cos �3k�=1 or

cos�3k� =
J1

4J2
3 �hJ2 + 2�J2�J1 + J2� − J1

2 − 3J2
2	 . �A5�

For the range of parameters addressed in Sec. IV, the incom-
mensurate solution Eq. �A5� is not realized, and the critical

fluctuations correspond to the first solution. As an example,
the lowest spin-wave dispersion branch, corresponding to the
parameters close to the instability, is shown in Fig. 13. How-
ever, for higher J2, the incommensurate fluctuations may be-
come critical as is shown by the dashed line in Fig. 13. A
more thorough study of that region is beyond the scope of
the present paper.

Substituting cos�3k�=1 and �k=0 in Eq. �A3�, we obtain
the boundaries of the plateau state, by checking the stability
against small fluctuations. The solutions of Eq. �A6� �see
below	 yield the second-order transition boundaries �10b�
and �13�.

�h − J1 − J2�2�h2 + h�J1 + J2��1 − 2�� + 2�1 − ���J1 + J2�2	2

= 0. �A6�

1 F. D. M. Haldane, Phys. Lett. 93A, 464 �1983�; Phys. Rev. Lett.
50, 1153 �1983�.

2 E. Dagotto and T. M. Rice, Science 271, 618 �1996�; E. Dagotto,
Rep. Prog. Phys. 62, 1525 �1999�.

3 E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45, 5744
�1992�.

4 S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 �1993�.
5 O. Golinelli, T. Jolicoeur, and R. Lacaze, Phys. Rev. B 50, 3037

�1994�.
6 For a review, see: H.-J. Mikeska and A. K. Kolezhuk, in Quantum

Magnetism, edited by U. Schollwöck, J. Richter, D. J. J. Farnell,
and R. F. Bishop, Lecture Notes in Physics Vol. 645 �Springer-
Verlag, Berlin, 2004�, p. 1; H. T. Diep, Frustrated Spin Systems
�World Scientific, Singapore, 2005�.

7 K. Okamoto and N. Nomura, Phys. Lett. A 169, 433 �1992�.
8 S. R. White and I. Affleck, Phys. Rev. B 54, 9862 �1996�.
9 M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett. 78,

1984 �1997�.
10 D. C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. Lett. 79, 5126

�1997�; Phys. Rev. B 58, 6241 �1998�.
11 S. R. White, Phys. Rev. Lett. 69, 2863 �1992�; Phys. Rev. B 48,

10345 �1993�.
12 U. Schollwöck, Rev. Mod. Phys. 77, 259 �2005�.
13 T. Tonegawa, T. Nakao, and M. Kaburagi, J. Phys. Soc. Jpn. 65,

3317 �1996�.
14 K. Totsuka, Phys. Rev. B 57, 3454 �1998�.
15 T. Kuramoto, J. Phys. Soc. Jpn. 67, 1762 �1998�.
16 H. Nakano and M. Takahashi, J. Phys. Soc. Jpn. 67, 1126 �1998�.
17 T. Sakai and M. Takahashi, Phys. Rev. B 57, R3201 �1998�.
18 T. Sakai and S. Yamamoto, Phys. Rev. B 60, 4053 �1999�.
19 D. C. Cabra, A. Honecker, and P. Pujol, Eur. Phys. J. B 13, 55

�2000�.
20 A. Honecker, F. Mila, and M. Troyer, Eur. Phys. J. B 15, 227

�2000�.
21 K. Okamoto, N. Okazaki, and T. Sakai, J. Phys. Soc. Jpn. 70, 636

�2001�.
22 A. Kitazawa and K. Okamoto, Phys. Rev. B 62, 940 �2000�.
23 T. Sakai and K. Okamoto, Phys. Rev. B 65, 214403 �2002�.
24 J. Schulenburg and J. Richter, Phys. Rev. B 65, 054420 �2002�.

25 K. Okunishi and T. Tonegawa, J. Phys. Soc. Jpn. 72, 479 �2003�.
26 K. Okunishi and T. Tonegawa, Phys. Rev. B 68, 224422 �2003�.
27 T. Tonegawa, K. Okamoto, K. Okunishi, K. Nomura, and M.

Kaburagi, Physica B 346, 50 �2004�.
28 K. Hida and I. Affleck, J. Phys. Soc. Jpn. 74, 1849 �2005�.
29 T. Vekua, D. C. Cabra, A. Dobry, C. Gazza, and D. Poilblanc,

Phys. Rev. Lett. 96, 117205 �2006�; C. Gazza, A. Dobry, D. C.
Cabra, and T. Vekua, cond-mat/0608326 �unpublished�.

30 A. Läuchli, F. Mila, and K. Penc, Phys. Rev. Lett. 97, 087205
�2006�.

31 K. Damle and T. Senthil, Phys. Rev. Lett. 97, 067202 �2006�.
32 J. Alicea and M. P. A. Fisher, cond-mat/0609439 �unpublished�.
33 H. Nojiri, Y. Tokunaga, and M. Motokawa, J. Phys. �Paris� 49,

1459 �1988�.
34 H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K. Oni-

zuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda,
Phys. Rev. Lett. 82, 3168 �1999�.

35 S. Miyahara and K. Ueda, Phys. Rev. Lett. 82, 3701 �1999�.
36 H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tone-

gawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Phys. Rev.
Lett. 94, 227201 �2005�; 97, 089702 �2006�; B. Gu and G. Su,
ibid. 97, 089701 �2006�.

37 M. Hase, M. Kohno, H. Kitazawa, N. Tsujii, O. Suzuki, K.
Ozawa, G. Kido, M. Imai, and X. Hu, Phys. Rev. B 73, 104419
�2006�.

38 Y. Narumi, M. Hagiwara, R. Sato, K. Kindo, H. Nakano, and M.
Takahashi, Physica B 246-247, 509 �1998�.

39 J. B. Parkinson and J. C. Bonner, Phys. Rev. B 32, 4703 �1985�.
40 M. Kaburagi, M. Kang, T. Tonegawa, and K. Okunishi, J. Phys.:

Condens. Matter 16, S765 �2004�.
41 T. Morita and T. Horiguchi, Phys. Lett. 38A, 223 �1972�.
42 Y. Muraoka, K. Oda, J. W. Tucker, and T. Idogaki, J. Phys. A 29,

949 �1996�.
43 S. Miyashita, J. Phys. Soc. Jpn. 55, 3605 �1986�.
44 T. Tonegawa, S. Suzuki, and M. Kaburagi, J. Magn. Magn. Mater.

140-144, 1613 �1995�.
45 A. Kolezhuk, R. Roth, and U. Schollwöck, Phys. Rev. Lett. 77,

5142 �1996�; Phys. Rev. B 55, 8928 �1997�.
46 M. Kaburagi, H. Kawamura, and T. Hikihara, J. Phys. Soc. Jpn.

UNIVERSAL EMERGENCE OF THE ONE-THIRD PLATEAU… PHYSICAL REVIEW B 75, 064413 �2007�

064413-13



68, 3185 �1999�.
47 T. Hikihara, M. Kaburagi, H. Kawamura, and T. Tonegawa, J.

Phys. Soc. Jpn. 69, 259 �2000�.
48 T. Hikihara, M. Kaburagi, and H. Kawamura, Phys. Rev. B 63,

174430 �2001�.
49 T. Murashima, K. Hijii, K. Nomura, and T. Tonegawa, J. Phys.

Soc. Jpn. 74, 1544 �2005�.
50 A. Kolezhuk and T. Vekua, Phys. Rev. B 72, 094424 �2005�.
51 H. Kikuchi, M. Chiba, and T. Kubo, Can. J. Phys. 79, 1551

�2001�.
52 T. Masuda, T. Sakaguchi, and K. Uchinokura, J. Phys. Soc. Jpn.

71, 2637 �2002�.
53 S. Lee, J.-G. Park, D. T. Adroja, D. Khomskii, S. Streltsov, K. A.

McEwen, H. Sakai, K. Yoshimura, V. I. Anisimov, D. M. R.
Kanno, and R. Ibberson, Nat. Mater. 5, 471 �2006�.

54 R. Roth and U. Schollwöck, Phys. Rev. B 58, 9264 �1998�.
55 Note that the �staggered� local moment �Si

z� /S increases with in-
creasing spin S, indicating the expected suppression of quantum
fluctuations as S approaches the classical limit. In the case of
spin 2 shown in Fig. 1�c�, the polarization �Si

z� /S has not yet
reached its maximum value, which—deep in the plateau
region—is larger than the corresponding local moment realized
for spin 1 and 3/2.

56 T. Kennedy, J. Phys.: Condens. Matter 2, 5737 �2000�.
57 I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.

59, 799 �1987�.
58 K. Okunishi, Y. Hieida, and Y. Akutsu, Phys. Rev. B 60, R6953

�1999�.
59 M. G. Banks, F. Heidrich-Meisner, A. Honecker, H. Rakoto,

J.-M. Broto, and R. K. Kremer, cond-mat/0608554 �unpub-
lished�.

60 T. Sakai and M. Takahashi, Phys. Rev. B 43, 13383 �1991�.
61 A. K. Kolezhuk, Phys. Rev. B 62, R6057 �2000�.
62 A. K. Kolezhuk and U. Schollwöck, Phys. Rev. B 65, 100401�R�

�2002�.
63 S. Rao and D. Sen, Nucl. Phys. B 424, 547 �1994�.
64 D. Allen and D. Senechal, Phys. Rev. B 51, 6394 �1995�.
65 C. Gerhardt, K.-H. Mütter, and H. Kröger, Phys. Rev. B 57,

11504 �1998�.
66 F. Heidrich-Meisner, A. Honecker, and T. Vekua, Phys. Rev. B

74, 020403�R� �2006�.
67 H. Nishimori and S. Miyashita, J. Phys. Soc. Jpn. 55, 4448

�1986�.
68 I. Harada and H. Mikeska, Z. Phys. B: Condens. Matter 72, 391

�1988�.
69 A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Matter 3,

69 �1991�.
70 M. Affronte, A. Caneschi, C. Cucci, D. Gatteschi, J. C. Lasjau-

nias, C. Paulsen, M. G. Pini, A. Rettori, and R. Sessoli, Phys.
Rev. B 59, 6282 �1999�.

HEIDRICH-MEISNER et al. PHYSICAL REVIEW B 75, 064413 �2007�

064413-14


